首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Knowledge of the metabolic changes that occur in insulin-resistant type 2 diabetes is relatively lacking compared to insulin-deficient type 1 diabetes. This paper summarizes the importance of the C57BL/KsJ-db/db mouse as a model of type 2 diabetes, and illustrates the effects that insulin-deficient and insulin-resistant states have on hepatic glycogen metabolism. A longitudinal study of db/db mice of ages 2–15 weeks revealed that significant changes in certain parameters of hepatic glycogen metabolism occur during this period. The liver glycogen levels were similar between diabetic and control mice. However, glycogen particles from db/db mice were on average smaller in mass and had shorter exterior and interior chain lengths. Total phosphorylase and phosphorylase a activities were elevated in the genetically diabetic mice. This was primarily due to an increase in the amount of enzymic protein apparently the result of a decreased rate of degradation. It was not possible to find a consistent alteration in glycogen synthase activity in the db/db mice. Glycogen synthase and phosphorylase from diabetic liver revealed some changes in kinetic properties in the form of a decrease in Vmax, and altered sensitivity to inhibitors like ATP. The altered glycogen structure in db/db mice may have contributed to changes in the activities and properties of glycogen synthase and phosphorylase. The exact role played by hormones (insulin and glucagon) in these changes is not clear but further studies should reveal their contributions. The db/db mouse provides a good model for type 2 diabetes and for fluctuating insulin and glucagon ratios. Its use should clarify the regulation of hepatic glycogen metabolism and other metabolic processes known to be controlled by these hormones. The other animal models of type 2 diabetes, ob/ob mouse and fatty Zucker (fa/fa) rat, show similar impairment of hepatic glycogen metabolism. The concentrations of glycogen metabolizing enzymes are high and in vitro studies indicate enhanced rate of glycogen synthesis and breakdown. However, streptozotocin-induced diabetic animals and BB rats which resemble insulin-deficient type 1 diabetes are characterized by decreased glycogen turnover as a result of reduction in the levels of glycogen metabolizing enzymes.  相似文献   

2.
CCAAT/enhancer-binding protein beta (C/EBPbeta) plays a key role in initiation of adipogenesis in adipose tissue and gluconeogenesis in liver; however, the role of C/EBPbeta in hepatic lipogenesis remains undefined. Here we show that C/EBPbeta inactivation in Lepr(db/db) mice attenuates obesity, fatty liver, and diabetes. In addition to impaired adipogenesis, livers from C/EBPbeta(-/-) x Lepr(db/db) mice had dramatically decreased triglyceride content and reduced lipogenic enzyme activity. C/EBPbeta deletion in Lepr(db/db) mice down-regulated peroxisome proliferator-activated receptor gamma2 (PPARgamma2) and stearoyl-CoA desaturase-1 and up-regulated PPARalpha independent of SREBP1c. Conversely, C/EBPbeta overexpression in wild-type mice increased PPARgamma2 and stearoyl-CoA desaturase-1 mRNA and hepatic triglyceride content. In FAO cells, overexpression of the liver inhibiting form of C/EBPbeta or C/EBPbeta RNA interference attenuated palmitate-induced triglyceride accumulation and reduced PPARgamma2 and triglyceride levels in the liver in vivo. Leptin and the anti-diabetic drug metformin acutely down-regulated C/EBPbeta expression in hepatocytes, whereas fatty acids up-regulate C/EBPbeta expression. These data provide novel evidence linking C/EBPbeta expression to lipogenesis and energy balance with important implications for the treatment of obesity and fatty liver disease.  相似文献   

3.
The diurnal rhythms of plasma glucose, insulin, liver glycogen, and hepatic glycogen synthase and phosphorylase activities were determined in control and genetically diabetic (db/db) mice 8 weeks of age. The diabetic mice showed wide fluctuations in their plasma glucose levels, although being similar to controls near the end of the light period. Little variation was observed in their elevated plasma insulin levels. Liver glycogen levels in diabetic mice were not depleted to the low levels seen in controls during the last part of the light period but were maintained at significantly higher levels. However, maximum attained glycogen levels were similar in the two groups of mice. Alterations were also observed for the diurnal rhythms of glycogen synthase and phosphorylase activities, although again the daily maximums were similar in control and diabetic mice. These findings suggest that the reported changes of several of these metabolic parameters in the db/db mouse may be due to alterations in the diurnal pattern rather than to absolute changes.  相似文献   

4.
Nonalcoholic fatty liver disease (NAFLD) is associated with insulin resistance, oxidative stress, and obesity. The db/db mouse model displays increased levels of insulin resistance, obesity, and an over-accumulation of hepatic triglycerides, making it an excellent model for studying NAFLD. In db/db mice, intra-bone marrow-bone marrow transplantation plus thymus transplantation (IBM-BMT+TT) improves type 2 diabetes mellitus (T2 DM) by normalizing the T-cell imbalance. We hypothesized that this approach would improve Sirt1 expression in the liver and benefit liver development.The db/db mice were treated with IBM-BMT+TT, and plasma MCP-1, IL-6, adiponection, LDL, Sirt1, and HO-1 levels were then assessed. Stem cell transplantation decreased the levels of plasma inflammatory cytokines and LDL while it increased the expression of Sirt1 and HO-1, resulting in decreased progression of fatty liver. Moreover, Sirt1 and HO-1 expression were both detected in the thymus and many HO-1-positive cells were observed in the bone marrow.This is the first report of stem cell transplantation improving the antioxidant function in the liver, thymus, and bone marrow of db/db mice by increasing the levels of Sirt1 and HO-1. This approach may prove useful in the treatment of nonalcoholic steatohepatitis and its clinical manifestations.  相似文献   

5.
Genetic predisposition and environmental challenges interact to determine individual vulnerability to obesity and type 2 diabetes. We previously established a mouse model of chronic subordination stress-induced hyperphagia, obesity, metabolic like-syndrome and insulin resistance in the presence of a high-fat diet. However, it remains to be established if social stress could also aggravate glucose intolerance in subjects genetically predisposed to develop obesity and type 2 diabetes. To answer this question, we subjected genetically obese mice due to deficiency of the leptin receptor (db/db strain) to chronic subordination stress. Over five weeks, subordination stress in db/db mice led to persistent hyperphagia, hyperglycemia and exacerbated glucose intolerance altogether suggestive of an aggravated disorder when compared to controls. On the contrary, body weight and fat mass were similarly affected in stressed and control mice likely due to the hyperactivity shown by subordinate mice. Stressed db/db mice also showed increased plasma inflammatory markers. Altogether our results suggest that chronic stress can aggravate glucose intolerance but not obesity in genetically predisposed subjects on the basis of a disrupted leptin circuitry.  相似文献   

6.
Diabetic (db/db) mice provide an animal model of Type 2 diabetes characterized by marked in vivo insulin resistance. The effect of insulin on myocardial metabolism has not been fully elucidated in this diabetic model. In the present study we tested the hypothesis that the metabolic response to insulin in db/db hearts will be diminished due to cardiac insulin resistance. Insulin-induced changes in glucose oxidation (GLUox) and fatty acid (FA) oxidation (FAox) were measured in isolated hearts from control and diabetic mice, perfused with both low as well as high concentration of glucose and FA: 10 mM glucose/0.5 mM palmitate and 28 mM glucose/1.1 mM palmitate. Both in the absence and presence of insulin, diabetic hearts showed decreased rates of GLUox and elevated rates of FAox. However, the insulin-induced increment in GLUox, as well as the insulin-induced decrement in FAox, was similar or even more pronounced in diabetic that in control hearts. During elevated FA and glucose supply, however, the effect of insulin was blunted in db/db hearts with respect to both FAox and GLUox. Finally, insulin-stimulated deoxyglucose uptake was markedly reduced in isolated cardiomyocytes from db/db mice, whereas glucose uptake in isolated perfused db/db hearts was clearly responsive to insulin. These results show that, despite reduced insulin-stimulated glucose uptake in isolated cardiomyocytes, isolated perfused db/db hearts are responsive to metabolic actions of insulin. These results should advocate the use of insulin therapy (glucose-insulin-potassium) in diabetic patients undergoing cardiac surgery or during reperfusion after an ischemic insult.  相似文献   

7.
Although peroxisome proliferator-activated receptor (PPAR)gamma agonists ameliorate insulin resistance, they sometimes cause body weight gain, and the effect of PPAR agonists on insulin secretion is unclear. We evaluated the effects of combination therapy with a PPARgamma agonist, pioglitazone, and a PPARalpha agonist, bezafibrate, and a dual agonist, KRP-297, for 4 wk in male C57BL/6J mice and db/db mice, and we investigated glucose-stimulated insulin secretion (GSIS) by in situ pancreatic perfusion. Body weight gain in db/db mice was less with KRP-297 treatment than with pioglitazone or pioglitazone + bezafibrate treatment. Plasma glucose, insulin, triglyceride, and nonesterified fatty acid levels were elevated in untreated db/db mice compared with untreated C57BL/6J mice, and these parameters were significantly ameliorated in the PPARgamma agonist-treated groups. Also, PPARgamma agonists ameliorated the diminished GSIS and insulin content, and they preserved insulin and GLUT2 staining in db/db mice. GSIS was further increased by PPARgamma and -alpha agonists. We conclude that combination therapy with PPARgamma and PPARalpha agonists may be more useful with respect to body weight and pancreatic GSIS in type 2 diabetes with obesity.  相似文献   

8.
Obesity is a major risk factor for the development of type 2 diabetes, and both conditions are now recognized to possess significant inflammatory components underlying their pathophysiologies. Here, we hypothesized that cyanidin 3-glucoside (C3G), a typical anthocyanin reported to possess potent anti-inflammatory properties, would ameliorate obesity-associated inflammation and metabolic disorders, such as insulin resistance and hepatic steatosis in mouse models of diabesity. Male C57BL/6J obese mice fed a high-fat diet for 12 weeks and genetically diabetic db/db mice at an age of 6 weeks received dietary C3G supplementation (0.2%) for 5 weeks. We found that dietary C3G lowered fasting glucose levels and markedly improved the insulin sensitivity in both high-fat diet fed and db/db mice as compared with unsupplemented controls. White adipose tissue messenger RNA levels and serum concentrations of inflammatory cytokines (tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1) were reduced by C3G, as did macrophage infiltration in adipose tissue. Concomitantly, hepatic triglyceride content and steatosis were alleviated by C3G. Moreover, C3G treatment decreased c-Jun N-terminal kinase activation and promoted phosphorylation and nuclear exclusion of forkhead box O1 after refeeding. These findings clearly indicate that C3G has significant potency in antidiabetic effects by modulating the c-Jun N-terminal kinase/forkhead box O1 signaling pathway and the related inflammatory adipocytokines.  相似文献   

9.
Diabetic db/db mice exhibit profound insulin resistance in vivo, but the specific degree of cardiac insensitivity to insulin has not been assessed. Therefore, the effect of insulin on cardiomyocytes from db/db hearts was assessed by measuring two metabolic responses (deoxyglucose uptake and fatty acid oxidation) and the phosphorylation of two enzymes in the insulin-signaling cascade [Akt and AMP-activated protein kinase (AMPK)]. Maximal insulin-stimulated deoxyglucose transport was reduced to 58 and 40% of control in cardiomyocytes from db/db mice at two ages (6 and 12 wk). Insulin-stimulated deoxyglucose uptake was also reduced in myocytes from transgenic db/db mice overexpressing the insulin-sensitive glucose transporter (db/db-hGLUT4). Treatment of db/db mice for 1 wk with an insulin-sensitizing peroxisome proliferator-activated receptor-gamma agonist (COOH) completely normalized insulin-stimulated deoxyglucose uptake. Insulin had no direct effect on palmitate oxidation by either control or db/db cardiomyocytes, but the combination of insulin and glucose reduced palmitate oxidation, likely an indirect effect secondary to increased glucose uptake. Insulin had no effect on AMPK phosphorylation from either control or db/db cardiomyocytes. Insulin increased the phosphorylation of Akt in all cardiomyocyte preparations (control, db/db, COOH-treated db/db) to the same extent. Thus insulin has selective metabolic actions in mouse cardiomyocytes; deoxyglucose uptake and Akt phosphorylation are increased, but fatty acid oxidation and AMPK phosphorylation are unchanged. Insulin resistance in db/db cardiomyocytes is manifested by reduced insulin-stimulated deoxyglucose uptake.  相似文献   

10.
To determine whether uncoupling respiration from oxidative phosphorylation in skeletal muscle is a suitable treatment for obesity and type 2 diabetes, we generated transgenic mice expressing the mitochondrial uncoupling protein (Ucp) in skeletal muscle. Skeletal muscle oxygen consumption was 98% higher in Ucp-L mice (with low expression) and 246% higher in Ucp-H mice (with high expression) than in wild-type mice. Ucp mice fed a chow diet had the same food intake as wild-type mice, but weighed less and had lower levels of glucose and triglycerides and better glucose tolerance than did control mice. Ucp-L mice were resistant to obesity induced by two different high-fat diets. Ucp-L mice fed a high-fat diet had less adiposity, lower levels of glucose, insulin and cholesterol, and an increased metabolic rate at rest and with exercise. They were also more responsive to insulin, and had enhanced glucose transport in skeletal muscle in the setting of increased muscle triglyceride content. These data suggest that manipulating respiratory uncoupling in muscle is a viable treatment for obesity and its metabolic sequelae.  相似文献   

11.

Aims/Hypothesis

Bile acid sequestrants (BAS) reduce plasma glucose levels in type II diabetics and in murine models of diabetes but the mechanism herein is unknown. We hypothesized that sequestrant-induced changes in hepatic glucose metabolism would underlie reduced plasma glucose levels. Therefore, in vivo glucose metabolism was assessed in db/db mice on and off BAS using tracer methodology.

Methods

Lean and diabetic db/db mice were treated with 2% (wt/wt in diet) Colesevelam HCl (BAS) for 2 weeks. Parameters of in vivo glucose metabolism were assessed by infusing [U-13C]-glucose, [2-13C]-glycerol, [1-2H]-galactose and paracetamol for 6 hours, followed by mass isotopologue distribution analysis, and related to metabolic parameters as well as gene expression patterns.

Results

Compared to lean mice, db/db mice displayed an almost 3-fold lower metabolic clearance rate of glucose (p = 0.0001), a ∼300% increased glucokinase flux (p = 0.001) and a ∼200% increased total hepatic glucose production rate (p = 0.0002). BAS treatment increased glucose metabolic clearance rate by ∼37% but had no effects on glucokinase flux nor total hepatic or endogenous glucose production. Strikingly, BAS-treated db/db mice displayed reduced long-chain acylcarnitine content in skeletal muscle (p = 0.0317) but not in liver (p = 0.189). Unexpectedly, BAS treatment increased hepatic FGF21 mRNA expression 2-fold in lean mice (p = 0.030) and 3-fold in db/db mice (p = 0.002).

Conclusions/Interpretation

BAS induced plasma glucose lowering in db/db mice by increasing metabolic clearance rate of glucose in peripheral tissues, which coincided with decreased skeletal muscle long-chain acylcarnitine content.  相似文献   

12.
13.
Antidiabetic effects of a novel microbial biopolymer (PGB)1 excreted from new Enterobacter sp. BL-2 were tested in the db/db mice. The animals were divided into normal control, rosiglitazone (0.005%, wt/wt), low PGB1 (0.1%, wt/wt), and high PGB1 (0.25%, wt/wt) groups. After 5 weeks, the blood glucose levels of high PGB1 and rosiglitazone supplemented groups were significantly lower than those of the control group. In hepatic glucose metabolic enzyme activities, the glucokinase activities of PGB1 supplemented groups were significantly higher than the control group, whereas the PEPCK activities were significantly lower. The plasma insulin and hepatic glycogen levels of the low and high PGB1 supplemented groups were significantly higher compared with the control group. Specifically, the insulin and glycogen increases were dose-responsive to PGB1 supplement. PGB1 supplement did not affect the IPGTT and IPITT compared with the control group; however, rosiglitazone significantly improved IPITT. High PGB1 and rosiglitazone supplementation preserved the appearance of islets and insulin-positive cells in immunohistochemical photographs of the pancreas compared with the control group. These results demonstrated that high PGB1 (0.25% in the diet) supplementation seemingly contributes to preventing the onset and progression of type 2 diabetes by stimulating insulin secretion and enhancing the hepatic glucose metabolic enzyme activities.  相似文献   

14.
This study examined renal and glycemic effects of chromium picolinate [Cr(pic)3] supplementation in the context of its purported potential for DNA damage. In preventional protocol, male obese diabetic db/db mice were fed diets either lacking or containing 5, 10 or 100 mg/kg chromium as Cr(pic)3 from 6 to 24 weeks of age; male lean nondiabetic db/m mice served as controls. Untreated db/db mice displayed increased plasma glucose and insulin, hemoglobin A1c, renal tissue advanced glycation end products, albuminuria, glomerular mesangial expansion, urinary 8-hydroxydeoxyguanosine (an index of oxidative DNA damage) and renal tissue immunostaining for γH2AX (a marker of double-strand DNA breaks) compared to db/m controls. Creatinine clearance was lower in untreated db/db mice than their db/m controls, while blood pressure was similar. High Cr(pic)3 intake (i.e., 100-mg/kg diet) mildly improved glycemic status and albuminuria without affecting blood pressure or creatinine clearance. Treatment with Cr(pic)3 did not increase DNA damage despite marked renal accumulation of chromium. In interventional protocol, effects of diets containing 0, 100 and 250 mg/kg supplemental chromium, from 12 to 24 weeks of age, were examined in db/db mice. The results generally revealed similar effects to those of the 100-mg/kg diet of the preventional protocol. In conclusion, the severely hyperglycemic db/db mouse displays renal structural and functional abnormalities in association with DNA damage. High-dose Cr(pic)3 treatment mildly improves glycemic control, and it causes moderate reduction in albuminuria, without affecting the histopathological appearance of the kidney and increasing the risk for DNA damage.  相似文献   

15.
Insulin resistance in Type 2 diabetes leads to hepatic steatosis that can accompanied by progressive inflammation of the liver. Citrus unshiu peel is a rich source of citrus flavonoids that possess anti-inflammatory, anti-diabetic and lipid-lowering effects. However, the ability of citrus unshiu peel ethanol extract (CPE) to improve hyperglycemia, adiposity and hepatic steatosis in Type 2 diabetes is unknown. Thus, we evaluated the effects of CPE on markers for glucose, lipid metabolism and inflammation in Type 2 diabetic mice. Male C57BL/KsJ-db/db mice were fed a normal diet with CPE (2 g/100 g diet) or rosiglitazone (0.001 g/100 g diet) for 6 weeks. Mice supplemented with the CPE showed a significant decrease in body weight gain, body fat mass and blood glucose level. The antihyperglycemic effect of CPE appeared to be partially mediated through the inhibition of hepatic gluconeogenic phosphoenolpyruvate carboxykinase mRNA expression and its activity and through the induction of insulin/glucagon secretion. CPE also ameliorated hepatic steatosis and hypertriglyceridemia via the inhibition of gene expression and activities of the lipogenic enzymes and the activation of fatty acid oxidation in the liver. These beneficial effects of CPE may be related to increased levels of anti-inflammatory adiponectin and interleukin (IL)-10, and decreased levels of pro-inflammatory markers (IL-6, monocyte chemotactic protein-1, interferon-γ and tumor necrosis factor-α) in the plasma or liver. Taken together, we suggest that CPE has the potential to improve both hyperglycemia and hepatic steatosis in Type 2 diabetes.  相似文献   

16.
The NAD+-dependent deacetylase SIRT1, which is associated with the improvement of metabolic syndromes, such as type 2 diabetes, is a well-known longevity-related gene. Several in vitro and in vivo studies have shown the known protective effects of SIRT1 activators, such as resveratrol and SRT1720, on diabetes- or obesity-induced fatty liver and insulin resistance. Here, we newly synthesized 18 benzoxazole hydrochloride derivatives based on the structure of resveratrol and SRT1720. We performed an in vitro SIRT1 activity assay to identify the strongest SIRT1 activator. The assay confirmed MHY2233 to be the strongest SIRT1 activator (1.5-fold more potent than resveratrol), and docking simulation showed that the binding affinity of MHY2233 was higher than that of resveratrol and SRT1720. To investigate its beneficial effects, db/db mice were orally administered MHY2233 for 1?month, and various metabolic parameters were assessed in the serum and liver tissues. MHY2233 markedly ameliorated insulin signaling without affecting body weight in db/db mice. In particular, the mRNA expression of lipogenic genes, such as acetyl CoA carboxylase, fatty acid synthase, and sterol regulatory element-binding protein, which increased in db/db mice, decreased following oral treatment with MHY2233.In conclusion, the novel SIRT1 activator MHY2233 reduced lipid accumulation and improved insulin resistance. This finding may contribute toward therapeutic approaches for fatty liver disease and glucose tolerance.  相似文献   

17.
Hepatic glucose overproduction is a major characteristic of type 2 diabetes. Because glucagon is a key regulator for glucose homeostasis, antagonizing the glucagon receptor (GCGR) is a possible therapeutic strategy for the treatment of diabetes mellitus. To study the effect of hepatic GCGR inhibition on the regulation of lipid metabolism, we generated siRNA-mediated GCGR knockdown (si-GCGR) in the db/db mouse. The hepatic knockdown of GCGR markedly reduced plasma glucose levels; however, total plasma cholesterol was increased. The detailed lipid analysis showed an increase in the LDL fraction, and no change in VLDL HDL fractions. Further studies showed that the increase in LDL was the result of over-expression of hepatic lipogenic genes and elevated de novo lipid synthesis. Inhibition of hepatic glucagon signaling via siRNA-mediated GCGR knockdown had an effect on both glucose and lipid metabolism in db/db mice.  相似文献   

18.
Resveratrol (RSV) has anti-inflammatory and anti-oxidant actions which may contribute to its cardiovascular protective effects. We examined whether RSV has any beneficial effects on pancreatic islets in db/db mice, an animal model of type 2 diabetes. The db/db and db/dm mice (non-diabetic control) were treated with (db-RSV) or without RSV (db-control) (20 mg/kg daily) for 12 weeks. After performing an intraperitoneal glucose tolerance test and insulin tolerance test, mice were sacrificed, the pancreas was weighed, pancreatic β-cell mass was quantified by point count method, and the amount of islet fibrosis was determined. 8-Hydroxydeoxyguanosine (8-OHdG), an oxidative stress marker, was determined in 24 h urine and pancreatic islets. RSV treatment significantly improved glucose tolerance at 2 hrs in db/db mice (P = 0.036), but not in db/dm mice (P = 0.623). This was associated with a significant increase in both pancreas weight (P = 0.011) and β-cell mass (P = 0.016). Islet fibrosis was much less in RSV-treated mice (P = 0.048). RSV treatment also decreased urinary 8-OHdG levels (P = 0.03) and the percentage of islet nuclei that were positive for 8-OHdG immunostaining (P = 0.019). We conclude that RSV treatment improves glucose tolerance, attenuates β-cell loss, and reduces oxidative stress in type 2 diabetes. These findings suggest that RSV may have a therapeutic implication in the prevention and management of diabetes.  相似文献   

19.
20.
Alzheimer's disease (AD) is the most common age-related neurodegenerative disease, while obesity is a major global public health problem associated with the metabolic disorder type 2 diabetes mellitus (T2DM). Chronic obesity and T2DM have been identified as invariant risk factors for dementia and late-onset AD, while their impacts on the occurrence and development of AD remain unclear. As shown in our previous study, the diabetic mutation (db, Leprdb/db) induces mixed or vascular dementia in mature to middle-aged APPΔNL/ΔNL x PS1P264L/P264L knock-in mice (db/AD). In the present study, the impacts of the db mutation on young AD mice at 10 weeks of age were evaluated. The db mutation not only conferred young AD mice with severe obesity, impaired glucose regulation and activated mammalian target of rapamycin (mTOR) signaling pathway in the mouse cortex, but lead to a surprising improvement in memory. At this young age, mice also had decreased cerebral Aβ content, which we have not observed at older ages. This was unlikely to be related to altered Aβ synthesis, as both β- and γ-secretase were unchanged. The db mutation also reduced the cortical IL-1β mRNA level and IBA1 protein level in young AD mice, with no significant effect on the activation of microglia and astrocytes. We conclude that the db mutation could transitorily improve the memory of young AD mice, a finding that may be partially explained by the relatively improved glucose homeostasis in the brains of db/AD mice compared to their counterpart AD mice, suggesting that glucose regulation could be a strategy for prevention and treatment of neurodegenerative diseases like AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号