首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 392 毫秒
1.
Tomato bushy stunt virus (TBSV), a plus-stranded [(+)] RNA plant virus, incorporates the host metabolic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) into the viral replicase complex. Here, we show that, during TBSV replication in yeast, the yeast GAPDH Tdh2p moves from the cytosol to the peroxisomal membrane surface, the site of viral RNA synthesis. In yeast cells lacking Tdh2p, decreasing the levels of its functionally redundant homolog Tdh3p inhibited TBSV replication and resulted in equivalent levels of (+) and minus-stranded [(-)] viral RNA, in contrast to the hallmark excess of (+)RNA. Tdh2p specifically bound an AU pentamer sequence in the (-)RNA, suggesting that GAPDH promotes asymmetric RNA synthesis by selectively retaining the (-)RNA template in the replicase complex. Downregulation of GAPDH in a natural plant host decreased TBSV genomic RNA accumulation. Thus, TBSV co-opts the RNA-binding function of a metabolic protein, helping convert the host cell into a viral factory.  相似文献   

2.
A plant virus vector for systemic expression of foreign genes in cereals   总被引:4,自引:0,他引:4  
Inserts bearing the coding sequences of NPT II and beta-glucuronidase (GUS) were placed between the nuclear inclusion b (NIb) and coat protein (CP) domains of the wheat streak mosaic virus (WSMV) polyprotein ORF. The WSMV NIb-CP junction containing the nuclear inclusion a (NIa) protease cleavage site was duplicated, permitting excision of foreign protein domains from the viral polyprotein. Wheat, barley, oat and maize seedlings supported systemic infection of WSMV bearing NPT II. The NPT II insert was stable for at least 18-30 days post-inoculation and had little effect on WSMV CP accumulation. Histochemical assays indicated the presence of functional GUS protein in systemically infected wheat and barley plants inoculated with WSMV bearing GUS. The GUS constructs had greatly reduced virulence on both oat and maize. RT-PCR indicated that the GUS insert was subject to deletion, particularly when expressed as a GUS-NIb protein fusion. Both reporter genes were expressed in wheat roots at levels comparable to those observed in leaves. These results clearly demonstrate the utility of WSMV as a transient gene expression vector for grass species, including two important grain crops, wheat and maize. The results further indicate that both host species and the nature of inserted sequences affect the stability and expression of foreign genes delivered by engineered virus genomes.  相似文献   

3.
4.
To identify host genes affecting replication of Tomato bushy stunt virus (TBSV), a small model positive-stranded RNA virus, we overexpressed 5,500 yeast proteins individually in Saccharomyces cerevisiae, which supports TBSV replication. In total, we identified 141 host proteins, and overexpression of 40 of those increased and the remainder decreased the accumulation of a TBSV replicon RNA. Interestingly, 36 yeast proteins were identified previously by various screens, greatly strengthening the relevance of these host proteins in TBSV replication. To validate the results from the screen, we studied the effect of protein kinase C1 (Pkc1), a conserved host kinase involved in many cellular processes, which inhibited TBSV replication when overexpressed. Using a temperature-sensitive mutant of Pkc1p revealed a high level of TBSV replication at a semipermissive temperature, further supporting the idea that Pkc1p is an inhibitor of TBSV RNA replication. A direct inhibitory effect of Pkc1p was shown in a cell-free yeast extract-based TBSV replication assay, in which Pkc1p likely phosphorylates viral replication proteins, decreasing their abilities to bind to the viral RNA. We also show that cercosporamide, a specific inhibitor of Pkc-like kinases, leads to increased TBSV replication in yeast, in plant single cells, and in whole plants, suggesting that Pkc-related pathways are potent inhibitors of TBSV in several hosts.  相似文献   

5.
In recent years, several studies have demonstrated the use of autonomously replicating plant viruses as vehicles to express a variety of therapeutic molecules of pharmaceutical interest. Plant virus vectors for expression of heterologous proteins in plants represent an attractive biotechnological tool to complement the conventional production of recombinant proteins in bacterial, fungal, or mammalian cells. Virus vectors are advantageous when high levels of gene expression are desired within a short time, although the instability of the foreign genes in the viral genome may present problems. Similar levels of foreign protein production in transgenic plants often are unattainable, in some cases because of the toxicity of the foreign protein. Now virus-based vectors are for the first time investigated as a means of producing recombinant allergens in plants. Several plant virus vectors have been developed for the expression of foreign proteins. Here, we describe the utilization of tobacco mosaic virus- and potato virus X-based vectors for the transient expression of plant allergens in Nicotiana benthamiana plants. One approach involves the inoculation of tobacco plants with infectious RNA transcribed in vitro from a cDNA copy of the recombinant viral genome. Another approach utilizes the transfection of whole plants from wounds inoculated with Agrobacterium tumefaciens containing cDNA copies of recombinant plus-sense RNA viruses.  相似文献   

6.
Huang TS  Nagy PD 《Journal of virology》2011,85(17):9090-9102
The replication of plus-strand RNA viruses depends on many cellular factors. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an abundant metabolic enzyme that is recruited to the replicase complex of Tomato bushy stunt virus (TBSV) and affects asymmetric viral RNA synthesis. To further our understanding on the role of GAPDH in TBSV replication, we used an in vitro TBSV replication assay based on recombinant p33 and p92(pol) viral replication proteins and cell-free yeast extract. We found that the addition of purified recombinant GAPDH to the cell extract prepared from GAPDH-depleted yeast results in increased plus-strand RNA synthesis and asymmetric production of viral RNAs. Our data also demonstrate that GAPDH interacts with p92(pol) viral replication protein, which may facilitate the recruitment of GAPDH into the viral replicase complex in the yeast model host. In addition, we have identified a dominant negative mutant of GAPDH, which inhibits RNA synthesis and RNA recruitment in vitro. Moreover, this mutant also exhibits strong suppression of tombusvirus accumulation in yeast and in virus-infected Nicotiana benthamiana. Overall, the obtained data support the model that the co-opted GAPDH plays a direct role in TBSV replication by stimulating plus-strand synthesis by the viral replicase.  相似文献   

7.
Tomato bushy stunt virus (TBSV) cDNA, positioned between a modified cauliflower mosaic virus 35S promoter and the hepatitis delta virus antigenomic ribozyme with a downstream nopaline synthase gene polyadenylation signal, established infections upon rub-inoculation of plants with intact plasmids. Application of this methodology produced a TBSV DNA-based gene vector which yielded readily detectable levels of localized foreign gene expression in inoculated leaves. This is the first demonstration of an infectious DNA from a member of the Tombusviridae which permits rapid TBSV-mediated foreign-gene expression upon direct rub-inoculation of miniprep DNA onto a variety of plant species.  相似文献   

8.
Ⅱ型启动子转录的外源短链RNA可以竞争性抑制细胞内源mRNA的核质转运,因而可能会提高植物RNA 病毒载体表达的外源基因在植物中的积累. 为了验证这一假说,利用OE-PCR技术合成拟南芥U6-1核内小RNA序列,并构建其Ⅱ型启动子转录的植物表达载体. 以农杆菌渗滤技术,与烟草花叶病毒(Tobacco mosaic virus, TMV)表达载体共接种寄主植物本氏烟,通过对报告基因绿色荧光蛋白(green fluorescence protein, GFP)的荧光观察,并以Western印迹和ELISA测定GFP在烟草中的表达情况,分析共表达Ⅱ型启动子转录的U6 RNA对外源基因在植物中表达的作用效果. 结果表明,共接种Ⅱ型启动子转录的U6 RNA对TMV病毒表达载体表达外源基因的水平有明显的增效作用,推测RNA核质转运干扰是提高外源基因表达的可能机制.  相似文献   

9.
Recombinant plant viruses have the propensity to remove foreign inserts during replication. This process is virus-specific and occurs in a host-dependent manner. In the present study, we investigated the integrity of foreign inserts in recombinant plant viruses using a model system consisting of Tomato bushy stunt virus (TBSV) and its defective interfering RNA (DI). These were tested in Nicotiana benthamiana plants that were either wild type or transgenic for the green fluorescent protein (GFP) gene. GFP-derived inserts were retained in the recombinant TBSV and DI population that were inoculated onto GFP-transgenic N. benthamiana plants in which silencing of the GFP transgene was initiated, but they were removed from the virus and DIs that were maintained on wild-type plants. A foreign insert derived from an endogenous N. benthamiana gene encoding the H subunit of the magnesium chelatase (NbChlH) was deleted, whereas the fragment of an RNA-dependent RNA polymerase gene (NbRdRP1m) was retained in the recombinant TBSV population. These results demonstrate that the recombination of TBSV to remove nonviral fragments is influenced by silencing and the type of inserts.  相似文献   

10.
Potato virus X as a vector for gene expression in plants   总被引:37,自引:0,他引:37  
The suitability of potato virus X (PVX) as a gene vector in plants was tested by analysis of two viral constructs. In the first, the GUS gene of Escherichia coli was substituted for the viral coat protein gene. In the second, GUS was added into the viral genome coupled to a duplicated copy of the viral promoter for the coat protein mRNA. The viral construct with the substituted coat protein gene accumulated poorly in inoculated protoplasts and failed to spread from the site of infection in plants. These results suggest a role for the viral coat protein in key stages of the viral infection cycle and show that gene replacement constructs are not suitable for the production of PVX-based gene vector. The construct with GUS coupled to the duplicated promoter for coat protein mRNA also accumulated less well in protoplasts than the unmodified PVX, but did infect systemically and directed high level synthesis of GUS in inoculated and systemically infected tissue. Although there was some genome instability in the PVX construct, much of the viral RNA in the systemically infected tissue had retained the foreign gene insertion, especially in infected Nicotiana clevelandii plants. These data point to a general utility of PVX as a vector for unregulated gene expression in plants.  相似文献   

11.

Background

Small molecule inhibitors of RNA virus replication are potent antiviral drugs and useful to dissect selected steps in the replication process. To identify antiviral compounds against Tomato bushy stunt virus (TBSV), a model positive stranded RNA virus, we tested acridine derivatives, such as chlorpromazine (CPZ) and quinacrine (QC), which are active against prion-based diseases.

Methodology/Principal Findings

Here, we report that CPZ and QC compounds inhibited TBSV RNA accumulation in plants and in protoplasts. In vitro assays revealed that the inhibitory effects of these compounds were manifested at different steps of TBSV replication. QC was shown to have an effect on multiple steps, including: (i) inhibition of the selective binding of the p33 replication protein to the viral RNA template, which is required for recruitment of viral RNA for replication; (ii) reduction of minus-strand synthesis by the tombusvirus replicase; and (iii) inhibition of translation of the uncapped TBSV genomic RNA. In contrast, CPZ was shown to inhibit the in vitro assembly of the TBSV replicase, likely due to binding of CPZ to intracellular membranes, which are important for RNA virus replication.

Conclusion/Significance

Since we found that CPZ was also an effective inhibitor of other plant viruses, including Tobacco mosaic virus and Turnip crinkle virus, it seems likely that CPZ has a broad range of antiviral activity. Thus, these inhibitors constitute effective tools to study similarities in replication strategies of various RNA viruses.  相似文献   

12.
The plus strand of the L-A double-stranded RNA virus of Saccharomyces cerevisiae has two large open reading frames, ORF1, which encodes the major coat protein, and ORF2, which encodes a single-stranded RNA-binding protein having a sequence diagnostic of viral RNA-dependent RNA polymerases. ORF2 is expressed only as a Gag-Pol-type fusion protein with ORF1. We have constructed a plasmid which expresses these proteins from the yeast PGK1 promoter. We show that this plasmid can support the replication of the killer toxin-encoding M1 satellite virus in the absence of an L-A double-stranded RNA helper virus itself. This requires ORF2 expression, providing a potential in vivo assay for the RNA polymerase and single-stranded RNA-binding activities of the fusion protein determined by ORF2. ORF1 expression, like a host ski- mutation, can suppress the usual requirement of M1 for the MAK11, MAK18, and MAK27 genes and allow a defective L-A (L-A-E) to support M1 replication. These results suggest that expression of ORF1 from the vector makes the cell a ski- phenocopy. Indeed, expression of ORF1 in a wild-type killer makes it a superkiller, suggesting that a target of the SKI antiviral system may be the major coat protein.  相似文献   

13.
14.

Plants are becoming an interesting alternative system for the heterologous production of pharmaceutical proteins, providing a more scalable, cost-effective, and biologically safer option than the current expression systems. The development of plant virus expression vectors has allowed rapid and high-level transient expression of recombinant genes, and, in turn, provided an attractive plant-based production platform. Here we report the development of vectors based on the tobamovirus Pepper mild mottle virus (PMMoV) to be used in transient expression of foreign genes. In this PMMoV vector, a middle part of the viral coat protein gene was replaced by the green fluorescent protein (GFP) gene, and this recombinant genome was assembled in a binary vector suitable for plant agroinoculation. The accumulation of GFP was evaluated by observation of green fluorescent signals under UV light and by western blotting. Furthermore, by using this vector, the multiepitope gene for chikungunya virus was successfully expressed and confirmed by western blotting. This PMMoV-based vector represents an alternative system for a high-level production of heterologous protein in plants.

  相似文献   

15.
Tomato bushy stunt virus (TBSV) is one of few RNA plant viruses capable of moving systemically in some hosts in the absence of coat protein (CP). TBSV also encodes another protein (p19) that is not required for systemic movement but functions as a symptom determinant in Nicotiana benthamiana. Here, the role of both CP and p19 in the systemic spread has been reevaluated by utilizing transgenic N. benthamiana plants expressing the movement protein (MP) of Red clover necrotic mosaic virus and chimeric TBSV mutants that express CP of Turnip crinkle virus. Through careful examination of the infection phenotype of a series of mutants with changes in the CP and p19 genes, we demonstrate that both of these genes are required for efficient systemic invasion of TBSV in N. benthamiana. The CP likely enables efficient viral unloading from the vascular system in the form of assembled virions, whereas p19 enhances systemic infection by suppressing the virus-induced gene silencing.  相似文献   

16.
We have investigated whether hypoviruses, viral agents responsible for virulence attenuation (hypovirulence) of the chestnut blight fungus Cryphonectria parasitica, could serve as gene expression vectors. The infectious cDNA clone of the prototypic hypovirus CHV1-EP713 was modified to generate 20 different vector candidates. Although transient expression was achieved for a subset of vectors that contained the green fluorescent protein gene from Aequorea victoria, long-term expression (past day 8) was not observed for any vector construct. Analysis of viral RNAs recovered from transfected fungal colonies revealed that the foreign genes were readily deleted from the replicating virus, although small portions of foreign sequences were retained by some vectors after months of replication. However, the results of vector viability and progeny characterization provided unexpected new insights into essential and dispensable elements of hypovirus replication. The N-terminal portion (codons 1 to 24) of the 5'-proximal open reading frame (ORF), ORF A, was found to be required for virus replication, while the remaining 598 codons of this ORF were completely dispensable. Substantial alterations were tolerated in the pentanucleotide UAAUG that contains the ORF A termination codon and the overlapping putative initiation codon of the second of the two hypovirus ORFs, ORF B. Replication competence was maintained following either a frameshift mutation that caused a two-codon extension of ORF A or a modification that produced a single-ORF genomic organization. These results are discussed in terms of determinants of hypovirus replication, the potential utility of hypoviruses as gene expression vectors, and possible mechanisms by which hypoviruses recognize and delete foreign sequences.  相似文献   

17.
The mechanism of template selection for genome replication in plus-strand RNA viruses is poorly understood. Using the prototypical tombusvirus, Tomato bushy stunt virus (TBSV), we show that recombinant p33 replicase protein binds specifically to an internal replication element (IRE) located within the p92 RNA-dependent RNA polymerase coding region of the viral genome. Specific binding of p33 to the IRE in vitro depends on the presence of a C.C mismatch within a conserved RNA helix. Interestingly, the absence of the p33:p33/p92 interaction domain in p33 prevented specific but allowed nonspecific RNA binding, suggesting that a multimeric form of this protein is involved in the IRE-specific interaction. Further support for the selectivity of p33 binding in vitro was provided by the inability of the replicase proteins of the closely related Turnip crinkle virus and distantly related Hepatitis C virus to specifically recognize the TBSV IRE. Importantly, there was also a strong correlation between p33:IRE complex formation in vitro and viral replication in vivo, where mutations in the IRE that disrupted selective p33 binding in vitro also abolished TBSV RNA replication both in plant and in Saccharomyces cerevisiae cells. Based on these findings and the other known properties of p33 and the IRE, it is proposed that the p33:IRE interaction provides a mechanism to selectively recruit viral RNAs into cognate viral replicase complexes. Since all genera in Tombusviridae encode comparable replicase proteins, these results may be relevant to other members of this large virus family.  相似文献   

18.
A defective interfering RNA that contains a mosaic of a plant virus genome   总被引:17,自引:0,他引:17  
A symptom-modulating RNA associated with tomato bushy stunt virus (TBSV) was investigated with respect to physical and biological properties. Linear RNA of approximately 396 nucleotides was packaged in viral coat protein and was dependent on TBSV for replication. Coinoculation of the small RNA with TBSV resulted in the attenuation of TBSV-induced symptoms and depression of virus synthesis in whole plants. Nucleotide sequence analysis revealed that the symptom-modulating RNA was derived from 5', 3', and internal segments of the TBSV genome. The identification of this symptom-modulating RNA as a co-linear deletion mutant of the helper virus genome establishes it as the first definitive defective interfering RNA (DI RNA) to be identified in association with a plant virus.  相似文献   

19.
Plus-stranded RNA viruses replicate in infected cells by assembling viral replicase complexes consisting of viral- and host-coded proteins. Previous genome-wide screens with Tomato bushy stunt tombusvirus (TBSV) in a yeast model host revealed the involvement of seven ESCRT (endosomal sorting complexes required for transport) proteins in viral replication. In this paper, we show that the expression of dominant negative Vps23p, Vps24p, Snf7p, and Vps4p ESCRT factors inhibited virus replication in the plant host, suggesting that tombusviruses co-opt selected ESCRT proteins for the assembly of the viral replicase complex. We also show that TBSV p33 replication protein interacts with Vps23p ESCRT-I and Bro1p accessory ESCRT factors. The interaction with p33 leads to the recruitment of Vps23p to the peroxisomes, the sites of TBSV replication. The viral replicase showed reduced activity and the minus-stranded viral RNA in the replicase became more accessible to ribonuclease when derived from vps23Δ or vps24Δ yeast, suggesting that the protection of the viral RNA is compromised within the replicase complex assembled in the absence of ESCRT proteins. The recruitment of ESCRT proteins is needed for the precise assembly of the replicase complex, which might help the virus evade recognition by the host defense surveillance system and/or prevent viral RNA destruction by the gene silencing machinery.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号