首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract What causes species richness to vary among different groups of organisms? Two hypotheses are that large geographical ranges and fast life history either reduce extinction rates or raise speciation rates, elevating a clade's rate of diversification. Here we present a comparative analysis of these hypotheses using data on the phylogenetic relationships, geographical ranges and life history of the terrestrial mammal fauna of Australia. By comparing species richness patterns to null models, we show that species are distributed nonrandomly among genera. Using sister‐clade comparisons to control for clade age, we then find that faster diversification is significantly associated with larger geographical ranges and larger litters, but there is no evidence for an effect of body size or age at first breeding on diversification rates. We believe the most likely explanation for these patterns is that larger litters and geographical ranges increase diversification rates because they buffer species from extinction. We also discuss the possibility that positive effects of litter size and range size on diversification rates result from elevated speciation rates.  相似文献   

2.
Why do some avian families contain so many more species than other families? We use comparisons between sister taxa to test predictions arising from six explanations to this puzzle: that differences between families are due to chance, body size, life history, sexual selection, intrinsic ecological factors or extrinsic abiotic factors, respectively. In agreement with previous analyses, we find no support for the idea that differences in species richness are simply due to chance. However, contrary to most previous work, we also find no support for the hypotheses that high species richness is correlated with small body size and fast life history. Rather, high species diversity is strongly associated with pronounced plumage dichromatism, generalist feeding habits and good dispersal capabilities as well as large and fragmented geographical ranges. In addition, all of these relationships are robust to the removal of the two most speciose avian lineages, the Ciconiiformes and the Passeriformes. The supposed relationships between species richness and both body size and life history are, however, due to phylogenetic non-independence. Together with previous work showing that differences between avian lineages in extinction risk are associated with variation in body size and life history, these results indicate that extinction rates and speciation rates are not necessarily determined by the same factors. Hence, high extinction rates are not inevitably associated with low speciation rates. Extinction-prone lineages may, in fact, have a high rate of speciation. In such lineages a high proportion of ''vulnerable'' species would be a natural, ongoing phenomenon.  相似文献   

3.
The hypothesis of phylogenetic niche conservatism proposes that most extant members of a clade remain in ancestral environments because expansion into new ecological space imposes a selectional load on a population. A prediction that follows is that local assemblages contain increasingly phylogenetically clustered subsets of species with increasing difference from the ancestral environment of a clade. We test this in Australian Meliphagidae, a continental radiation of birds that originated in wet, subtropical environments, but subsequently spread to drier environments as Australia became more arid during the late Cenozoic. We find local assemblages are increasingly phylogenetically clustered along a gradient of decreasing precipitation. The pattern is less clear along a temperature gradient. We develop a novel phyloclimatespace to visualise the expansion of some lineages into drier habitats. Although few species extend into arid regions, those that do occupy larger ranges and thus local species richness does not decline predictably with precipitation.  相似文献   

4.
Aim Optimal body size theories predict that large clades have a single, optimal, body size that serves as an evolutionary attractor, with the full body size spectrum of a clade resulting from interspecific competition. Because interspecific competition is believed to be reduced on islands, such theories predict that insular animals should be closer to the optimal size than mainland animals. We test the resulting prediction that insular clade members should therefore have narrower body size ranges than their mainland relatives. Location World‐wide. Methods We used body sizes and a phylogenetic tree of 4004 mammal species, including more than 200 species that went extinct since the last ice age. We tested, in a phylogenetically explicit framework, whether insular taxa converge on an optimal size and whether insular clades have narrow size ranges. Results We found no support for any of the predictions of the optimal size theory. No specific size serves as an evolutionary attractor. We did find consistent evidence that large (> 10 kg) mammals grow smaller on islands. Smaller species, however, show no consistent tendency to either dwarf or grow larger on islands. Size ranges of insular taxa are not narrower than expected by chance given the number of species in their clades, nor are they narrower than the size ranges of their mainland sister clades – despite insular clade members showing strong phylogenetic clustering. Main conclusions The concept of a single optimal body size is not supported by the data that were thought most likely to show it. We reject the notion that inclusive clades evolve towards a body‐plan‐specific optimum.  相似文献   

5.
Explaining the dramatic variation in species richness across the tree of life remains a key challenge in evolutionary biology. At the largest phylogenetic scales, the extreme heterogeneity in species richness observed among different groups of organisms is almost certainly a function of many complex and interdependent factors. However, the most fundamental expectation in macroevolutionary studies is simply that species richness in extant clades should be correlated with clade age: all things being equal, older clades will have had more time for diversity to accumulate than younger clades. Here, we test the relationship between stem clade age and species richness across 1,397 major clades of multicellular eukaryotes that collectively account for more than 1.2 million described species. We find no evidence that clade age predicts species richness at this scale. We demonstrate that this decoupling of age and richness is unlikely to result from variation in net diversification rates among clades. At the largest phylogenetic scales, contemporary patterns of species richness are inconsistent with unbounded diversity increase through time. These results imply that a fundamentally different interpretative paradigm may be needed in the study of phylogenetic diversity patterns in many groups of organisms.  相似文献   

6.
Robert N. Reed 《Ecography》2003,26(1):107-117
Many higher taxa exhibit latitudinal gradients in species richness, geographic range size, and body size. However, these variables are often interdependent, such that examinations of univariate or bivariate patterns alone may be misleading. Therefore, I examined latitudinal gradients in, and relationships between, species richness, geographic range size, and body size among 144 species of New World venomous snakes [families Elapidae (coral snakes) and Viperidae (pitvipers)]. Both lineages are monophyletic, collectively span 99° of latitude, and are extremely variable in body size and geographic range sizes. Coral snakes exhibit highest species richness near the equator, while pitviper species richness peaks in Central America. Species – range size distributions were strongly right-skewed for both families. There was little support for Bergmann's rule or Rapoport's rule for snakes of either family, as neither body size nor range size increased significantly with latitude. However, range area and median range latitude were positively correlated above 15° N, indicating a possible "Rapoport effect" at high northern latitudes. Geographic range size was positively associated with body size. Available continental area strongly influenced range size. Comparative (phylogenetically-based) analyses revealed that shared history is a poor predictor of range size variation within clades. Among vipers, trends in geographic range sizes may have been structured more by historical biogeography than by macroecological biotic factors.  相似文献   

7.
Aim To analyse the global patterns in species richness of Viperidae snakes through the deconstruction of richness into sets of species according to their distribution models, range size, body size and phylogenetic structure, and to test if environmental drivers explaining the geographical ranges of species are similar to those explaining richness patterns, something we called the extreme deconstruction principle. Location Global. Methods We generated a global dataset of 228 terrestrial viperid snakes, which included geographical ranges (mapped at 1° resolution, for a grid with 7331 cells world‐wide), body sizes and phylogenetic relationships among species. We used logistic regression (generalized linear model; GLM) to model species geographical ranges with five environmental predictors. Sets of species richness were also generated for large and small‐bodied species, for basal and derived species and for four classes of geographical range sizes. Richness patterns were also modelled against the five environmental variables through standard ordinary least squares (OLS) multiple regressions. These subsets are replications to test if environmental factors driving species geographical ranges can be directly associated with those explaining richness patterns. Results Around 48% of the total variance in viperid richness was explained by the environmental model, but richness sets revealed different patterns across the world. The similarity between OLS coefficients and the primacy of variables across species geographical range GLMs was equal to 0.645 when analysing all viperid snakes. Thus, in general, when an environmental predictor it is important to model species geographical ranges, this predictor is also important when modelling richness, so that the extreme deconstruction principle holds. However, replicating this correlation using subsets of species within different categories in body size, range size and phylogenetic structure gave more variable results, with correlations between GLM and OLS coefficients varying from –0.46 up to 0.83. Despite this, there is a relatively high correspondence (r = 0.73) between the similarity of GLM‐OLS coefficients and R2 values of richness models, indicating that when richness is well explained by the environment, the relative importance of environmental drivers is similar in the richness OLS and its corresponding set of GLMs. Main conclusions The deconstruction of species richness based on macroecological traits revealed that, at least for range size and phylogenetic level, the causes underlying patterns in viperid richness differ for the various sets of species. On the other hand, our analyses of extreme deconstruction using GLM for species geographical range support the idea that, if environmental drivers determine the geographical distribution of species by establishing niche boundaries, it is expected, at least in theory, that the overlap among ranges (i.e. richness) will reveal similar effects of these environmental drivers. Richness patterns may be indeed viewed as macroecological consequences of population‐level processes acting on species geographical ranges.  相似文献   

8.
Parasite species richness is a fundamental characteristic of host species and varies substantially among host communities. Hypotheses aiming to explain observed patterns of richness are numerous, and none is universal. In this study, we use tapeworm parasites of elasmobranch fishes to examine the phylogenetic and environmental influences on the variation in species richness for this specific system. Tapeworms are the most diverse group of helminths to infect elasmobranchs. Elasmobranchs are cosmopolitan in distribution and their tapeworm parasites are remarkably host specific; therefore, making this an ideal system in which to examine global patterns in species diversity. Here, we 1) quantify the tapeworm richness in elasmobranch fishes, 2) identify the host features correlated with tapeworm richness, and 3) determine whether tapeworm richness follows a latitudinal gradient. The individual and combined effects of host size, factors associated with water temperatures (influenced by latitude and depth), host habitat, and type of elasmobranch (shark or batoid) on measures of species diversity were assessed using general linear models. These analyses included tapeworm host records for 317 different elasmobranch species (124 species were included in our analyses) and were conducted with and without taking into account phylogenetic relationships between host species. Since sharks and batoids differ substantially in body form, analyses were repeated for each host subset. On average, batoids harboured significantly more tapeworm species than shark hosts. Tapeworm richness in sharks was influenced by median depth, whereas no predictor variable included in our models could adequately account for interspecific variation in tapeworm richness in batoid hosts. The taxonomic diversity of tapeworm assemblages of sharks and batoids was influenced by median depth and median latitude, respectively. When the influence of host phylogeny is accounted for, larger hosts harbour a greater tapeworm richness, whereas hosts exploiting wider latitudinal ranges harbour more taxonomically distinct tapeworm assemblages. Species richness and taxonomic diversity of tapeworm assemblages in elasmobranch fishes are influenced by different evolutionary pressures, including host phylogenetic relationships, space constraints and geographical area. Our results suggest that ca 3600 tapeworm species have yet to be described from elasmobranch fishes.  相似文献   

9.
Several theories predict that rapidly diversifying clades will also rapidly diverge phenotypically; yet, there are also reasons for suspecting that diversification and divergence might not be correlated. In the widely distributed squirrel clade (Sciuridae), we test for correlations between per lineage speciation rates, species richness, disparity, and a time‐invariant measure of disparity that allows for comparing rates when evolutionary modes differ, as they do in squirrels. We find that species richness and speciation rates are not correlated with clade age or with each other. Disparity appears to be positively correlated with clade age because young, rapidly diversifying Nearctic grassland clades are strongly pulled to a single stable optimum but older, slowly diversifying Paleotropical forest clades contain lineages that diverge along multiple ecological and morphological lines. That contrast is likely due to both the environments they inhabit and their phylogenetic community structure. Our results argue against a shared explanation for diversity and disparity in favor of geographically mediated modes of speciation and ecologically mediated modes of phenotypic evolution.  相似文献   

10.
Differences in body size are widely thought to allow closely related species to coexist in sympatry, but body size also varies as an adaptive response to climate. Here, we use a sister lineage approach to test the prediction that body size differences between closely related species of birds worldwide are greater for species whose ranges are sympatric rather than allopatric. We further test if body size differences among sympatric versus allopatric species vary with geography, evolutionary distance, and environmental temperatures. We find greater differences in size among sympatric compared with allopatric lineages, but only in closely related species that live where mean annual temperatures are above 25°C. These size differences in warm environments declined with the evolutionary distance between sister lineages. In species living in cooler regions, closely related allopatric and sympatric species did not differ significantly in size, suggesting either that colder temperatures constrain the evolutionary divergence of size in sympatry, or that the biotic selective pressures favoring size differences in sympatry are weaker in colder environments. Our results are consistent with suggestions by Wallace, Darwin, and Dobzhansky that climatic selective pressures are more important in cooler environments (e.g., high elevations and latitudes) whereas biotic selective pressures dominate in warm environments (e.g., lowland tropics).  相似文献   

11.
Whitney Preisser 《Ecography》2019,42(7):1315-1330
The latitudinal diversity gradient (LDG), or the trend of higher species richness at lower latitudes, has been well documented in multiple groups of free‐living organisms. Investigations of the LDG in parasitic organisms are comparatively scarce. Here, I investigated latitudinal patterns of parasite diversity by reviewing published studies and by conducting a novel investigation of the LDG of helminths (parasitic nematodes, trematodes and cestodes) of cricetid rodents (Rodentia: Cricetidae). Using host–parasite records from 175 parasite communities and 60 host species, I tested for the presence and direction of a latitudinal pattern of helminth richness. Additionally, I examined four abiotic factors (mean annual temperature, annual precipitation, annual temperature range and annual precipitation range) and two biotic variables (host body mass and host diet) as potential correlates of parasite richness. The analyses were performed with and without phylogenetic comparative methods, as necessary. In this system, helminths followed the traditional LDG, with increasing species richness with decreasing latitude. Nematode richness appeared to drive this pattern, as cestodes and trematodes exhibited a reverse LDG and no latitudinal pattern, respectively. Overall helminth richness and nematode richness were higher in areas with higher mean annual temperatures, annual precipitation and annual precipitation ranges and lower annual temperature ranges, characteristics that often typify lower latitudes. Cestode richness was higher in areas of lower mean annual temperatures, annual precipitation and annual precipitation ranges and higher annual temperature ranges, while trematode richness showed no relationship with climate variables when phylogenetic comparative methods were used. Host diet was significantly correlated with cestode and trematode species richness, while host body mass was significantly correlated with nematode species richness. Results of this study support a complex association between parasite richness and latitude, and indicate that researchers should carefully consider other factors when trying to understand diversity gradients in parasitic organisms.  相似文献   

12.
Density, body mass and parasite species richness of terrestrial mammals   总被引:9,自引:0,他引:9  
We investigated the relationships between helminth species richness and body mass and density of terrestrial mammals. Cross-species analysis and the phylogenetically independent contrast method produced different results. A non-phylogenetic approach (cross-species comparisons) led to the conclusion that parasite richness is linked to host body size. However, an analysis using phylogenetically independent contrasts showed no relationship between host body size and parasite richness. Conversely, a non-phylogenetic approach generated a negative relationship between parasite richness and host density, whereas the independent contrast method showed the opposite trend – that is, parasite richness is positively correlated with host density. From an evolutionary perspective, our results suggest that opportunities for parasite colonization depend more closely on how many hosts are available in a given area than on how large the hosts are. From an epidemiological point of view, our results confirm theoretical models which assume that host density is linked to the opportunity of a parasite to invade a population of hosts. Our findings also suggest that parasitism may be a cost associated with host density. Finally, we provide some support for the non-linear allometry between density and mammal body mass (Silva and Downing, 1995), and explain why host density and host body mass do not relate equally to parasite species richness.  相似文献   

13.
Some hosts harbor diverse parasite communities, whereas others are relatively parasite free. Many factors have been proposed to account for patterns of parasite species richness, but few studies have investigated competing hypotheses among multiple parasite communities in the same host clade. We used a comparative data set of 941 host-parasite combinations, representing 101 anthropoid primate species and 231 parasite taxa, to test the relative importance of four sets of variables that have been proposed as determinants of parasite community diversity in primates: host body mass and life history, social contact and population density, diet, and habitat diversity. We defined parasites broadly to include not only parasitic helminths and arthropods but also viruses, bacteria, fungi, and protozoa, and we controlled for effects of uneven sampling effort on per-host measures of parasite diversity. In nonphylogenetic tests, body mass was correlated with total parasite diversity and the diversity of helminths and viruses. When phylogeny was taken into account, however, body mass became nonsignificant. Host population density, a key determinant of parasite spread in many epidemiological models, was associated consistently with total parasite species richness and the diversity of helminths, protozoa, and viruses tested separately. Geographic range size and day range length explained significant variation in the diversity of viruses.  相似文献   

14.
Introduced species escape many pathogens and other enemies, raising three questions. How quickly do introduced hosts accumulate pathogen species? What factors control pathogen species richness? Are these factors the same in the hosts' native and introduced ranges? We analysed fungal and viral pathogen species richness on 124 plant species in both their native European range and introduced North American range. Hosts introduced 400 years ago supported six times more pathogens than those introduced 40 years ago. In hosts' native range, pathogen richness was greater on hosts occurring in more habitat types, with a history of agricultural use and adapted to greater resource supplies. In hosts' introduced range, pathogen richness was correlated with host geographic range size, agricultural use and time since introduction, but not any measured biological traits. Introduced species have accumulated pathogens at rates that are slow relative to most ecological processes, and contingent on geographic and historic circumstance.  相似文献   

15.
In general, squamate reptiles follow the converse to Bergmann's rule, attaining smaller sizes in cooler environments, whereas other vertebrate groups follow Bergmann's rule, attaining larger sizes in cooler areas. Intensive studies of body size evolution for species of squamates are necessary to understand the processes responsible for this trend. Here I present data on body size variation among mainland populations of the western rattlesnake, Crotalus viridis. This species consists of two well-differentiated phylogenetic clades, therefore all analyses were performed for the C. viridis group as a whole and separately for each of the two clades within the C. viridis group. Although both phylogenetic and nonphylogenetic analyses were performed, the data did not show phylogenetic conservatism, and therefore the nonphylogenetic results are preferred. I found no significant relationships between mean adult female snout-vent length and any of the physical and climatic variables that were examined for the C. viridis group using simple linear regression analysis. Examined separately, I found that individuals of the western clade, C. oreganus, were smaller in cooler and more seasonal environments, whereas individuals of the eastern clade. C. viridis sensu stricto, were larger in cooler and more seasonal areas. Thus, the observed size trends were in opposite directions for the two clades. Multiple regression analysis revealed that seasonality was a stronger predictor of body size variation than was temperature for both clades. The differences in body size trends between these clades may be due to differences in mortality rates among populations.  相似文献   

16.
Information on the distribution of species richness, faunal density, biomass and estimated productivity of benthic invertebrates in Tasmanian estuaries was quantified at a variety of spatial and temporal scales to assess general hypothesis relating community metrics to such environmental variables as salinity, seagrass biomass and sediment particle size. An associated aim was to assess appropriate scales of investigation for soft-sediment biota distributed in estuaries, including whether patterns identified at individual sites, estuaries, tidal levels or times are likely to have more general relevance. Faunal biomass and productivity varied principally at between-estuary (10 to 1000 km) and replicate-sample (1 m) scales, indicating that these two community metrics were largely responding to estuary-wide effects, such as nutrient loading, and to microhabitat features, rather than to locality characteristics at intermediate scales such as salinity, anoxia or sediment particle size. By contrast, faunal density showed greater response to tidal height (1 to 100 m) and to factors distributed at the locality scale within estuary (10 km) than to factors between estuary. Both faunal density and species richness in estuaries declined over three- and fivefold ranges down the shore from high water mark to the shallow sublittoral, while estimated productivity and biomass showed highest overall levels at low water mark. The greatest component of variance in species richness was associated with tidal height, with variance then distributed approximately evenly between other spatial scales examined. At the low-tide and shallow subtidal levels, species richness, faunal biomass and estimated productivity were all highly correlated with salinity and biomass of macrophytes, whereas faunal density was highly correlated with biomass of macrophytes only. Relationships between environmental and biological variables examined were poorly defined at high tidal levels. Seasonal plus interannual variance was much lower than spatial variance—a clear indication that sampling effort in studies would generally be better directed across a range of localities than for a single locality to be repeatedly investigated over time.  相似文献   

17.
Robert Poulin  Klaus Rohde 《Oecologia》1997,110(2):278-283
Parasite communities are the product of acquisitions and losses of parasite species during the evolutionary history of their host. When comparing the parasite communities of different host species to assess the role of ecological variables as determinants of parasite species richness, a correction must be made for the possible phylogenetic inheritance of parasites from ancestral hosts independent of host ecology. We performed a comparative analysis of the metazoan ectoparasite communities on the heads and gills of 111 species of marine fish. The influences of host body size, host schooling behaviour and water temperature were tested after controlling for both sampling and phylogenetic effects. Overall, water temperature correlated positively with both parasite species richness and abundance, whereas fish size only correlated with parasite abundance. The correlation across all fish species between water temperature and parasite species richness was dependent on an outlier point. The results, however, generally held when fish from different biogeographical areas (Pacific and Atlantic) were analysed separately. In all analyses, parasite species richness always correlated strongly with parasite abundance. There was no evidence that schooling fish taxa harboured richer or more abundant ectoparasite communities than their non-schooling sister taxa, possibly because of the small number of contrasts available for that test. Overall, whereas both water temperature and host size affect the number of parasite individuals that can be harboured by a fish, only temperature appears important as a determinant of ectoparasite community richness. Received: 30 May 1996 / Accepted: 23 October 1996  相似文献   

18.
Aim In simulation exercises, mid‐domain peaks in species richness arise as a result of the random placement of modelled species ranges within simulated geometric constraints. This has been called the mid‐domain effect (MDE). Where close correspondence is found between such simulations and empirical data, it is not possible to reject the hypothesis that empirical species richness patterns result from the MDE rather than being the outcome (wholly or largely) of other factors. To separate the influence of the MDE from other factors we therefore need to evaluate variables other than species richness. The distribution of range sizes gives different predictions between models including the MDE or not. Here, we produce predictions for species richness and distribution of range sizes from one model without the MDE and from two MDE models: a classical MDE model encompassing only species with their entire range within the domain (range‐restricted MDE), and a model encompassing all species with the theoretical midpoint within the domain (midpoint‐restricted MDE). These predictions are compared with observations from the elevational pattern of range‐size distributions and species richness of vascular plants. Location Mount Kinabalu, Borneo. Methods The data set analysed comprises more than 28,000 plant specimens with information on elevation. Species ranges are simulated with various assumptions for the three models, and the species simulated are subsequently subjected to a sampling that simulates the actual collection of species on Mount Kinabalu. The resulting pattern of species richness and species range‐size distributions are compared with the observed pattern. Results The comparison of simulated and observed patterns indicates that an underlying monotonically decreasing trend in species richness with elevation is essential to explain fully the observed pattern of richness and range size. When the underlying trend is accounted for, the MDE model that restricts the distributions of theoretical midpoints performs better than both the classical MDE model and the model that does not incorporate geometric constraints. Main conclusions Of the three models evaluated here, the midpoint‐restricted MDE model is found to be the best for explaining species richness and species range‐size distributions on Mount Kinabalu.  相似文献   

19.
Aim The goal of this paper is to examine the relationships between body size, biomic specialization and range size in the African large mammals, which are defined as all the African species corresponding to the orders Primates, Carnivora, Proboscidea, Perissodactyla, Hyracoidea, Tubulidentata, Artiodactyla and Pholidota. Location The study used the large mammal assemblage from Africa. Methods The degree of biomic specialization of African large mammals is investigated using the biomic specialization index (BSI) for each mammal species, based on the number of biomes it inhabits. Range size for each species is measured as the latitudinal extent of the geographical distribution of the species. We have analysed our data using both conventional cross‐species analyses and phylogenetically independent contrasts. Results There is a polygonal relationship between species biomic specialization and body size. While small and large species are biomic specialists, medium‐sized species are distributed along the whole range of biomic specialization. The latitudinal extent–body size relationship is approximately triangular. Small‐bodied species may have either large or small ranges, whereas large‐bodied ones have only large ranges. A positive correlation between latitudinal extent and biomic specialization is evident, although their relationship is better described as triangular. Main conclusions We found a polygonal relationship between species biomic specialization and body size, which agrees with previous arguments that small‐bodied species have more limited dispersal and, therefore, they may come to occupy a lesser proportion of their potential inhabitable biomes. On the other hand, large‐bodied species are constrained to inhabit biomes with a high productivity. A polygonal relationship between species latitudinal extent and body size in African large mammals agrees with previous studies of the relationship between range size and body size in other continents. The independent study of the macroecological pattern in biomic specialization highlights different factors that influence the body size–range size relationship. Although body size is usually implicated as a correlate of both specialization and geographical range size in large mammals, much of the variation in these variables cannot be attributed to size differences but to biome specific factors such as productivity, area, history, etc.  相似文献   

20.
Bordes F  Morand S  Ricardo G 《Oecologia》2008,158(1):109-116
Patterns of ectoparasite species richness in mammals have been investigated in various terrestrial mammalian taxa such as primates, ungulates and carnivores. Several ecological or life traits of hosts are expected to explain much of the variability in species richness of parasites. In the present comparative analysis we investigate some determinants of parasite richness in bats, a large and understudied group of flying mammals, and their obligate blood-sucking ectoparasite, streblid bat flies (Diptera). We investigate the effects of host body size, geographical range, group size and roosting ecology on the species richness of bat flies in tropical areas of Venezuela and Peru, where both host and parasite diversities are high. We use the data from a major sampling effort on 138 bat species from nine families. We also investigate potential correlation between bat fly species richness and brain size (corrected for body size) in these tropical bats. We expect a relationship if there is a potential energetic trade-off between costly large brains and parasite-mediated impacts. We show that body size and roosting in cavities are positively correlated with bat fly species richness. No effects of bat range size and group size were observed. Our results also suggest an association between body mass-independent brain size and bat fly species richness. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号