首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The assumption that all life on Earth today shares the same basic molecular architecture and biochemistry is part of the paradigm of modern biology. This paper argues that there is little theoretical or empirical support for this widely held assumption. Scientists know that life could have been at least modestly different at the molecular level and it is clear that alternative molecular building blocks for life were available on the early Earth. If the emergence of life is, like other natural phenomena, highly probable given the right chemical and physical conditions then it seems likely that the early Earth hosted multiple origins of life, some of which produced chemical variations on life as we know it. While these points are often conceded, it is nevertheless maintained that any primitive alternatives to familiar life would have been eliminated long ago, either amalgamated into a single form of life through lateral gene transfer (LGT) or alternatively out-competed by our putatively more evolutionarily robust form of life. Besides, the argument continues, if such life forms still existed, we surely would have encountered telling signs of them by now. These arguments do not hold up well under close scrutiny. They reflect a host of assumptions that are grounded in our experience with large multicellular organisms and, most importantly, do not apply to microbial forms of life, which cannot be easily studied without the aid of sophisticated technologies. Significantly, the most powerful molecular biology techniques available-polymerase chain reaction (PCR) amplification of rRNA genes augmented by metagenomic analysis-could not detect such microbes if they existed. Given the profound philosophical and scientific importance that such a discovery would represent, a dedicated search for 'shadow microbes' (heretofore unrecognized 'alien' forms of terran microbial life) seems in order. The best place to start such a search is with puzzling (anomalous) phenomena, such as desert varnish, that resist classification as 'biological' or 'nonbiological'.  相似文献   

2.
Electrohydrodynamic jetting (EHDJ) which is also known as electrosprays (ES) has recently been elucidated as a unique electrified biotechnique for the safe handling and deployment of living organisms. This high intensity electric field driven jetting methodology is now referred to as "bioelectrosprays" (BES). Previously these charged jets have only been shown to jet-process immortalized cells which have undergone expected cellular behavior when compared with control cells. In this paper we demonstrate the ability to jet process primary living organisms in the stable conejetting mode. Finally the viability of the bio-electrosprayed living organisms has been assessed employing a flow cytometry approach which forms the discussion in this paper. Our findings further establish BES as a competing biotechnique, which could be employed for the deposition of primary living organisms according to a predetermined active cellular architecture. One day this could be used for the fabrication of viable tissues and organs for repair or replacement. These advanced studies carried out on BES have direct widespread applications ranging from developmental biology to regenerative and therapeutic medicine, which are a few amongst several other areas of study within the life sciences.  相似文献   

3.
Synthetic biology is a recently emerging field that applies engineering formalisms to design and construct new biological parts, devices, and systems for novel functions or life forms that do not exist in nature. Synthetic biology relies on and shares tools from genetic engineering, bioengineering, systems biology and many other engineering disciplines. It is also different from these subjects, in both insights and approach. Applications of synthetic biology have great potential for novel contributions to established fields and for offering opportunities to answer fundamentally new biological questions. This article does not aim at a thorough survey of the literature and detailing progress in all different directions. Instead, it is intended to communicate a way of thinking for synthetic biology in which basic functional elements are defined and assembled into living systems or biomaterials with new properties and behaviors. Four major application areas with a common theme are discussed and a procedure (or "protocol") for a standard synthetic biology work is suggested.  相似文献   

4.
In the history of biology, the term 'evolution' has carried a dual meaning, viz. ontogeny (the unfolding of the germ) versus phylogeny (descent with modification). A problem in modern biology is the question of whether it is ontogeny which creates phylogeny, or whether it is phylogeny which moulds ontogeny. The paper explores the relationship of ontogeny to phylogeny in the context of 'pattern cladism'. The conclusion is that the analysis of ontogeny provides a direct method for classification ('a way forward for systematics'), which is a logical prerequisite for a phylogenetic interpretation of ontogenetic sequences ('a way backward for phylogeny'). The ontogenetic process of growth, subdivision and differentiation is related to the 'morphogenetic tree theory' on the basis of Von Baer's "laws of individual development". This conceptual relation shows that ontogeny creates phylogeny in an upward direction within the morphogenetic tree, whereas phylogeny (by means of natural selection) moulds ontogeny in a downward direction. A conflict originates with the conventions of Linnaean classification if ontogenetic divergence is proposed as a causal agent in the origin of higher taxa. It is proposed to solve this conflict by viewing individual organisms (or reproductive communities) not as constituents, but as representatives of higher taxa.  相似文献   

5.
合成生物学是一门21世纪生物学的新兴学科,它着眼生物科学与工程科学的结合,把生物系统当作工程系统"从下往上"进行处理,由"单元"(unit)到"部件"(device)再到"系统"(system)来设计,修改和组装细胞构件及生物系统.合成生物学是分子和细胞生物学、进化系统学、生物化学、信息学、数学、计算机和工程等多学科交叉的产物.目前研究应用包括两个主要方面:一是通过对现有的、天然存在的生物系统进行重新设计和改造,修改已存在的生物系统,使该系统增添新的功能.二是通过设计和构建新的生物零件、组件和系统,创造自然界中尚不存在的人工生命系统.合成生物学作为一门建立在基因组方法之上的学科,主要强调对创造人工生命形态的计算生物学与实验生物学的协同整合.必须强调的是,用来构建生命系统新结构、产生新功能所使用的组件单元既可以是基因、核酸等生物组件,也可以是化学的、机械的和物理的元件.本文跟踪合成生物学研究及应用,对其在DNA水平编程、分子修饰、代谢途径、调控网络和工业生物技术等方面的进展进行综述.  相似文献   

6.
7.
Parallel to psychiatry, "philosophy of mind" investigates the relationship between mind (mental domain) and body/brain (physical domain). Unlike older forms of philosophy of mind, contemporary analytical philosophy is not exclusively based on introspection and conceptual analysis, but also draws upon the empirical methods and findings of the sciences. This article outlines the conceptual framework of the "mind-body problem" as formulated in contemporary analytical philosophy and argues that this philosophical debate has potentially far-reaching implications for psychiatry as a clinical-scientific discipline, especially for its own autonomy and its relationship to neurology/neuroscience. This point is illustrated by a conceptual analysis of the five principles formulated in Kandel's 1998 article "A New Intellectual Framework for Psychiatry." Kandel's position in the philosophical mind-body debate is ambiguous, ranging from reductive physicalism (psychophysical identity theory) to non-reductive physicalism (in which the mental "supervenes" on the physical) to epiphenomenalist dualism or even emergent dualism. We illustrate how these diverging interpretations result in radically different views on the identity of psychiatry and its relationship with the rapidly expanding domain of neurology/neuroscience.  相似文献   

8.
Projection matrix models are widely used in population biology to project the present state of a population into the future, either as an attempt to forecast population dynamics, or as a way to evaluate life history hypotheses. These models are flexible and mathematically relatively easy. They have been applied to a broad range of plants and animals. The asymptotic properties of projection matrices have clearly defined biological interpretations, and the analysis of the effects of perturbations on these asymptotic properties offers new possibilities for comparative life history analysis. The connection between projection matrix models and the secondary theorem of natural selection opens life cycle phenomena to evolutionary interpretation.  相似文献   

9.
In this essay we examine whether a theoretical and conceptual framework for systems biology could be built from the [Bailly and Longo, 2008] and [Bailly and Longo, 2009] proposal. These authors aim to understand life as a coherent critical structure, and propose to develop an extended physical approach of evolution, as a diffusion of biomass in a space of complexity. Their attempt leads to a simple mathematical reconstruction of Gould’s assumption (1989) concerning the bacterial world as a “left wall of least complexity” that we will examine. Extended physical systems are characterized by their constructive properties. Time is acting and new properties emerge by their history that can open the list of their initial properties. This conceptual and theoretical framework is nothing more than a philosophical assumption, but as such it provides a new and exciting approach concerning the evolution of life, and the transition between physics and biology.  相似文献   

10.
Basic aspects of cell biology of Pneumocystis carinii are reviewed with major emphasis on its life cycle and the structural organization of the trophozoites and cyst forms. Initially considered as a protozoan it is now established that Pneumocystis belongs to the Fungi Kingdom. Its life cycle includes two basic forms: (a) trophozoites, which are haploid cells that divide by binary fission and may conjugate with each other forming an early procyst and (b) cysts where division takes place through a meiotic process with the formation of eight nuclei followed by cytoplasmic delimitation and formation of intracystic bodies which are subsequently released and transformed into trophozoites. Basic aspects of the structure of the two developmental stages of P. carinii are reviewed.  相似文献   

11.
In this article, we review how two eminent Viennese system thinkers, Paul A Weiss and Ludwig von Bertalanffy, began to develop their own perspectives toward a system theory of life in the 1920s. Their work is especially rooted in experimental biology as performed at the Biologische Versuchsanstalt, as well as in philosophy, and they converge in basic concepts. We underline the conceptual connections of their thinking, among them the organism as an organized system, hierarchical organization, and primary activity. With their system thinking, both biologists shared a strong desire to overcome what they viewed as a "mechanistic" approach in biology. Their interpretations are relevant to the renaissance of system thinking in biology--"systems biology." Unless otherwise noted, all translations are our own.  相似文献   

12.
New knowledge in biology led us to a better understanding of organization and functioning of living organisms. Today, re-evaluation of our concept of human biology is taking place. Theoretical analysis shows that taking into account the complexity of the organism and frequency of spontaneous mutations, it is impossible to explain the real time of organismal life. Therefore, besides extant systems, other repair systems must also exist. There are three "levels" at which a cell population withstands mutational pressure. First - intracellular (repair), second - intercellular (all forms of informational flows), and third - cellular replacement. Stem cells undertake regenerative functions following damage at the level of the tissue. They are also influenced by mutations, and for stem cells, it is most important that they preserve and support their full activity.  相似文献   

13.
This paper investigates the use of heuristically derived stochastic differential equations (SDEs) as models in population biology. It is stressed that these equations are best viewed as approximations for more realistic, but often analytically intractable, models. A criterion is presented for determining which interpretation (e.g., Ito or Stratonovich) is likely to serve as the most useful approximation. Several limit theorems are presented which illustrate the use and implications of this criterion. In particular, it is shown that the solutions to sequences of models which approach a given SDE may converge to a diffusion process which corresponds to no solution of the SDE. However, arguing that in population biology the SDEs are generally serving as approximations to stochastic difference equations with autocorrelated noise, it is shown for a variety of models that the Ito calculus may provide a more useful approximation than the Stratonovich. Important limitations of this result and on the use of SDEs are indicated. These findings and observations are compared with those of several papers in the recent literature.  相似文献   

14.
Before the Darwinian revolution many biologists considered organic forms to be determined by natural law like atoms or crystals and therefore necessary, intrinsic and immutable features of the world order, which will occur throughout the cosmos wherever there is life. The search for the natural determinants of organic form-the celebrated "Laws of Form"-was seen as one of the major tasks of biology. After Darwin, this Platonic conception of form was abandoned and natural selection, not natural law, was increasingly seen to be the main, if not the exclusive, determinant of organic form. However, in the case of one class of very important organic forms-the basic protein folds-advances in protein chemistry since the early 1970s have revealed that they represent a finite set of natural forms, determined by a number of generative constructional rules, like those which govern the formation of atoms or crystals, in which functional adaptations are clearly secondary modifications of primary "givens of physics." The folds are evidently determined by natural law, not natural selection, and are "lawful forms" in the Platonic and pre-Darwinian sense of the word, which are bound to occur everywhere in the universe where the same 20 amino acids are used for their construction. We argue that this is a major discovery which has many important implications regarding the origin of proteins, the origin of life and the fundamental nature of organic form. We speculate that it is unlikely that the folds will prove to be the only case in nature where a set of complex organic forms is determined by natural law, and suggest that natural law may have played a far greater role in the origin and evolution of life than is currently assumed.  相似文献   

15.
Pluralism is popular among philosophers of biology. This essay argues that negative judgments about universal biology, while understandable, are very premature. Familiar life on Earth represents a single example of life and, most importantly, there are empirical as well as theoretical reasons for suspecting that it may be unrepresentative. Scientifically compelling generalizations about the unity of life (or lack thereof) must await the discovery of forms of life descended from an alternative origin, the most promising candidate being the discovery of extraterrestrial life. Nonetheless, in the absence of additional examples of life, we are best off exploring the microbial world for promising explanatory concepts, principles, and mechanisms rather than prematurely giving up on universal biology. Unicellular microbes (especially prokaryotes) are by far the oldest, metabolically most diverse, and environmentally tolerant form of life on our planet. Yet somewhat ironically, much of our theorizing about life still implicitly privileges complex multicellular eukaryotes, which are now understood to be highly specialized, fragile latecomers to Earth. The problem with pursuing a pluralist approach to understanding life is that it is likely to blind us to the significance of just those entities and causal processes most likely to shed light on the underlying nature of life.  相似文献   

16.
Summary It is attempted to determine in detail the boundaries between the extratropical flora (holarctis), the saharo-arabian flora and the tropical flora (palaeotropis) in arid northern Africa on the basis of life forms.The analysis is based on 1258 species selected by a frequency distribution (Fig. 2). The species are classified into 12 groups of different life forms and floristic elements; phanerophytes (Ph), chamaephytes (Ch), hemicryptophytes (H) and therophytes (Th), as well as a tropical fkoristic element (P), a saharo-arabian (S) and an extratropical one (H). Thus, floristic boundaries of the tropics and the extratropical regions could be differentiated for the four life forms concerned (Fig. 4). The eight boundaries separate zones dominated by different floristic elements of any life form. Fig. 4 shows that, e.g., the floristic boundary of tropical phanerophytes runs much further north than equivalent boundaries of other life forms. A more detailed interpretation of fig. 4 is given for the east and west coast and for the Nile valley. The differences between the east and the west coast are explained by different temperature conditions (cold ocean current). For the Nile valley it could be shown that the taller the life forms of tropical species, the further north their numbers are still dominant over the equivalent extratropical life forms.Zonal life form spectra (Fig. 5) are presented for each floristic element. Therophytes and chamaephytes are the dominant life forms in the Sahara. Therophytes dominate on shallow gravelly soils over solid rock, whereas chamaephytes dominate where their roots can penetrate into deeper layers.Some relations between life forms or floristic elements and elimate are shown using correlation analysis. In this connection the physiology of summer and winter therophytes is briefly discussed.
Nomenklatur nach Quézel (1965)  相似文献   

17.

Although the knowledge about biological systems has advanced exponentially in recent decades, it is surprising to realize that the very definition of Life keeps presenting theoretical challenges. Even if several lines of reasoning seek to identify the essence of life phenomenon, most of these thoughts contain fundamental problem in their basic conceptual structure. Most concepts fail to identify either necessary or sufficient features to define life. Here, we analyzed the main conceptual frameworks regarding theoretical aspects that have been supporting the most accepted concepts of life, such as (i) the physical, (ii) the cellular and (iii) the molecular approaches. Based on an ontological analysis, we propose that Life should not be positioned under the ontological category of Matter. Yet, life should be better understood under the top-level ontology of “Process”. Exercising an epistemological approach, we propose that the essential characteristic that pervades each and every living being is the presence of organic codes. Therefore, we explore theories in biosemiotics and code biology in order to propose a clear concept of life as a macrocode composed by multiple inter-related coding layers. This way, as life is a sort of metaphysical process of encoding, the living beings became the molecular materialization of that process. From the proposed concept, we show that the evolutionary process is a fundamental characteristic for life’s maintenance but it is not necessary to define life, as many organisms are clearly alive but they do not participate in the evolutionary process (such as infertile hybrids). The current proposition opens a fertile field of debate in astrobiology, epistemology, biosemiotics, code biology and robotics.

  相似文献   

18.
Living cells are powered by intricate networks of chemical reactions of thousands of molecules. Understanding how living systems emerged through the assembly of chemical processes is one of the biggest challenges in science. Subject Categories: Biotechnology & Synthetic Biology, Evolution & Ecology, Metabolism

How can chemistry turn into biology? How can living cells be built from molecules? These are fundamental questions in biology and, despite much research efforts, remain unanswered. Yet, the past two decades have seen considerable advances in our knowledge of how and which (bio)physical and (bio)chemical processes could have driven the emergence of the first living cells. These achievements have led not only to a better understanding of the molecular origins of life, but also spurred significant developments in synthetic biology, biophysics and supramolecular chemistry. Although the exact events that sparked life on Earth will quite likely remain a mystery, at least partially, exploring the chemical origins of life offers clues about our primordial past and could contribute to shaping our future.
Although the exact events that sparked life on Earth will quite likely remain a mystery […] exploring the chemical origins of life offers clues about our primordial past and could contribute to shaping our future.
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号