首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
M. Maduro  D. Pilgrim 《Genetics》1995,141(3):977-988
A spontaneous mutation affecting locomotion of the nematode Caenorhabditis elegans has been mapped to a new gene, unc-119. Phenotypic characterization of the mutants suggests the defect does not lie in the musculature and that the animals also have defects in feeding behavior and chemosensation. unc-119 has been physically mapped relative to a previously identified chromosomal break in linkage group III, and DNA clones covering the region can rescue the mutant phenotype in transgenic animals. Three more alleles at the locus, with identical phenotypes, have been induced and characterized, all of which are putative null alleles. The predicted UNC-119 protein has no significant similarity to other known proteins. Expression of an unc-119/lacZ fusion in transgenic animals is seen in many neurons, suggesting that the unc-119 mutant phenotype is due to a defect in the nervous system.  相似文献   

3.
The recycling of synaptic vesicles requires the recovery of vesicle proteins and membrane. Members of the stonin protein family (Drosophila Stoned B, mammalian stonin 2) have been shown to link the synaptic vesicle protein synaptotagmin to the endocytic machinery. Here we characterize the unc-41 gene, which encodes the stonin ortholog in the nematode Caenorhabditis elegans. Transgenic expression of Drosophila stonedB rescues unc-41 mutant phenotypes, demonstrating that UNC-41 is a bona fide member of the stonin family. In unc-41 mutants, synaptotagmin is present in axons, but is mislocalized and diffuse. In contrast, UNC-41 is localized normally in synaptotagmin mutants, demonstrating a unidirectional relationship for localization. The phenotype of snt-1 unc-41 double mutants is stronger than snt-1 mutants, suggesting that UNC-41 may have additional, synaptotagmin-independent functions. We also show that unc-41 mutants have defects in synaptic vesicle membrane endocytosis, including a ~50% reduction of vesicles in both acetylcholine and GABA motor neurons. These endocytic defects are similar to those observed in apm-2 mutants, which lack the μ2 subunit of the AP2 adaptor complex. However, no further reduction in synaptic vesicles was observed in unc-41 apm-2 double mutants, suggesting that UNC-41 acts in the same endocytic pathway as μ2 adaptin.  相似文献   

4.
The UNC-119 proteins, found in all metazoans examined, are highly conserved at both the sequence and functional levels. In the invertebrates Caenorhabditis elegans and Drosophila melanogaster, unc-119 genes are expressed pan-neurally. Loss of function of the unc-119 gene in C. elegans results in a disorganized neural architecture and paralysis. The function of UNC-119 proteins has been conserved throughout evolution, as transgenic expression of the human UNC119 gene in C. elegans unc-119 mutants restores a wild-type phenotype. However, the nature of the conserved molecular function of UNC-119 proteins is poorly understood. Although unc-119 genes are expressed throughout the nervous system of the worm and fly, the analysis of these genes in vertebrates has focused on their function in the photoreceptor cells of the retina. Here we report the characterization of an unc-119 homolog in the zebrafish. The Unc119 protein is expressed in various neural tissues in the developing zebrafish embryo and larva. Morpholino oligonucleotide (MO)-mediated knockdown of Unc119 protein results in a "curly tail down" phenotype. Examination of neural patterning demonstrates that these "curly tail down" zebrafish experience a constellation of neuronal defects similar to those seen in C. elegans unc-119 mutants: missing or misplaced cell bodies, process defasciculation, axon pathfinding errors, and aberrant axonal branching. These findings suggest that UNC-119 proteins may play an important role in the development and/or function of the vertebrate nervous system.  相似文献   

5.
6.
The neuronal stomatin-like proteins UNC-1 and UNC-24 play important roles in the nervous system of Caenorhabditis elegans. These neuronal stomatin-like proteins are putative chaperone proteins that can modify volatile anesthetic sensitivity and disrupt coordinated locomotion. A suppressor of unc-1 and unc-24, named ssu-1(fc73) (for suppressor of stomatin uncoordination), suppresses three phenotypes of neuronal stomatin-like protein deficiency as follows: volatile anesthetic sensitivity, uncoordinated locomotion, and a constitutive alternative developmental phenotype known as dauer. Here we provide the first phenotypic characterization of ssu-1, predicted to be the only C. elegans cytosolic alcohol sulfotransferase, a family of enzymes that catalyze a sulfate linkage with the alcohol group of small molecules for the purposes of detoxification or modification of signaling. In vitro enzyme analysis of bacterially expressed SSU-1 demonstrates sulfotransferase activity and thus confirms the function predicted by protein sequence similarities. Whereas unc-1 is expressed in the majority of neurons of C. elegans, expression of SSU-1 protein in only the two ASJ amphid interneurons is sufficient to restore the wild type phenotype. This work demonstrates that SSU-1 is a functional sulfotransferase that likely modifies endocrine signaling in C. elegans. The expression of SSU-1 in the ASJ neurons refines the understanding of the function of these cells and supports their classification as endocrine tissue. The relationship of unc-1, unc-24, and ssu-1 is the first association of neuronal stomatin-like proteins sharing regulatory roles with a sulfotransferase enzyme.  相似文献   

7.
The ubiquitin proteasome system is involved in degradation of old or damaged sarcomeric proteins. Most E3 ubiquitin ligases are associated with cullins, which function as scaffolds for assembly of the protein degradation machinery. Cullin 3 uses an adaptor to link to substrates; in Caenorhabditis elegans, one of these adaptors is the BTB-domain protein MEL-26 (maternal effect lethal). Here we show that MEL-26 interacts with the giant sarcomeric protein UNC-89 (obscurin). MEL-26 and UNC-89 partially colocalize at sarcomeric M-lines. Loss of function or gain of function of mel-26 results in disorganization of myosin thick filaments similar to that found in unc-89 mutants. It had been reported that in early C. elegans embryos, a target of the CUL-3/MEL-26 ubiquitylation complex is the microtubule-severing enzyme katanin (MEI-1). Loss of function or gain of function of mei-1 also results in disorganization of thick filaments similar to unc-89 mutants. Genetic data indicate that at least some of the mel-26 loss-of-function phenotype in muscle can be attributed to increased microtubule-severing activity of MEI-1. The level of MEI-1 protein is reduced in an unc-89 mutant, suggesting that the normal role of UNC-89 is to inhibit the CUL-3/MEL-26 complex toward MEI-1.  相似文献   

8.
Embryos homozygous for mutations in the unc-52, pat-2, pat-3, and unc-112 genes of C. elegans exhibit a similar Pat phenotype. Myosin and actin are not organized into sarcomeres in the body wall muscle cells of these mutants, and dense body and M-line components fail to assemble. The unc-52 (perlecan), pat-2 (alpha-integrin), and pat-3 (beta-integrin) genes encode ECM or transmembrane proteins found at the cell-matrix adhesion sites of both dense bodies and M-lines. This study describes the identification of the unc-112 gene product, a novel, membrane-associated, intracellular protein that colocalizes with integrin at cell-matrix adhesion complexes. The 720-amino acid UNC-112 protein is homologous to Mig-2, a human protein of unknown function. These two proteins share a region of homology with talin and members of the FERM superfamily of proteins.We have determined that a functional UNC-112::GFP fusion protein colocalizes with PAT-3/beta-integrin in both adult and embryonic body wall muscle. We also have determined that UNC-112 is required to organize PAT-3/beta-integrin after it is integrated into the basal cell membrane, but is not required to organize UNC-52/perlecan in the basement membrane, nor for DEB-1/vinculin to localize with PAT-3/beta-integrin. Furthermore, UNC-112 requires the presence of UNC-52/perlecan and PAT-3/beta-integrin, but not DEB-1/vinculin to become localized to the muscle cell membrane.  相似文献   

9.
Transport of synaptic components is a regulated process. Loss-of-function mutations in the C. elegans unc-16 gene result in the mislocalization of synaptic vesicle and glutamate receptor markers. unc-16 encodes a homolog of mouse JSAP1/JIP3 and Drosophila Sunday Driver. Like JSAP1/JIP3, UNC-16 physically interacts with JNK and JNK kinases. Deletion mutations in Caenorhabditis elegans JNK and JNK kinases result in similar mislocalization of synaptic vesicle markers and enhance weak unc-16 mutant phenotypes. unc-116 kinesin heavy chain mutants also mislocalize synaptic vesicle markers, as well as a functional UNC-16::GFP. Intriguingly, unc-16 mutations partially suppress the vesicle retention defect in unc-104 KIF1A kinesin mutants. Our results suggest that UNC-16 may regulate the localization of vesicular cargo by integrating JNK signaling and kinesin-1 transport.  相似文献   

10.
Assembly and maintenance of myofibrils require dynamic regulation of the actin cytoskeleton. In Caenorhabditis elegans, UNC-60B, a muscle-specific actin depolymerizing factor (ADF)/cofilin isoform, is required for proper actin filament assembly in body wall muscle (Ono, S., D.L. Baillie, and G.M. Benian. 1999. J. Cell Biol. 145:491--502). Here, I show that UNC-78 is a homologue of actin-interacting protein 1 (AIP1) and functions as a novel regulator of actin organization in myofibrils. In unc-78 mutants, the striated organization of actin filaments is disrupted, and large actin aggregates are formed in the body wall muscle cells, resulting in defects in their motility. Point mutations in unc-78 alleles change conserved residues within different WD repeats of the UNC-78 protein and cause less severe phenotypes than a deletion allele, suggesting that these mutations partially impair the function of UNC-78. UNC-60B is normally localized in the diffuse cytoplasm and to the myofibrils in wild type but mislocalized to the actin aggregates in unc-78 mutants. Similar Unc-78 phenotypes are observed in both embryonic and adult muscles. Thus, AIP1 is an important regulator of actin filament organization and localization of ADF/cofilin during development of myofibrils.  相似文献   

11.
Mutations in the Caenorhabditis elegans unc-84 gene cause defects in nuclear migration and anchoring. We show that endogenous UNC-84 protein colocalizes with Ce-lamin at the nuclear envelope and that the envelope localization of UNC-84 requires Ce-lamin. We also show that during mitosis, UNC-84 remains at the nuclear periphery until late anaphase, similar to known inner nuclear membrane proteins. UNC-84 protein is first detected at the 26-cell stage and thereafter is present in most cells during development and in adults. UNC-84 is properly expressed in unc-83 and anc-1 lines, which have phenotypes similar to unc-84, suggesting that neither the expression nor nuclear envelope localization of UNC-84 depends on UNC-83 or ANC-1 proteins. The envelope localization of Ce-lamin, Ce-emerin, Ce-MAN1, and nucleoporins are unaffected by the loss of UNC-84. UNC-84 is not required for centrosome attachment to the nucleus because centrosomes are localized normally in unc-84 hyp7 cells despite a nuclear migration defect. Models for UNC-84 localization are discussed.  相似文献   

12.
Hu S  Pawson T  Steven RM 《Genetics》2011,189(1):137-151
Rho-family GTPases play regulatory roles in many fundamental cellular processes. Caenorhabditis elegans UNC-73 RhoGEF isoforms function in axon guidance, cell migration, muscle arm extension, phagocytosis, and neurotransmission by activating either Rac or Rho GTPase subfamilies. Multiple differentially expressed UNC-73 isoforms contain a Rac-specific RhoGEF-1 domain, a Rho-specific RhoGEF-2 domain, or both domains. The UNC-73E RhoGEF-2 isoform is activated by the G-protein subunit Gαq and is required for normal rates of locomotion; however, mechanisms of UNC-73 and Rho pathway regulation of locomotion are not clear. To better define UNC-73 function in the regulation of motility we used cell-specific and inducible promoters to examine the temporal and spatial requirements of UNC-73 RhoGEF-2 isoform function in mutant rescue experiments. We found that UNC-73E acts within peptidergic neurons of mature animals to regulate locomotion rate. Although unc-73 RhoGEF-2 mutants have grossly normal synaptic morphology and weak resistance to the acetylcholinesterase inhibitor aldicarb, they are significantly hypersensitive to the acetylcholine receptor agonist levamisole, indicating alterations in acetylcholine neurotransmitter signaling. Consistent with peptidergic neuron function, unc-73 RhoGEF-2 mutants exhibit a decreased level of neuropeptide release from motor neuron dense core vesicles (DCVs). The unc-73 locomotory phenotype is similar to those of rab-2 and unc-31, genes with distinct roles in the DCV-mediated secretory pathway. We observed that constitutively active Gαs pathway mutations, which compensate for DCV-mediated signaling defects, rescue unc-73 RhoGEF-2 and rab-2 lethargic movement phenotypes. Together, these data suggest UNC-73 RhoGEF-2 isoforms are required for proper neurotransmitter signaling and may function in the DCV-mediated neuromodulatory regulation of locomotion rate.  相似文献   

13.
14.
Huang X  Cheng HJ  Tessier-Lavigne M  Jin Y 《Neuron》2002,34(4):563-576
The netrin UNC-6 repels motor axons by activating the UNC-5 receptor alone or in combination with the UNC-40/DCC receptor. In a genetic screen for C. elegans mutants exhibiting partial defects in motor axon projections, we isolated the max-1 gene (required for motor neuron axon guidance). max-1 loss-of-function mutations cause fully penetrant but variable axon guidance defects. Mutations in unc-5 and unc-6, but not in unc-40, dominantly enhance the mutant phenotypes of max-1, whereas overexpression of unc-5 or unc-6, but not of unc-40, bypasses the requirement for max-1. MAX-1 proteins contain PH, MyTH4, and FERM domains and appear to be localized to neuronal processes. Human MAX-1 and UNC5H2 colocalize in discrete subcellular regions of transfected cells. Our results suggest a possible role for MAX-1 in netrin-induced axon repulsion by modulating the UNC-5 receptor signaling pathway.  相似文献   

15.
In the nematode Caenorhabditis elegans, animals mutant in the gene encoding the protein product of the unc-45 gene (UNC-45) have disorganized muscle thick filaments in body wall muscles. Although UNC-45 contains tetratricopeptide repeats (TPR) as well as limited similarity to fungal proteins, no biochemical role has yet been found. UNC-45 reporters are expressed exclusively in muscle cells, and a functional reporter fusion is localized in the body wall muscles in a pattern identical to thick filament A-bands. UNC-45 colocalizes with myosin heavy chain (MHC) B in wild-type worms as well as in temperature-sensitive (ts) unc-45 mutants, but not in a mutant in which MHC B is absent. Surprisingly, UNC-45 localization is also not seen in MHC B mutants, in which the level of MHC A is increased, resulting in near-normal muscle thick filament structure. Thus, filament assembly can be independent of UNC-45. UNC-45 shows a localization pattern identical to and dependent on MHC B and a function that appears to be MHC B-dependent. We propose that UNC-45 is a peripheral component of muscle thick filaments due to its localization with MHC B. The role of UNC-45 in thick filament assembly seems restricted to a cofactor for assembly or stabilization of MHC B.  相似文献   

16.
17.
C. elegans mutants lacking the dense-core vesicle priming protein UNC-31 (CAPS) share highly similar phenotypes with mutants lacking a neuronal G alpha(s) pathway, including strong paralysis despite exhibiting near normal levels of steady-state acetylcholine release as indicated by drug sensitivity assays. Our genetic analysis shows that UNC-31 and neuronal G alpha(s) are different parts of the same pathway and that the UNC-31/G alpha(s) pathway is functionally distinct from the presynaptic G alpha(q) pathway with which it interacts. UNC-31 acts upstream of G alpha(s) because mutations that activate the G alpha(s) pathway confer similar levels of strongly hyperactive, coordinated locomotion in both unc-31 null and (+) backgrounds. Using cell-specific promoters, we show that both UNC-31 and the G alpha(s) pathway function in cholinergic motor neurons to regulate locomotion rate. Using immunostaining we show that UNC-31 is often concentrated at or near active zones of cholinergic motor neuron synapses. Our data suggest that presynaptic UNC-31 activity, likely acting via dense-core vesicle exocytosis, is required to locally activate the neuronal G alpha(s) pathway near synaptic active zones.  相似文献   

18.
UNC-51 and UNC-14 are required for the axon guidance of many neurons in Caenorhabditis elegans. UNC-51 is a serine/threonine kinase homologous to yeast Atg1, which is required for autophagy. The binding partner of UNC-51, UNC-14, contains a RUN domain that is predicted to play an important role in multiple Ras-like GTPase signaling pathways. How these molecules function in axon guidance is largely unknown. Here we observed that, in unc-51 and unc-14 mutants, UNC-5, the receptor for axon-guidance protein Netrin/UNC-6, abnormally localized in neuronal cell bodies. By contrast, the localization of many other proteins required for axon guidance was undisturbed. Moreover, UNC-5 localization was normal in animals with mutations in the genes for axon guidance proteins, several motor proteins, vesicle components and autophagy-related proteins. We also found that unc-5 and unc-6 interacted genetically with unc-51 and unc-14 to affect axon guidance, and that UNC-5 co-localized with UNC-51 and UNC-14 in neurons. These results suggest that UNC-51 and UNC-14 regulate the subcellular localization of the Netrin receptor UNC-5, and that UNC-5 uses a unique mechanism for its localization; the functionality of UNC-5 is probably regulated by this localization.  相似文献   

19.
In Caenorhabditis elegans two M-line proteins, UNC-98 and UNC-96, are involved in myofibril assembly and/or maintenance, especially myosin thick filaments. We found that CSN-5, a component of the COP9 signalosome complex, binds to UNC-98 and -96 using the yeast two-hybrid method. These interactions were confirmed by biochemical methods. The CSN-5 protein contains a Mov34 domain. Although one other COP9 signalosome component, CSN-6, also has a Mov34 domain, CSN-6 did not interact with UNC-98 or -96. Anti-CSN-5 antibody colocalized with paramyosin at A-bands in wild type and colocalized with abnormal accumulations of paramyosin found in unc-98, -96, and -15 (encodes paramyosin) mutants. Double knockdown of csn-5 and -6 could slightly suppress the unc-96 mutant phenotype. In the double knockdown of csn-5 and -6, the levels of UNC-98 protein were increased and the levels of UNC-96 protein levels were slightly reduced, suggesting that CSN-5 promotes the degradation of UNC-98 and that CSN-5 stabilizes UNC-96. In unc-15 and unc-96 mutants, CSN-5 protein was reduced, implying the existence of feed back regulation from myofibril proteins to CSN-5 protein levels. Taken together, we found that CSN-5 functions in muscle cells to regulate UNC-98 and -96, two M-line proteins.  相似文献   

20.
The Caenorhabditis elegans unc-60 gene encodes two functionally distinct isoforms of ADF/cofilin that are implicated in myofibril assembly. Here, we show that one of the gene products, UNC-60B, is specifically required for proper assembly of actin into myofibrils. We found that all homozygous viable unc-60 mutations resided in the unc-60B coding region, indicating that UNC-60B is responsible for the Unc-60 phenotype. Wild-type UNC-60B had F-actin binding, partial actin depolymerizing, and weak F-actin severing activities in vitro. However, mutations in UNC-60B caused various alterations in these activities. Three missense mutations resulted in weaker F-actin binding and actin depolymerizing activities and complete loss of severing activity. The r398 mutation truncated three residues from the COOH terminus and resulted in the loss of severing activity and greater actin depolymerizing activity. The s1307 mutation in a putative actin-binding helix caused greater activity in actin-depolymerizing and severing. Using a specific antibody for UNC-60B, we found varying protein levels of UNC-60B in mutant animals, and that UNC-60B was expressed in embryonic muscles. Regardless of these various molecular phenotypes, actin was not properly assembled into embryonic myofibrils in all unc-60 mutants to similar extents. We conclude that precise control of actin filament dynamics by UNC-60B is required for proper integration of actin into myofibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号