首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand the pathogenesis of chronic inflammatory disease, we analyzed an experimental mouse model of chronic lung disease with pathology that resembles asthma and chronic obstructive pulmonary disease (COPD) in humans. In this model, chronic lung disease develops after an infection with a common type of respiratory virus is cleared to only trace levels of noninfectious virus. Chronic inflammatory disease is generally thought to depend on an altered adaptive immune response. However, here we find that this type of disease arises independently of an adaptive immune response and is driven instead by interleukin-13 produced by macrophages that have been stimulated by CD1d-dependent T cell receptor-invariant natural killer T (NKT) cells. This innate immune axis is also activated in the lungs of humans with chronic airway disease due to asthma or COPD. These findings provide new insight into the pathogenesis of chronic inflammatory disease with the discovery that the transition from respiratory viral infection into chronic lung disease requires persistent activation of a previously undescribed NKT cell-macrophage innate immune axis.  相似文献   

2.
MicroRNAs (miRNAs) have emerged as a class of regulatory RNAs with immense significance in numerous biological processes. When aberrantly expressed miRNAs have been shown to play a role in the pathogenesis of several disease states. Extensive research has explored miRNA involvement in the development and fate of immune cells and in both the innate and adaptive immune responses whereby strong evidence links miRNA expression to signalling pathways and receptors with critical roles in the inflammatory response such as NF-κB and the toll-like receptors, respectively. Recent studies have revealed that unique miRNA expression profiles exist in inflammatory lung diseases such as cystic fibrosis, chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis and lung cancer. Evaluation of the global expression of miRNAs provides a unique opportunity to identify important target gene sets regulating susceptibility and response to infection and treatment, and control of inflammation in chronic airway disorders. Over 800 human miRNAs have been discovered to date, however the biological function of the majority remains to be uncovered. Understanding the role that miRNAs play in the modulation of gene expression leading to sustained chronic pulmonary inflammation is important for the development of new therapies which focus on prevention of disease progression rather than symptom relief. Here we discuss the current understanding of miRNA involvement in innate immunity, specifically in LPS/TLR4 signalling and in the progression of the chronic inflammatory lung diseases cystic fibrosis, COPD and asthma. miRNA in lung cancer and IPF are also reviewed.  相似文献   

3.
The ability to maintain adequate gas exchange depends on the relatively homogeneous distribution of inhaled gas throughout the lung. Structural alterations associated with many respiratory diseases may significantly depress this function during tidal breathing. These alterations frequently occur in a heterogeneous manner due to complex, emergent interactions among the many constitutive elements of the airways and parenchyma, resulting in unique signature changes in the mechanical impedance spectrum of the lungs and total respiratory system as measured by forced oscillations techniques (FOT). When such impedance spectra are characterized by appropriate inverse models, one may obtain functional insight into derangements in global respiratory mechanics. In this review, we provide an overview of the impact of structural heterogeneity with respect to dynamic lung function. Recent studies linking functional impedance measurements to the structural heterogeneity observed in acute lung injury, asthma, and chronic obstructive pulmonary disease are highlighted, as well as current approaches for the modeling and interpretation of impedance. Finally, we discuss the potential diagnostic role of FOT in the context of therapeutic interventions.  相似文献   

4.
Chronic inflammatory bone diseases, such as rheumatoid arthritis (RA), ankylosing spondylitis and periodontal disease, demonstrate the major impact of chronic inflammation on both bone metabolism and bone architecture. During the past decade, scientists have gained increasing insight into the link between inflammation and bone. As a result of new discoveries about the molecular mechanisms of inflammatory bone loss, several molecules have been identified that are attractive and novel targets for the treatment of inflammatory bone loss. These novel therapeutic approaches include anti-tumor necrosis factor (TNF)-alpha blocking agents, neutralizing antibodies against certain pro-inflammatory cytokines, such as interleukin (IL)-6 and IL-17, and a set of other promising targets that still require extensive research, such as the Wnt signaling network.  相似文献   

5.
Asthma is a complex chronic inflammatory disease of the small airways that has dramatically increased in prevalence in industrialized countries during the last decades. Risk factors for adult asthma have been related to the complex array of gene-environment interactions and exposure of the immune system to allergens in early childhood. In genetically predisposed subjects, continuous exposure to environmental agents such as allergens or infections can lead to recurrent airway symptoms characterized by recurrent episodes of airway inflammation and bronchoconstriction with clinical symptoms of cough, dyspnea, or wheezing. In this study, we report that the longterm temporal dynamics of recurrent airway symptoms in a population of unselected infants display a complex intermittent pattern and that the distribution of interepisode intervals follows a power law. We interpret the data by using a model of the dynamics of attack episodes in which an attack is triggered by an avalanche of airway constrictions. We map the dynamics of this model to the known problem of a random walk in the presence of an absorbing boundary in which the walker corresponds to the fluctuations in contractile state of airway smooth muscle cells. These findings may provide new insight into the mechanisms of otherwise unexplained symptom episodes.  相似文献   

6.
Acute inflammation is a recognised part of normal wound healing. However, when inflammation fails to resolve and a chronic inflammatory response is established this process can become dysregulated resulting in pathological wound repair, accumulation of permanent fibrotic scar tissue at the site of injury and the failure to return the tissue to normal function. Fibrosis can affect any organ including the lung, skin, heart, kidney and liver and it is estimated that 45% of deaths in the western world can now be attributed to diseases where fibrosis plays a major aetiological role. In this review we examine the evidence that cytokines play a vital role in the acute and chronic inflammatory responses that drive fibrosis in injured tissues. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

7.
Repetitive, acute inflammatory insults elicited by cigarette smoke (CS) contribute to the development of chronic obstructive pulmonary disease (COPD), a disorder associated with lung inflammation and mucus hypersecretion. Presently, there is a poor understanding of the acute inflammatory mechanisms involved in this process. The aims of this study were to develop an acute model to investigate temporal inflammatory changes occurring after CS exposure. Rats were exposed to whole body CS (once daily) generated from filtered research cigarettes. Initial studies indicated the generation of a neutrophilic/mucus hypersecreting lung phenotype in <4 days. Subsequent studies demonstrated that just two exposures to CS (15 h apart) elicited a robust inflammatory/mucus hypersecretory phenotype that was used to investigate mechanisms driving this response. Cytokine-induced neutrophil chemoattractants (CINCs) 1-3, the rat growth-related oncogene-alpha family homologs, and IL-1beta demonstrated time-dependent increases in lung tissue or lavage fluid over the 24-h period following CS exposure. The temporal changes in the neutrophil chemokines, CINCs 1-3, mirrored increases in neutrophil infiltration, indicative of a role in neutrophil migration. In addition, a specific CXCR2 antagonist, SB-332235, effectively inhibited CS-induced neutrophilia in a dose-dependent manner, supporting this conclusion. This modeling of the response of the rat airways to acute CS exposure indicates 1) as few as two exposures to CS will induce a phenotype with similarities to COPD and 2) a novel role for CINCs in the generation of this response. These observations represent a paradigm for the study of acute, repetitive lung insults that contribute to the development of chronic disease.  相似文献   

8.
Although high frequency ventilation (HFV) is an effective mode of ventilation, there is limited information available in regard to lung dynamics during HFV. To improve the knowledge of lung function during HFV we have developed a novel lung imaging and analysis technique. The technique can determine complex lung motion information in vivo with a temporal resolution capable of observing HFV dynamics. Using high-speed synchrotron based phase contrast X-ray imaging and cross-correlation analysis, this method is capable of recording data in more than 60 independent regions across a preterm rabbit lung in excess of 300 frames per second (fps). This technique is utilised to determine regional intra-breath lung mechanics of preterm rabbit pups during HFV. Whilst ventilated at fixed pressures, each animal was ventilated at frequencies of 1, 3, 5 and 10 Hz. A 50% decrease in delivered tidal volume was measured at 10 Hz compared to 1 Hz, yet at the higher frequency a 500% increase in minute activity was measured. Additionally, HFV induced greater homogeneity of lung expansion activity suggesting this ventilation strategy potentially minimizes tissue damage and improves gas mixing. The development of this technique permits greater insight and further research into lung mechanics and may have implications for the improvement of ventilation strategies used to support severe pulmonary trauma and disease.  相似文献   

9.
中性粒细胞募集/浸润是肺部炎症性疾病的特征性表现,是肺部抵抗病原微生物入侵的第一道防线,主要通过吞噬作用杀灭病原微生物.然而,新近的研究发现,中性粒细胞被刺激后可形成一种以DNA为骨架并镶嵌有大量活性蛋白质的网状物质——中性粒细胞胞外诱捕网(neutrophil extracellular traps,NETs),这种特殊形式的生物结构能捕获并杀灭病原微生物.尽管就NETs的生物学功能而言,其对肺部炎症性疾病应该是有益的,但是越来越多的研究表明,NETs对肺上皮细胞和内皮细胞均具有直接的细胞毒性作用,并可能促进肺部炎症性疾病的发生发展.为了系统地了解NETs与肺部相关炎症性疾病的关系,本综述首先简述了NETs的结构、功能和形成过程,然后分别叙述了NETs与哮喘、慢性阻塞性肺病、细菌性肺炎、肺结核、肺囊性纤维化、间质性肺疾病、流感病毒感染和急性肺损伤的关系.最后总结、展望了NETs在肺部炎症性疾病中的潜在研究方向和针对性治疗策略.  相似文献   

10.
11.
动脉粥样硬化,是冠心病的病理基础,被认为是一种慢性炎症性疾病,涉及如巨噬细胞和T淋巴细胞等许多炎性细胞。肥大细胞是一种重要的免疫细胞,其功能主要是在超敏反应方面的作用。有病理学研究表明:肥大细胞在动脉粥样硬化斑块周围表达增加,这表明肥大细胞可能与疾病的进展有关。最近的研究表明,肥大细胞在动脉粥样硬化中确实起着重要的作用。本文通过总结肥大细胞在动脉粥样硬化形成中的作用,为在疾病进程中,通过调节肥大细胞功能来改善动脉粥样硬化的这种治疗方式的可能性提供依据。  相似文献   

12.
Airways stress diseases (ASDs), including chronic obstructive pulmonary disease (COPD), emphysema and asthma, are predicted to become the third leading cause of morbidity and mortality by 2020. An understanding and the treatment of these diseases will have a high impact on human health and the health system. An emerging area of heathspan impact is the link between ASDs and proteome homeostasis or 'proteostasis', a biological system comprised of > 2000 components that direct the generation, maintenance and removal of proteins to achieve normal function. Alpha-1 antitrypsin deficiency (αA1TD) aggregates activating extracellular folding stress pathways, dysregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and misprocessing by histone acetyltransferase (HAT)/histone deacetylase (HDAC) pathways represent key examples of proteostasis imbalance involved in ASDs. Common to these events in the lung is a chronic inflammatory response in response to nuclear factor-κB (NF-κB) signaling and protein folding stress associated with an excess of mucus secretion, tissue remodeling, peribronchiolar fibrosis, bronchoconstriction and aveolar destruction. All of these emergent properties of disease are a consequence of imbalance in the proteostasis system. Herein, we discuss the role of proteostasis and its consequences on lung pathophysiology in inflammatory ASDs, and suggest how manipulating the proteostasis network through pharmacological intervention of proteostasis pathways could provide multiple routes for the restoration of lung physiology.  相似文献   

13.
14.
Immunoproteasome expression is induced in mesial temporal lobe epilepsy   总被引:1,自引:0,他引:1  
Immunoproteasome has been associated to neurodegenerative and autoimmune diseases as a marker and regulator of inflammatory mechanisms. Its expression in the brain may occur upon neuroinflammation in different cell types and affect a variety of homeostatic and inflammatory pathways including the oxidized protein clearance and the self-antigen presentation. In the present study we investigated the immunoproteasome expression in hippocampi and cortex of patients affected by different histopathological forms of pharmaco-resistent mesial temporal lobe epilepsy. We identified a pathology-specific pattern of immunoproteasome expression, which could provide insight into the complex neuroinflammatory pathogenic components of this disease.  相似文献   

15.
Lyme disease is a chronic inflammatory disorder caused by the spirochetal bacterium, Borrelia burgdorferi. In vitro evidence suggests that binding of spirochetal lipoproteins to CD14, a pattern recognition receptor expressed on monocytes/macrophages and polymorphonuclear cells, is a critical requirement for cellular activation and the subsequent release of proinflammatory cytokines that most likely contribute to symptomatology and clinical manifestations. To test the validity of this notion, we assessed the impact of CD14 deficiency on Lyme disease in C3H/HeN mice. Contrary to an anticipated diminution in pathology, CD14(-/-) mice exhibited more severe and persistent inflammation than did CD14(+/+) mice. This disparity reflects altered gene regulation within immune cells that may engender the higher bacterial burden and serum cytokine levels observed in CD14(-/-) mice. Comparing their in vitro stimulatory activity, live spirochetes, but not lysed organisms, were a potent CD14-independent stimulus of cytokine production, triggering an exaggerated response by CD14(-/-) macrophages. Collectively, our in vivo and in vitro findings support the provocative notion that: 1) pattern recognition by CD14 is entirely dispensable for elaboration of an inflammatory response to B. burgdorferi, and 2) CD14-independent signaling pathways are inherently more destructive than CD14-dependent pathways. Continued study of CD14-independent signaling pathways may provide mechanistic insight into the inflammatory processes that underlie development of chronic inflammation.  相似文献   

16.
Cystic fibrosis (CF) is a genetic disease resulting in chronic polymicrobial infections of the airways and progressive decline in lung function. To gain insight into the underlying causes of severe lung diseases, we aimed at comparing the airway microbiota detected in sputum of CF patients with stable lung function (S) versus those with a substantial decline in lung function (SD). Microbiota composition was investigated by using culture-based and culture-independent methods, and by performing multivariate and statistical analyses. Culture-based methods identified some microbial species associated with a worse lung function, i.e. Pseudomonas aeruginosa, Rothia mucilaginosa, Streptococcus pneumoniae and Candida albicans, but only the presence of S. pneumoniae and R. mucilaginosa was found to be associated with increased severe decline in forced expiratory volume in 1 second (FEV1). Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis revealed a higher bacterial diversity than that detected by culture-based methods. Molecular signatures with a statistically significant odds ratio for SD status were detected, and classified as Pseudomonas, Burkholderia and Shewanella, while for other Terminal Restriction Fragments (T-RFs) no species assignation was achieved. The analysis of T-RFLP data using ecological biodiversity indices showed reduced Evenness in SD patients compared to S ones, suggesting an impaired ecology of the bacterial community in SD patients. Statistically significant differences of the ecological biodiversity indices among the three sub-groups of FEV1 (normal/mild vs moderate vs severe) were also found, suggesting that the patients with moderate lung disease experienced changes in the airway assembly of taxa. Overall, changes in CF airway microbial community associated with a severe lung function decline were detected, allowing us to define some discriminatory species as well as some discriminatory T-RFs that represent good candidates for the development of predictive biomarkers of substantial decline in lung function.  相似文献   

17.
Despite decades of research, the mechanisms of ventilator-induced lung injury are poorly understood. We used strain-dependent responses to mechanical ventilation in mice to identify associations between mechanical and inflammatory responses in the lung. BALB/c, C57BL/6, and 129/Sv mice were ventilated using a protective [low tidal volume and moderate positive end-expiratory pressure (PEEP) and recruitment maneuvers] or injurious (high tidal volume and zero PEEP) ventilation strategy. Lung mechanics and lung volume were monitored using the forced oscillation technique and plethysmography, respectively. Inflammation was assessed by measuring numbers of inflammatory cells, cytokine (IL-6, IL-1β, and TNF-α) levels, and protein content of the BAL. Principal components factor analysis was used to identify independent associations between lung function and inflammation. Mechanical and inflammatory responses in the lung were dependent on ventilation strategy and mouse strain. Three factors were identified linking 1) pulmonary edema, protein leak, and macrophages, 2) atelectasis, IL-6, and TNF-α, and 3) IL-1β and neutrophils, which were independent of responses in lung mechanics. This approach has allowed us to identify specific inflammatory responses that are independently associated with overstretch of the lung parenchyma and loss of lung volume. These data provide critical insight into the mechanical responses in the lung that drive local inflammation in ventilator-induced lung injury and the basis for future mechanistic studies in this field.  相似文献   

18.
Several cystic fibrosis (CF) mouse models demonstrate an increased susceptibility to Pseudomonas aeruginosa lung infection, characterized by excessive inflammation and high rates of mortality. Here we developed a model of chronic P. aeruginosa lung disease in mice homozygous for the murine CF transmembrane conductance regulator G551D mutation that provides an excellent model for CF lung disease. After 3 days of infection with mucoid P. aeruginosa entrapped in agar beads, the G551D animals lost substantially more body weight than non-CF control animals and were less able to control the infection, harboring over 40-fold more bacteria in the lung. The airways of infected G551D animals contained altered concentrations of the inflammatory mediators tumor necrosis factor-alpha, KC/N51, and macrophage inflammatory protein-2 during the first 2 days of infection, suggesting that an ineffective inflammatory response is partly responsible for the clearance defect.  相似文献   

19.
Induced sputum is recognized as being of increasing importance for the diagnosis and monitoring of chronic inflammatory lung diseases. The main purpose of this study is to provide a valid approach to better fractionate and characterize the still under-estimated low-molecular weight proteome of induced sputum by using mesoporous silica beads (MSBs) SPE coupled to MALDI-TOF MS. Sputum peptides were captured from both derivatized and non-derivatized MSBs and then profiled by MALDI-TOF MS. Depending on the chemical groups present on the mesoporous surface, complex peptide mixtures were extracted from induced sputum and converted into reproducible MALDI profiles. The number of peaks detected as a function of S/N was evaluated for each mesoporous surface. More than 400 peaks with an S/N>5 were obtained in comparison to 200 peaks detected without MSBs. Additionally, as a proof-of-principle, we investigated the ability of this platform to discriminate between the "sputome" of patients with asthma and chronic obstructive pulmonary disease, and between these groups and those of healthy control subjects. Six m/z peaks emerged as potential diagnostic peptidic patterns able to differentiate these inflammatory airway diseases in the sputome range. Human α-defensins (human neutrophil peptide (HNP)1, HNP2, HNP3) and three C-terminal amidated peptides, one of which is phosphorylated on serine, were identified by MALDI-TOF/TOF MS. These findings may contribute to defining a high-throughput screening MS-based platform for monitoring key peptidic-biomarkers for inflammatory and chronic respiratory diseases in induced sputum samples.  相似文献   

20.
Cognitive scientists have long been interested in the role that eye gaze plays in social interactions. Previous research suggests that gaze acts as a signaling mechanism and can be used to control turn-taking behaviour. However, early research on this topic employed methods of analysis that aggregated gaze information across an entire trial (or trials), which masks any temporal dynamics that may exist in social interactions. More recently, attempts have been made to understand the temporal characteristics of social gaze but little research has been conducted in a natural setting with two interacting participants. The present study combines a temporally sensitive analysis technique with modern eye tracking technology to 1) validate the overall results from earlier aggregated analyses and 2) provide insight into the specific moment-to-moment temporal characteristics of turn-taking behaviour in a natural setting. Dyads played two social guessing games (20 Questions and Heads Up) while their eyes were tracked. Our general results are in line with past aggregated data, and using cross-correlational analysis on the specific gaze and speech signals of both participants we found that 1) speakers end their turn with direct gaze at the listener and 2) the listener in turn begins to speak with averted gaze. Convergent with theoretical models of social interaction, our data suggest that eye gaze can be used to signal both the end and the beginning of a speaking turn during a social interaction. The present study offers insight into the temporal dynamics of live dyadic interactions and also provides a new method of analysis for eye gaze data when temporal relationships are of interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号