首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It is well known that advanced glycation end products (AGEs) are formed in long-lived dermal proteins such as collagen, and that their formation is related to skin aging. To examine the distribution of AGEs in skin tissue, we performed immunofluorescence studies on the human skin using an anti-AGEs antibody. Interestingly, AGEs signals were observed not only in the dermis but also in the epidermis. The objectives of this study were to confirm the presence of N(ε)-(Carboxymethyl) lysine (CML), an AGE structure, in the epidermis and to characterize the CML-modified proteins. The presence of CML in the stratum corneum (SC) was examined using liquid chromatography-electrospray ionization time-of-flight mass spectrometry. Concordance between the retention times of a compound in the SC hydrolysate and authentic CML, as well as with the specific mass transition of CML, was detected. This result showed that CML is present in the epidermis. In order to characterize the CML-modified proteins in the epidermis, protein samples extracted from the SC were analyzed using two-dimensional electrophoresis followed by an amino acid sequence analysis. The clarified peptide sequences covered approximately 27% of the amino acid sequences of cytokeratin 10 (K10). In the immunoblotting experiment following the two-dimensional electrophoresis, where protein samples extracted from whole epidermis were used, the position of the major CML-positive spots corresponded to those of K10. Taken together these results showed that CML is present in the human epidermis, and suggest that K10 is one of the target molecules for CML modification in the epidermis.  相似文献   

2.
Purified horny cell membrane of the epidermis of newborn rat was prepared by discontinuous sucrose density gradient ultracentrifugation after 0.1 n sodium hydroxide treatment. ε-(γ-Glutamyl)-lysine cross-link was identified mainly in the horny cell membranes of the epidermis of newborn rat, cow snout, and human stratum corneum. When, [14C]-lysine was incubated with minced epidermis of newborn rat, [14C]-lysine labeled ε-(γ-glutamyl)lysine cross-link was identified in purified horny cell membrane. Results indicate that the protein newly synthesized in the granular layer might play a role in the formation of thickened cell membrane in the late stage of the epidermal differentiation.  相似文献   

3.
4.
Inhibition of advanced glycation end-product (AGE) formation is a potential strategy for the prevention of clinical diabetes complications. Screening for new AGE inhibitors revealed several natural compounds that inhibited the formation of N(ε)-(carboxymethyl)lysine (CML), a major antigenic AGE structure, whereas natural compounds containing a catechol group, such as gallic acid and epicatechin, significantly enhanced CML formation. A similar enhancing effect was also observed by culturing THP-1 macrophages in the presence of catechol compounds. Although 4-methylcatechol significantly enhanced CML formation from glycated HSA (gHSA), a model for Amadori proteins, analogues of catechol such as 5-methylresorcinol and methylhydroquinone showed no enhancing effect. Even though 1mM 4-methylcatechol, epicatechin, and gallic acid significantly enhanced CML formation from gHSA, it was significantly inhibited by decreasing their concentration. The enhancing effect of 1mM catechol compounds was inhibited in the presence of the glutathione peroxidase system, thus demonstrating that hydrogen peroxide generated from catechol compounds plays an important role in the enhancement of CML formation. Furthermore, administration of 500mg/kg/day epicatechin to STZ-induced diabetic mice for 45days enhanced CML accumulation at the surface area of gastric epithelial cells in the stomach. This study provides the first evidence that high amounts of catechol-containing structures enhance oxidative stress, thus leading to enhanced CML formation, and this phenomenon may explain the paradoxical effect that some flavonoids have on redox status.  相似文献   

5.
The sodium-independent anion exchanger pendrin is expressed in several tissues including the kidney cortical collecting duct (CCD), where it acts as a chloride/bicarbonate exchanger and has been shown to participate in the regulation of acid-base homeostasis and blood pressure. The renal sympathetic nervous system is known to play a key role in the development of salt-induced hypertension. This study aimed to determine whether pendrin may partly mediate the effects of β adrenergic receptors (β-AR) on renal salt handling. We investigated the regulation of pendrin activity by the cAMP/protein kinase A (PKA) signaling pathway, both in vitro in opossum kidney proximal (OKP) cells stably transfected with pendrin cDNA and ex vivo in isolated microperfused CCDs stimulated by isoproterenol, a β-AR agonist. We found that stimulation of the cAMP/PKA pathway in OKP cells increased the amount of pendrin at the cell surface as well as its transport activity. These effects stemmed from increased exocytosis of pendrin and were associated with its phosphorylation. Furthermore, cAMP effects on the membrane expression and activity of pendrin were abolished by mutating the serine 49 located in the intracellular N-terminal domain of pendrin. Finally, we showed that isoproterenol increases pendrin trafficking to the apical membrane as well as the reabsorption of both Cl(-) and Na(+) in microperfused CCDs. All together, our results strongly suggest that pendrin activation by the cAMP/PKA pathway underlies isoproterenol-induced stimulation of NaCl reabsorption in the kidney collecting duct, a mechanism likely involved in the sodium-retaining effect of β-adrenergic agonists.  相似文献   

6.
UV-B irradiation is one of the risk factors in age-related diseases. We have reported that biologically uncommon D-β-Asp residues accumulate in proteins from sun-exposed elderly human skin. A previous study also reported that carboxymethyl lysine (CML; one of the advanced glycation end products (AGEs)) which is produced by the oxidation of glucose and peroxidation of lipid, also increases upon UV B irradiation. The formation of D-β-Asp and CML were reported as the alteration of proteins in UV B irradiated skin, independently. In this study, in order to clarify the relationship between the formation of D-β-Asp and CML, immunohistochemical analysis using anti-D-β-Asp containing peptide antibodies and anti-CML antibodies was performed in UV B irradiated mice. Immunohistochemical analyses clearly indicated that an anti-D-β-Asp containing peptide antibody and anti-CML antibody reacted at a common area in UV B irradiated skin. Western blot analyses of the proteins isolated from UV B irradiated skin demonstrated that proteins of 50-70 kDa were immunoreactive towards antibodies for both D-β-Asp containing peptide and CML. These proteins were identified by proteomic analysis as members of the keratin families including keratin-1, keratin-6B, keratin-10, and keratin-14.  相似文献   

7.
A derivative of N(ε)-benzyloxycarbonyl-L-lysine with a photo-reactive diazirinyl group, N(ε)-[((4-(3-(trifluoromethyl)-3H-diazirin-3-yl)benzyl)oxy)carbonyl]-L-lysine, was site-specifically incorporated into target proteins in mammalian cells. The incorporated photo-crosslinker is able to react not only with residues as distant as about 15 ? but also with those in closer proximity, thus enabling "wide-range" photo-crosslinking of proteins.  相似文献   

8.
Aristolochic acid, found in the Aristolochia species, causes aristolochic acid nephropathy (AAN) and can develop into renal failure. Methylglyoxal (MGO) is a highly cytotoxic compound generated from the metabolic process of glucose or fatty acids. It binds to proteins and forms N(ε)-(carboxymethyl)lysine (CML), which contributes to aging and diabetes mellitus complications. However, no relevant literature explores the relationship of MGO and CML with AAN. By injecting AA (10mg/kg BW) into C3H/He mice for 5 consecutive days, we successfully developed an AAN model and observed tubular atrophy with decreased renal function. Creatinine clearance also decreased from 10.32 ± 0.79 ml/min/kg to 2.19 ± 0.29 ml/min/kg (p<0.01). The concentration of MGO in kidney homogenates increased 12 × compared to the control group (from 18.23 ± 8.05 μg/mg of protein to 231.16 ± 17.57 μg/mg of protein, p<0.01), and CML was observed in the renal tubules of the mice by immunohistochemistry. Furthermore, compared to the control group, GSH levels decreased by 0.32 × (from 2.46 ± 0.41 μM/μg of protein to 0.78 ± 0.15 μM/μg of protein, p<0.01), whereas intra-renal antioxidant capacity decreased by 0.54×(from 6.82 ± 0.97 U to 3.71 ± 0.25 U; unit is equivalent to μM Trolox/mg of protein, p<0.01). In this study, we found that serious kidney damage induced by AA is related to an increase and accumulation of MGO and CML.  相似文献   

9.
Tumor necrosis factor-alpha has been shown to rapidly increase the phosphorylation of three 28 kDa proteins in bovine aortic endothelial cells but not in L929 cells. Tumor necrosis factor-alpha induces the necrosis of the latter cells but not of the former. Arsenite enhanced the phosphorylation of the same 28kDa proteins as tumor necrosis factor-alpha in the endothelial cells. As stress proteins often play a protective role, we suggest that the phosphorylation of these proteins in endothelial cells may be responsible for the resistance of these cells to tumor necrosis factor-alpha.  相似文献   

10.
11.
12.
The phosphorus retention capacity was established for two predams having the same water supply and the same seasonality but with contrasting hydraulic retention times and phosphorus loads. The annual retention of total phosphorus of the shallow Misère predam amounted to about 60%, whereas the deeper Bavigne predam retained about 82%; for soluble reactive phosphorus (SRP) the annual retention rates were 4 and 54%, respectively. The different behaviour of the predams is probably due to their different flow regimes and morphology. The highest retention rates were observed during summer, when up to 90% of SRP could be retained in the Bavigne predam. The comparison of the measured removal rates of SRP with those calculated on the basis of the model proposed by Benndorf & Pütz (Wat. Res. 1987 21: 829–838) shows a rather good agreement for the thermally stratified Bavigne predam. For the shallow Misère predam, the model adequately predicts the annual trends of SRP removal, but a great discrepancy is observed for the absolute values. This is probably due to the phytoplankton composition and to the release of phosphorus from the sediments in the summer period.  相似文献   

13.
14.
15.
Non-enzymatic glycation is a complex series of reactions between reducing sugars and amino groups of proteins. Accumulation of AGEs (advanced glycation end-products) due to non-enzymatic glycation has been related to several diseases associated with aging and diabetes. The formation of AGEs is accelerated in hyperglycaemic conditions, which alters the structure and function of long-lived proteins, thereby contributing to long-term diabetic complications. The present study describes AGE inhibition and the mechanism of action of a new antiglycating agent, EA (ellagic acid), a flavonoid present in many dietary sources. Inhibition of AGE formation by EA was demonstrated with different proteins, namely eye lens TSP (total soluble protein), Hb (haemoglobin), lysozyme and BSA, using different glycating agents such as fructose, ribose and methylglyoxal by a set of complementary methods. These results suggest that the antiglycating action of EA seems to involve, apart from inhibition of a few fluorescent AGEs, predominantly inhibition of CEL [N?-(carboxyethyl)lysine] through scavenging of the dicarbonyl compounds. Furthermore, MALDI-TOF-MS (matrix-assisted laser-desorption ionisation-time-of-flight MS) analysis confirms inhibition of the formation of CEL on lysozyme on in vitro glycation by EA. Prevention of glycation-mediated β-sheet formation in Hb and lysozyme by EA confirm its antiglycating ability. Inhibition of glycosylated Hb formation in human blood under ex vivo high-glucose conditions signifies the physiological antiglycating potential of EA. We have also determined the effectiveness of EA against loss of eye lens transparency through inhibition of AGEs in the lens organ culture system. These findings establish the antiglycating potential of EA and its in vivo utility in controlling AGE-mediated diabetic pathologies.  相似文献   

16.
Two novel 3D 13C-detected experiments, hNcocaNCO and hnCOcaNCO, are proposed to facilitate the resonance assignment of intrinsically disordered proteins. The experiments correlate the 15N and 13C′ chemical shifts of two consecutive amide moieties without involving other nuclei, thus taking advantage of the good dispersion shown by the 15N–13C′ correlations, even for proteins that lack a well defined tertiary structure. The new pulse sequences were successfully tested using Nupr1, an intrinsically disordered protein of 93 residues.  相似文献   

17.
The murid herpesvirus 4 (MuHV 4) species encompasses 7 isolates, out of which at least two (MHV-68, MHV-72) became in vitro propagated laboratory strains. Following intranasal inoculation, MuHV 4 induces an acute infectious mononucleosis-like syndrome with elevated levels of peripheral blood leukocytes, shifts in the relative proportion of lymphocytes along with the appearance of atypical mononuclear cells. At least two isolates exhibited spontaneous deletions at the left hand (5′-end) of their genome, resulting in the absence of M1, M2, M3 genes (strain MHV-72) and also of the M4 gene (strain MHV-76). Based on DNA sequence amplifications only, another two isolates (MHV-Šum and MHV-60) were shown to possess similar deletions of varying length. During latency (until 24 months post-infection), the mice infected with any MuHV 4 isolate (except MHV-76) developed lymphoproliferative disorders. The lack of tumor formation in MHV-76 infected mice was associated with persistent virus production at late post-infection intervals. In addition to careful analysis of spontaneously occurring 5′-end genome defects, our knowledge of the function of 5′-end genes relies on the behaviour of mutants with corresponding deletions and/or insertions. While M2 and M3 genes encode immune evasion proteins, M4 codes for a soluble glycopeptide acting as immunomodulator and/or immunostimulator.  相似文献   

18.
We examined the effect of tumor necrosis factor-alpha (TNF-α) on murine primary astrocytes. Proteomic analysis demonstrated that four new spots in the TNF-α-treated cells relative to untreated cells. Two of them were identified as Irgb6 and Irgd, members of immunity-related GTPase (IRG) proteins which are the key mediators of interferon-gamma (IFN-γ)-induced resistance of pathogens in numerous cells. Gene expression analysis using RT-PCR showed that TNF-α dose-dependently increased the expression of both proteins. Immunocytochemical analysis showed that TNF-α increased the abundance of both proteins. A subcellular localization study demonstrated that TNF-α induced the partial colocalization of both proteins with the endoplasmic reticulum (ER) and Golgi apparatus, whereas IFN-γ did not induce the colocalization of Irgd protein with the ER and Golgi. Combined stimulation with TNF-α and IFN-γ had a synergistic effect on the expression of Irgb6 and an added effect on the expression of Irgd.  相似文献   

19.
20.
We have tested the hypothesis that isoaspartic acid residues in proteins can arise via errors that occur during protein synthesis. One such error involves a mischarging step in which the aspartic acid side-chain beta-carboxyl group is linked to the tRNA(Asp) instead of the main chain alpha-carboxyl group. If this altered Asp-tRNA(Asp) is a substrate for the ribosomal elongation reactions, a polypeptide will be made with an isoaspartic acid, or beta-linkage, in which the peptide chain is branched at the side chain of the aspartic acid residue. Using an ammonium sulfate fraction of aspartyl-tRNA(Asp) synthetase from Escherichia coli and [3H]aspartic acid, we have prepared [3H]aspartyl-tRNA(Asp) complexes and directly analyzed the linkage of the [3H]aspartate to the tRNA by identifying the products of ammonolysis. Normal attachment of the alpha-carboxyl group of aspartate to the tRNA produces [3H]isoasparagine, while the mischarging reaction leads to [3H]asparagine formation after ammonolysis. We have separated [3H]isoasparagine from [3H]asparagine and found an upper limit of 1 asparagine per 10,000 isoasparagines. These results show that the bacterial aminoacyl-tRNA synthetase can very accurately distinguish between the alpha- and beta-carboxyl groups of aspartic acid and suggest that only a very small fraction of the isoaspartic acid residues found to occur in cellular proteins may be the result of mischarging steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号