首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three crops of Agaricus bisporus were grown on non-composted substrate (NCS), spent mushroom compost (SMC), a 50/50 mixture of NSC/SMC, or pasteurized Phase II compost. NCS consisted of oak sawdust (28% oven dry wt), millet (29%), rye (8%), peat (8%), ground alfalfa (4%), ground soybean (4%), wheat bran (9%) and CaCO3 (10%). Substrates were non-supplemented or supplemented with Target® (a commercial delayed release nutrient for mushroom culture) or soybean meal at spawning or casing, or with Micromax® (a mixture of nine micronutrients) at spawning. Mushroom yield (27.2 kg/m2) was greatest on a 50/50 mixture of NCS/SMC supplemented with 10% (dry wt) Target® at casing. The same substrate supplemented with Target® at spawning yielded 20.1 kg/m2. By comparison, mushroom yield on Phase II compost supplemented at casing or at spawning with Target® was 21.6 kg/m2 and 20.6 kg/m2, respectively. On NCS amended with 0.74% or 0.9% Micromax® at spawning, yields increased by 51.8% (12.9 kg/m2) and 71.8% (14.6 kg/m2), respectively, over non-amended NCS (8.5 kg/m2). Conversely, mushroom yields were not affected when Micromax® was added to a 50/50 mixture of NCS/SMC. Mushroom solids content was higher in mushrooms harvested from NCS amended with 0.74% Micromax® (9.6%) compared to non-amended NCS (8.3%).  相似文献   

2.
Three cropping experiments (0710, 0803 and 0805) were conducted to determine the effect of adding spawn, various levels of delayed release nutrient, and phase II compost to 2nd break mushroom compost (2BkC) on mushroom yield and biological efficiency (BE). We also investigated the effect of delaying time of re-casing non-supplemented and supplemented 2BkC on mushroom yields and BEs. The addition of 14.6% spawn to nutrient-supplemented 2BkC (w.w./d.w) increased yield by 11.1% over the control (no spawn) but did not affect BE. The addition of delayed release supplements to 2BkC increased maximum yields by 29–54%, depending on the treatment. Substitution of 15% phase II compost in 2BkC (15/85) did not significantly affect mushroom yields. However, use of 15% phase II compost in 2BkC increased the response of the mixture to delayed release supplement. Yield response to increasing levels of supplement was greater in the 15/85 mixture compared to 100% 2BkC. Yields also increased as time of re-casing was delayed up to 10 days. Mushroom yields increased approximately 2.1% for each day re-casing was delayed. Overall yields were generally higher from commercial 2BkC compared to 2BkC originating from the Penn State Mushroom Research Center (MRC) probably due to nitrogen (N) content of the 2BkC. Nitrogen content in commercial 2BkC (Crop 0805) was 3% while N content in 2BkC from Crops 0710 and 0803 was 2.2% and 2.1%, respectively. By optimizing supplement levels and adding 15% phase II compost to commercial 2BkC, or by delaying casing by 5–10 days, it was possible to obtain BEs that were equivalent to supplemented phase II compost.  相似文献   

3.
We examined the possibility of cultivating Agaricus bisporus (Ab) on various grains and agricultural by-products, with the objective of improving yield capacity of substrate pre-colonized by Scytalidium thermophilum (St). Radial growth rate (RGR) of St at 45 degrees C ranged from no growth on sterile wheat grain to 14.9 mm/d on whole oats. The linear extension rate (LER) of Ab, grown on St-colonized substrate (4 days at 45 degrees C), ranged from a low of 2.7 mm/d on 100% corncobs to 4.7 mm/d on a 50/50 mixture of ground corncobs/millet grain. Several other substrates containing wheat straw+ground corncobs+boiled millet and pre-colonized by St (4 days at 42+/-3 degrees C), were evaluated for production of Ab. The biological efficiency (BE) of production increased linearly with the addition of millet to the formula. However, substrates with millet levels 84% often were contaminated before mushroom harvest. Maximum BE (99%) and yield (21.6 kg/m(2)) were obtained on St-colonized wheat straw+2% hydrated lime supplemented with 9% commercial supplement added both at spawning and at casing.  相似文献   

4.
Synthetic substrate consisting of oak sawdust (50%), white millet (28%), winter rye (11%) and soft red wheat bran (11%) was non-supplemented or supplemented with 0.2%, 0.4% or 0.6% (dry weight basis) precipitated calcium carbonate (CaCO(3)). Shiitake (Lentinula edodes) was grown in two crops to determine the effect of three CaCO(3) levels on mushroom yield and size. Yields and biological efficiencies (averages for two crops) from substrates non-supplemented with CaCO(3) were lower by 14.1%, 18.4% and 24.9% compared to treatments supplemented with 0.2%, 0.4% and 0.6% CaCO(3), respectively. Mushroom size (weight) was larger with non-supplemented substrate (16.8 g) compared to substrate supplemented with 0.6% CaCO(3) (15.1 g). However, mushroom production was more consistent from crop to crop when 0.6% CaCO(3) was added to substrate.  相似文献   

5.
Three mushroom (Agaricus bisporus) crops (Crops 1, 2, 3) were grown to evaluate the effects of re-supplementing “spent” first break compost [mushroom compost (MC)] on mushroom yield. Mushrooms were produced for one break at the Mushroom Test Demonstration Facility, the casing layer was removed and the MC was re-supplemented with hydrolyzed protein, commercial supplements and crystalline amino acids and then re-cased at the Mushroom Research Center. Sixteen supplements, including five crystalline amino acids, one amino acid blend, one egg white and four hydrolyzed proteins, Micromax® (a micronutrient containing nine minerals) and four commercial supplements were evaluated for their effect on mushroom yield and biological efficiency. In Crop 1, mushroom yields were stimulated (49–61%) when MC was re-supplemented with 3.6% (dry wt) Pro-Fam® H200 FG hydrolyzed soy protein, Remo’s commercial supplement, l-isoleucine (ile), egg white protein, amino blend HLA-198 and hydrolyzed whey. Significant yield reductions were observed for MC re-supplemented with 3.6% l-tyrosine, dl-methionine or l-arginine compared to the non-supplemented control. In Crop 2, mushroom yield ranged from a high of 31.3 kg/m2 on MC supplemented with 3.3% Remo’s + 0.3% ile (oven dry MC) to a low of 22.6 kg/m2 on non-supplemented (control) MC (38.5% difference). In Crop 3, a response surface model was used in an attempt to optimize combinations of Remo’s commercial supplement, ile and Micromax. The response surface solution for optimal yield was 2.9% Remo’s, 0.16% ile and 0.4% Micromax. Because many of the products tested performed equally well but varied substantially in their amino acid profiles, A. bisporus appears adaptable to different supplements containing both balanced and unbalanced amino acid contents, especially those rich in the branched chain amino acids. Development and improvement of supplements designed specifically for MC may allow further increases in productivity. Double cropping would ultimately lower the cost of mushroom production by reducing labor, raw materials and time required to prepare fresh Phase II compost.  相似文献   

6.
滕飞  刘勇  娄军山  孙巧玉  万芳芳  杨晨  张劲 《生态学杂志》2016,27(12):3889-3894
为缓解草炭大量使用带来的环境问题,在华北落叶松容器育苗过程中添加蘑菇渣堆肥以替代草炭,添加蘑菇渣堆肥体积比例分别为0%(T0)、15%(T1)、18.75%(T2)、25%(T3)、37.50%(T4)、50%(T5)、56.25%(T6)、60%(T7),研究不同配比下基质的理化性质以及对华北落叶松1年生移植容器苗生长和营养积累的影响.结果表明: 当蘑菇渣堆肥替代草炭的比例≤50%时,苗木苗高、地径和生物量与常用草炭处理无显著差异,且处理T2、T4、T5苗木体内养分浓度显著高于对照,基质pH值处于微酸性或中性范围,适宜苗木生长;当蘑菇渣添加比例>50%时,基质pH值偏碱性,苗木生长受到不利影响,苗木质量下降.当蘑菇渣添加比例为15%时,苗木质量最好,苗高、地径和单株生物量达到最大.因此,蘑菇渣替代草炭培育华北落叶松移植容器苗是完全可行的,替代比例最高可达到50%,当添加比例为15%时,可培育出高质量的苗木.  相似文献   

7.
A pasteurized, non-composted substrate (basal mixture) consisting of oak sawdust (28%), millet (29%), rye (8%), peat (8%), alfalfa meal (4%), soybean flour (4%), wheat bran (9%), and CaCO3 (10%) was adapted from shiitake culture to produce the common cultivated mushroom (brown; portabello), Agaricus bisporus. Percentage biological efficiency (ratio of fresh mushroom harvested/oven-dry substrate weight, %BE) ranged from a low of 30.1% (when wheat straw was substituted for sawdust) to 77.1% for the basal mixture. Special, high gas-exchange bags were required to optimize mycelial growth during spawn run. Our formula may allow specialty mushroom growers to produce portabello mushrooms on a modified, pasteurized (110 degrees C for 20 min) substrate commonly used for shiitake production without the added expense of compost preparation.  相似文献   

8.
To evaluate the potential of using the enzymes from spent mushroom compost (SMC) as an industrial enzyme, the production of alpha-amylase, cellulase, beta-glucosidase, laccase, and xylanase was determined from the SMC of four edible mushroom species (Pleurotus ostreatus, Lentinula edodes, Flammulina velutipes and Hericium erinaceum). Among the tested SMC, the SMC of L. edodes showed the highest enzyme activity in alpha-amylase (229 nkat/g), cellulase (759 nkat/g) and beta-glucosidase (767 nkat/g) in 0.5% Triton X-100, and that of P. ostreatus showed the highest activity in laccase (1452 nkat/g) in phosphate-buffered 0.2% Triton X-100. The highest xylanase activity (119 nkat/g) was found in the SMC of F. velutipes.  相似文献   

9.
Spawn running, pin head and fruit body formation, and mushroom yield of oyster mushroom (Pleurotus ostreatus) on waste paper supplemented with peat, chicken manure and husk rice (90+10; 80+20 w:w) were studied. The fastest spawn running (mycelia development) (15.8 days), pin head formation (21.4 days) and fruit body formation (25.6 days), and the highest yield (350.2 gr) were realized with the substrate composed of 20% rice husk in weight. In general, increasing the ratio of rice husk within the substrate accelerated spawn running, pin head and fruit body formation, and resulted in increased mushroom yields, while more peat and chicken manure had a negative effect on growing.  相似文献   

10.
Composition variability of spent mushroom compost in Ireland   总被引:3,自引:0,他引:3  
Spent mushroom compost (SMC) has proven to be an attractive material for improving soil structure in tilled soils and increasing dry matter production in grassland soils, owing to its high organic matter content and availability of essential plant nutrients. Because of this, it is important to identify the variability in composition of SMC in order to evaluate its merit as a fertilizer/soil conditioner. For this reason, a study was carried out involving the analysis of SMC samples obtained from five mushroom growers using compost from each of the 13 mushroom composting yards currently operating in both Northern Ireland (5 yd) and the Republic of Ireland (8 yd). The selected parameters measured include dry matter, organic matter, total N, P and K, C/N ratio; plant-available P and K, pH, EC, total Ca, Mg, Na, Cu, Zn, Fe, Mn, Cd, Cr, Ni, Pb; and cellulose, hemicellulose and lignin constituents. Yield of mushroom data were also collected from the selected growers. There were significant differences (P<0.05) within two compost production yards for some parameters, therefore, for the most part, the uniformity of SMC within each yard is relatively consistent. However, significant differences (P<0.05) were evident when comparing SMC obtained from growers supplied with compost from Northern Ireland and the Republic of Ireland independently, particularly among total and available phosphorus and potassium values. The results obtained show that, while SMC has fertilizer merit, its variability of composition must be taken into account when assessing this value. The variability of composition is also of particular interest in the context of recent emphasis on plant nutrient management in agriculture.  相似文献   

11.
Solid waste from anaerobic digestion of litter from the commercial production of broiler chickens has limited use as fertilizer. Its disposal is a major problem for digester operators who are seeking alternative use for anaerobic digester solids, also referred to as solid waste (SW). The use of SW as substrates for the cultivation of Pleurotus ostreatus strain MBFBL400 was investigated. Lignocellulolytic enzymes activity, substrate utilization, and mushroom yield were evaluated in ten different substrate combinations (SCs) containing varying amounts of solid waste, wheat straw, and millet. Nutritional content of mushrooms produced on the different substrates was also determined. Substrates containing 70–80% wheat straw, 10–20% SW, and 10–20% millet were found to produce the highest mushroom yield (874.8–958.3 g/kg). Loss of organic matter in all SCs tested varied from 45.8% to 56.2%, which had positive correlation with the biological efficiency. Laccase, peroxidase, and carboxymethylcellulase (CMCase) activities were higher before fruiting, whereas xylanase showed higher activities after mushroom fruiting. SW increased the nutritional content in mushrooms harvested, and the combination of wheat straw and SW with millet significantly improved mushroom yield. Our findings demonstrated the possibility of utilizing anaerobic digester solids in mushroom cultivation. The application of SW as such could improve the financial gains in the overall economy of anaerobic digester plants.  相似文献   

12.
Summary Snap bean, cucumber, radish, spinach, and tomato seedlings and plants were grown in soils amended with 0, 10, 20, 30 and 50% spent mushroom compost (SMC) under greenhouse conditions. While total seedling emergence was not affected by the addition of SMC, the rate of seedling emergence was delayed. Increased growth was observed in the range of 30 to 50% SMC. The elemental content in seedling tissue indicated an antagonism among K, Ca, and Mg for ion uptake. Increased plant growth and yield were obtained with addition of 20 to 30% SMC; those grown at 50% SMC exhibited some stunting. The limiting factor in the use of SMC appeared to be its high soluble salts content.  相似文献   

13.
Modern aspects of mushroom culture technology   总被引:5,自引:0,他引:5  
The production and culture of new species of mushrooms is increasing. The breeding of new strains has significantly improved, allowing the use of strains with high yield and resistance to diseases, increasing productivity and diminishing the use of chemicals for pest control. The improvement and development of modern technologies, such as computerized control, automated mushroom harvesting, preparation of compost, production of mushrooms in a non-composted substrate, and new methods of substrate sterilization and spawn preparation, will increase the productivity of mushroom culture. All these aspects are crucial for the production of mushrooms with better flavor, appearance, texture, nutritional qualities, and medicinal properties at low cost. Mushroom culture is a biotechnological process that recycles ligninocellulosic wastes, since mushrooms are food for human consumption and the spent substrate can be used in different ways.  相似文献   

14.
The effects of various combinations of wheat bran, rye and millet (at 20% and 30% of total dry substrate wt) on crop cycle time, biological efficiency (BE) and mushroom quality were evaluated for a commercially used isolate of Grifola frondosa (maitake). Supplements were combined with a basal ingredient of mixed oak (primarily red oak) sawdust, and the resulting mixture was pasteurized, cooled, inoculated and bagged with an autoclaving mixer. Times to mushroom primordial formation and mushroom harvest were recorded, and mushroom quality was rated on a scale of 1-4, where 1 was the highest quality and 4 was the lowest quality. The combinations of 10% wheat bran, 10% millet and 10% rye (BE 47.1%, quality 1.8 and crop cycle 12 weeks) and 10% wheat bran plus 20% rye (BE 44%, quality 1.7 and crop cycle 10 weeks) gave the most consistent yields and best basidiome quality over time.  相似文献   

15.
Spent steamed compost, phase II compost, and dust emanating from spent compost during dumping of stationary-bed mushroom houses were examined bacteriologically. The total count for spent compost was 16 X 10(8) microorganisms per g. The total count for dust was 333 microorganisms per liter of air. Actinomycetes belonging to the genus Streptomyces often constituted 90% or more of isolates from dust, whereas mold spores constituted approximately 5%. Dust weight averaged 3.4 mg/liter of air and contained approximately 33% inanimate and 67% animate (microbial) particles. Spent compost and casing contained approximately 60% moisture; the average pH of compost was 6.93, and that of casing was 7.70. Ouchterlony precipitin results with antisera from workers afflicted with either farmer's or mushroom worker's lung were positive for Bacillus licheniformis, Micropolyspora faeni, Thermoactinomyces vulgaris, Aspergillus fumigatus, Humicola grisea var. thermoidea, spent compost, and phase II compost. Their usefulness in determining the etiology of this and related forms of allergic alveolitis is questioned and discussed. The relationship of dust particle size; microbial species, prevalence and antigenicity; and compost antigenicity to the etiology of mushroom worker's lung is discussed. The microbial ecology of mushroom compost and moldy hay associated with farmer's lung is compared.  相似文献   

16.
Leached spent mushroom compost (SMC) and its extract were tested to suppress Lecanicillium fungicola in white button mushroom. Sterile and non-sterile mixture of SMC and peat were used to assess suppressiveness against L. fungicola in greenhouse experiments. The extract of SMC was prepared with sterile, non-sterile, filtered, supplied with nystatin, streptomycin and penicillin antibiotics to evaluate their effect in suppression of pathogen in vitro. Isolated bacteria from SMC extract were tested for antagonism rate against Lecanicillium fungicola. The results of the experiments showed that all applications rate of none-sterile SMC were effective in control of pathogen. However, the sterile SMC amendments did not have a positive effect on the pathogen suppression in vitro or in vivo, as was expected. The treatments amended with SMC 100% and 60% showed the most suppressive effect in the control of pathogen. Using of non-sterile SMC 20%, 40%, 60% and peat soil were most effective in mushroom yield. The extract of leached SMC showed inhibition of L. fungicola in petri dishes. Three bacteria isolated from extract, Bacillus subtilis, Bacillus licheniformis and Bacillus amyloliquefacien identified using 16s rRNA, showed an antagonistic effect with the fungal growth.  相似文献   

17.
Experiments were performed to determine effects of supplementation of cottonseed hull/sawdust substrate with Mn, Cu, and ground soybean on yield, mushroom size, and bacterial blotch resistance of two commercial strains of Pleurotus eryngii. A basal formulation (d.w.) of cottonseed hulls (62%), aged red oak sawdust (27%), whole ground soybean (6%), corn distiller's waste (4%) and calcium sulfate (1%) was supplemented to 50, 150 or 250 microg/g Mn or Cu and to 4%, 8% and 12% whole ground soybean. The cottonseed hulls content in the basal substrate was adjusted to compensate for the addition of ground soybean. Formulated substrates were mixed, placed in 1050ml bottles, and sterilized at 121 degrees C for 90min. Mushroom yields were significantly higher from substrates containing Mn at 50 microg/g and soybean at 8% and 12% supplementation compared to the basal substrate. As the level of soybean addition to substrate increased, yield also increased. The addition of Mn at levels of 150 and 250 microg/g significantly enhanced yield as well, although less than did the 50 microg/g treatment. To assess the influence of mushroom strain and substrate composition on blotch disease severity, pilei of P. eryngii were inoculated with Pseudomonas tolaasii. Strain WC888 was more resistant to disease than WC846. Disease severity was greater when substrates were amended with Cu to 150 or 250 microg/g. There was a significant difference in inherent levels of Cu in the basidiomata of different strains, but P. eryngii did not accumulate Cu and disease severity was not correlated with Cu content of the basidiomata.  相似文献   

18.
Leached spent mushroom compost (SMC), municipal solid waste compost (MSWC) and their extracts, were tested to suppress Phytophthora drechsleri in cucumber plants. The composts were mixed with sand-loam soil in sterile and non-sterile types and were used to assess suppressiveness against P. drechselri in greenhouse experiments. The extracts of composts, in both sterile and non-sterile types, were applied to evaluate their effect in suppression of pathogen in vitro. The results of the experiments showed that all applications rate of non-sterile SMC were significantly effective in the control of the pathogen. However the sterile SMC amendments did not have a positive effect on the pathogen suppression in vitro or in vivo, as it was expected. In greenhouse experiments, both composts were effective in controlling pathogen at the rate of 15%, but the treatments amended with higher rate of MSWC did not show a positive effect. The treatments amended with MSWC (15%) and SMC (25%) showed the most suppressive effect in controlling the pathogen. The extract of leached-SMC could inhibit P. drechselri in petri dish.  相似文献   

19.
The objective of this study was to evaluate performance of Agaricus bisporus (Ab) on substrates pre-colonized by Scytalidiumthermophilum (St), a thermophilic fungus known to enhance yields of Ab and increase selectivity of the substrate. The radial extension rate (RER) of the mycelium of three strains of St and their influence on the growth of a brown strain of Ab were evaluated. We also determined the time required for colonization of pangola grass by St in a compost pile and the influence of three protein-rich supplements on yield of Ab on pangola grass (Digitaria decumbens) colonized by St. RER of St ranged from 10.1 mm/d on grass to 18.9 mm/d on potato dextrose yeast extract agar, with significant differences among substrates and among strains. Ab grew faster on substrate colonized for 1, 2, or 3 days by St (RER of 3.31, 3.29, 3.23 mm/d, respectively) compared to non-colonized substrate (1.85 mm/d). Ab was cultivated on substrate samples selected daily from the St-inoculated pile, with biological efficiencies (BE) ranging from 4% (day 0) to 73.9% (day 2). Protein-rich supplements (soybean, black beans and cowpeas) added at casing significantly stimulated mushroom yield on St-colonized substrate compared to the non-supplemented control. BE varied from 26.1% on substrate non-supplemented to 73.1% on compost supplemented with ground soybean. There were no significant differences in mushroom yield observed among supplements evaluated.  相似文献   

20.
The possibility of using hazelnut husk (HH) as a new basal ingredient for substrate preparation in Lentinula edodes cultivation was investigated. Some chemical properties of the substrates prepared by HH alone and its mixtures with wheat straw (WS), beech wood-chip (BWC) and wheat bran (WB) in different ratios were compared, and their effects on spawn run time, days to first harvest (earliness), yield and biological efficiency (BE) were determined. The N content of the substrate prepared from HH alone was very high (0.82%), and thus the C:N ratio of substrates decreased with an increase in the rate of HH in the mixtures. Yield and BE in the HH alone substrate was considerably low compared with the controls (80BWC:10WS:10M and 60BWC:20WS:20WB), and decreased with an increase in the rate of HH in the mixtures. However, when the HH content in the mixtures was kept below 50%, the yield was relatively high (50HH:50WS and 50HH:50BWC). Even when the HH content increased to 75% in the mixture, the comparable yield and BE to the controls could be obtained by adding 10% of WB as nutrients (75HH:15WS:10WB and 75HH:15BWC:10WB). The results revealed that HH could be used as a new basal ingredient for substrate preparation in L. edodes cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号