共查询到20条相似文献,搜索用时 15 毫秒
1.
Osafune K Caron L Borowiak M Martinez RJ Fitz-Gerald CS Sato Y Cowan CA Chien KR Melton DA 《Nature biotechnology》2008,26(3):313-315
The differentiation potential of 17 human embryonic stem (hES) cell lines was compared. Some lines exhibit a marked propensity to differentiate into specific lineages, often with >100-fold differences in lineage-specific gene expression. For example, HUES 8 is best for pancreatic differentiation and HUES 3 for cardiomyocyte generation. These non-trivial differences in developmental potential among hES cell lines point to the importance of screening and deriving lines for lineage-specific differentiation. 相似文献
2.
Establishment and in vitro differentiation of a new embryonic stem cell line from human blastocyst 总被引:10,自引:0,他引:10
Baharvand H Ashtiani SK Valojerdi MR Shahverdi A Taee A Sabour D 《Differentiation; research in biological diversity》2004,72(5):224-229
Embryonic stem cells have the ability to remain undifferentiated and proliferate indefinitely in vitro while maintaining the potential to differentiate into derivatives of all three embryonic germ layers. These cells have, therefore, potential for in vitro differentiation studies, gene function, and so on. The aim of this study was to produce a human embryonic stem cell line. An inner cell mass of a human blastocyst was separated and cultured on mouse embryonic fibroblasts in embryonic stem cell medium with related additives. The established line was evaluated by morphology; passaging; freezing and thawing; alkaline phosphatase; Oct-4 expression; anti-surface markers including Tra-1-60 and Tra-1-81; and karyotype and spontaneous differentiation. Differentiated cardiomyocytes and neurons were evaluated by transmission electron microscopy and immunocytochemistry. Here, we report the derivation of a new embryonic stem cell line (Royan H1) from a human blastocyst that remains undifferentiated in morphology during continuous passaging for more than 30 passages, maintains a normal XX karyotype, is viable after freezing and thawing, and expresses alkaline phosphatase, Oct-4, Tra-1-60, and Tra-1-81. These cells remain undifferentiated when grown on mouse embryonic fibroblast feeder layers in the presence or absence of recombinant human leukemia inhibitory factor. Royan H1 cells can differentiate in vitro in the absence of feeder cells and can produce embryoid bodies that can further differentiate into beating cardiomyocytes as well as neurons. These results define Royan H1 cells as a new human embryonic stem cell line. 相似文献
3.
4.
5.
6.
7.
8.
9.
Establishment of a human embryonic germ cell line and comparison with mouse and human embryonic stem cells 总被引:4,自引:0,他引:4
Human embryonic stem (ES) cells and embryonic germ (EG) cells are pluripotent and are invaluable material for in vitro studies of human embryogenesis and cell therapy. So far, only two groups have reported the establishment of human EG cell lines, whereas at least five human ES cell lines have been established. To see if human EG cell lines can be reproducibly established, we isolated primordial germ cells (PGCs) from gonadal ridges and mesenteries (9 weeks post-fertilization) and cultured them on mouse STO cells. As with mouse ES colonies, the PGC-derived cells have given rise to multilayered colonies without any differentiation over a year of continuous culture. They are karyotypically normal and express high levels of alkaline phosphatase, Oct-4, and several cell-surface markers. Histological and immunocytochemical analysis of embryoid bodies (EBs) formed from floating cultures of the PGC-derived cell colonies revealed ectodermal, endodermal, and mesodermal tissues. When the EBs were cultured in the presence of insulin, transferrin, sodium selenite, and fibronectin for 1 week, markers of primitive neuroectoderm were expressed in cells within the EBs as well as in cells growing out from the EBs. These observations indicate that our PGC-derived cells satisfy the criteria for pluripotent stem cells and hence may be EG cells. 相似文献
10.
Mechanical forces have been reported to induce proliferation and/or differentiation in many cell types, but the role of mechanotransduction during embryonic stem cell fate decisions is unknown. To ascertain the role of mechanical strain in human embryonic stem cell (hESC) differentiation, we measured the rate of hESC differentiation in the presence and absence of biaxial cyclic strain. Above a threshold of 10% cyclic strain, applied to a deformable elastic substratum upon which the hESC colonies were cultured, hESC differentiation was reduced and self-renewal was promoted without selecting against survival of differentiated or undifferentiated cells. Frequency of mechanical strain application had little effect on extent of differentiation. hESCs cultured under cyclic strain retained pluripotency, evidenced by their ability to differentiate to cell lineages in all three germ layers. Mechanical inhibition of hESC differentiation could not be traced to secretion of chemical factors into the media suggesting that mechanical forces may directly regulate hESC differentiation. Mechanical strain is not sufficient to inhibit differentiation, however, in unconditioned medium, hESCs grown under strain differentiated at the same rate as cells cultured in the absence of strain. Thus, while mechanical forces play a role in regulating hESC self-renewal and differentiation, they must act synergistically with chemical signals. These findings imply that application of mechanical forces may be useful, in combination with chemical and matrix-encoded signals, towards controlling differentiation of hESCs for therapeutic applications. 相似文献
11.
Milla Mikkola Cia Olsson Jaan Palgi Jarkko Ustinov Tiina Palomaki Nina Horelli-Kuitunen Sakari Knuutila Karolina Lundin Timo Otonkoski Timo Tuuri 《BMC developmental biology》2006,6(1):40-11
Background
Individual differences between human embryonic stem cell (hESC) lines are poorly understood. Here, we describe the derivation of five hESC lines (called FES 21, 22, 29, 30 and 61) from frozen-thawed human embryos and compare their individual differentiation characteristic. 相似文献12.
Niche-mediated control of human embryonic stem cell self-renewal and differentiation 总被引:1,自引:0,他引:1 下载免费PDF全文
Peerani R Rao BM Bauwens C Yin T Wood GA Nagy A Kumacheva E Zandstra PW 《The EMBO journal》2007,26(22):4744-4755
Complexity in the spatial organization of human embryonic stem cell (hESC) cultures creates heterogeneous microenvironments (niches) that influence hESC fate. This study demonstrates that the rate and trajectory of hESC differentiation can be controlled by engineering hESC niche properties. Niche size and composition regulate the balance between differentiation-inducing and -inhibiting factors. Mechanistically, a niche size-dependent spatial gradient of Smad1 signaling is generated as a result of antagonistic interactions between hESCs and hESC-derived extra-embryonic endoderm (ExE). These interactions are mediated by the localized secretion of bone morphogenetic protein-2 (BMP2) by ExE and its antagonist, growth differentiation factor-3 (GDF3) by hESCs. Micropatterning of hESCs treated with small interfering (si) RNA against GDF3, BMP2 and Smad1, as well treatments with a Rho-associated kinase (ROCK) inhibitor demonstrate that independent control of Smad1 activation can rescue the colony size-dependent differentiation of hESCs. Our results illustrate, for the first time, a role for Smad1 in the integration of spatial information and in the niche-size-dependent control of hESC self-renewal and differentiation. 相似文献
13.
BMP4 initiates human embryonic stem cell differentiation to trophoblast 总被引:27,自引:0,他引:27
Xu RH Chen X Li DS Li R Addicks GC Glennon C Zwaka TP Thomson JA 《Nature biotechnology》2002,20(12):1261-1264
The excitement and controversy surrounding the potential role of human embryonic stem (ES) cells in transplantation therapy have often overshadowed their potentially more important use as a basic research tool for understanding the development and function of human tissues. Human ES cells can proliferate without a known limit and can form advanced derivatives of all three embryonic germ layers. What is less widely appreciated is that human ES cells can also form the extra-embryonic tissues that differentiate from the embryo before gastrulation. The use of human ES cells to derive early human trophoblast is particularly valuable, because it is difficult to obtain from other sources and is significantly different from mouse trophoblast. Here we show that bone morphogenetic protein 4 (BMP4), a member of the transforming growth factor-beta (TGF-beta) superfamily, induces the differentiation of human ES cells to trophoblast. DNA microarray, RT-PCR, and immunoassay analyses demonstrate that the differentiated cells express a range of trophoblast markers and secrete placental hormones. When plated at low density, the BMP4-treated cells form syncytia that express chorionic gonadotrophin (CG). These results underscore fundamental differences between human and mouse ES cells, which differentiate poorly, if at all, to trophoblast. Human ES cells thus provide a tool for studying the differentiation and function of early human trophoblast and could provide a new understanding of some of the earliest differentiation events of human postimplantation development. 相似文献
14.
Directed differentiation of human embryonic stem cells (hESCs) into any desired cell type has been hailed as a therapeutic promise to cure many human diseases. However, substantial roadblocks still exist for in vitro differentiation of hESCs into distinct cell types, including T lymphocytes. Here we examined the hematopoietic differentiation potential of six different hESC lines. We compare their ability to develop into CD34(+) or CD34(+)CD45(+) hematopoietic precursor populations under several differentiation conditions. Comparison of lymphoid potential of hESC derived- and fetal tissue derived-hematopoietic precursors was also made. We found diverse hematopoietic potential between hESC lines depending on the culture or passage conditions. In contrast to fetal-derived hematopoietic precursors, none of the CD34(+) precursors differentiated from hESCs were able to develop further into T cells. These data underscore the difficulties in the current strategy of hESC forward differentiation and highlight distinct differences between CD34(+) hematopoietic precursors generated in vitro versus in vivo. 相似文献
15.
哺乳动物胚胎发育产生的第一个细胞系的分离是内细胞团和滋养层的分离,不同哺乳动物之间胚胎干细胞向滋养层细胞分化不同,滋养层细胞对胚胎的植入、促进胚胎在子宫内的生存和生长至关重要.人胚胎干细胞为研究人类胚胎发育及向滋养层分化提供了一个独特的模型.人胚胎干细胞可以在实验室条件下保持无限期稳定的培养,用于最初胚胎和滋养外胚层发生的机制研究.目前人胚胎干细胞分化为滋养层细胞在体外可以通过自发分化、基因敲除、分离EB小体和BMP4诱导等几种途径实现.不同哺乳动物之间胚胎干细胞向滋养层分化机制,主要通过信号通路如BMP4,LIF等以及某些标志基因如OCT4,CDX2,Eomes等的变化调节.人胚胎干细胞向滋养层分化的研究为临床应用提供了一定的基础. 相似文献
16.
Eroshenko Nikolai Ramachandran Rukmani Yadavalli Vamsi K Rao Raj R 《Journal of biological engineering》2013,7(1):1-16
There is growing demand for robust DNA assembly strategies to quickly and accurately fabricate genetic circuits for synthetic biology. One application of this technology is reconstitution of multi-gene assemblies. Here, we integrate a new software tool chain with 2ab assembly and show that it is robust enough to generate 528 distinct composite parts with an error-free success rate of 96%. Finally, we discuss our findings in the context of its implications for biosafety and biosecurity. 相似文献
17.
Varga N Veréb Z Rajnavölgyi E Német K Uher F Sarkadi B Apáti A 《Biochemical and biophysical research communications》2011,(3):474-480
Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures. 相似文献
18.
Molecular mechanisms regulating human trophoblast differentiation remain poorly understood due to difficulties in obtaining primary tissues from very early developmental stages in humans. Therefore, the use of human embryonic stem cells (hESCs) as a source for generating trophoblast tissues is of significant interest. Trophoblast-like cells have been obtained through treatment of hESCs with bone morphogenetic protein (BMP) or inhibitors of activin/nodal/transforming growth factor-β signaling, or through protocols involving formation of embryoid bodies (EBs); however, there is controversy over whether hESC-derived cells are indeed analogous to true trophoblasts found in vivo. In this review, we provide an overview of previously described efforts to obtain trophoblasts from hESCs. We also discuss the merits and limitations of hESCs as a source of trophoblast derivatives. 相似文献
19.
Availability of human embryonic stem cells (hESC) has enhanced human neural differentiation research. The derivation of neural progenitor (NP) cells from hESC facilitates the interrogation of human embryonic development through the generation of neuronal subtypes and supporting glial cells. These cells will likely lead to novel drug screening and cell therapy uses. This review will discuss the current status of derivation, maintenance and further differentiation of NP cells with special emphasis on the cellular signaling involved in these processes. The derivation process affects the yield and homogeneity of the NP cells. Then when exposed to the correct environmental signaling cues, NP cells can follow a unique and robust temporal cell differentiation process forming numerous phenotypes. 相似文献