首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S. Levy 《Protoplasma》1991,163(2-3):145-155
Summary The dynamic changes in microfibril architecture in the internode cell walls of the giant unicellular algaNitella translucens were studied during cell expansion. Thin section electron microscopy in conjunction with mild matrix polysaccharide extraction techniques revealed three distinct architectural zones in the walls of fully grown cells. These zones were related to distinct phases of growth by monitoring changes in cell wall architecture of internodes during active cell expansion. The initial microfibril deposition before the onset of active cell growth is helicoidal. A helicoid is a structurally complex but ordered arrangement of microfibrils that has been detected increasingly often in higher plant cell walls. During active cell elongation microfibrils are deposited transversely to the direction of cell elongation as shown in earlier studies by birefringence measurements in the polarizing microscope. The gradual decline in cell elongation corresponds with a final helicoidal deposition which continues after cell expansion ceases entirely.The continual presence of the initial helicoidal zone in the outer wall region during the whole growth process suggests that these microfibrils do not experience strain reorientation and are continually reorganized, or maintained, in a well ordered helicoidal arrangement.  相似文献   

2.
Cell walls, the extracytoplasmic matrices of plant cells, consist of an ordered array of cellulose microfibrils embedded in a matrix of polysaccharides and glycoproteins. This construction is reminiscent of steel rods in reinforced concrete. How a cell organizes these ordered textures around itself, creating its own desirable environment, is a fascinating question. We believe that nature adopted an economical solution to this design problem: it exploits the geometrical constraints imposed by the shape of the cell and the limited space in which microfibrils are deposited, enabling the wall textures essentially to 'build themselves'. This does not imply that the cell cannot control its wall texture. On the contrary, the cell has ample regulatory mechanisms to control wall texture formation by controlling the insertion of synthases and the distance between individual microfibrils within a wall lamella.  相似文献   

3.
Summary Based on precise information about the orientations of cellulose microfibrils (CMFs) in the secondary cell wall of theEquisetum hyemale root hair, a geometrical model was recently put forward to account for the deposition orientation of CMFs. The model supposes that synthases spin out the CMFs and that geometrical laws dictate their movement. Taking space-limiting conditions into account, CMF orientation is dependent on cell morphology, the amount of other wall molecules adhering to the CMFs, and the number and distribution pattern of synthases. In the present paper this geometrical model for CMF deposition is further applied to nontip-growing angular cells with varying diameters, cells with tapering morphology, various distribution patterns of synthases, various matrix/fibril ratios, and intercalarily elongating cells. The model can accurately predict the actual wall textures in a great variety of cell walls. In the proposed model for CMF orientation, microtubules are not required as cellular guiding structures for the CMFs, not even in elongating walls. They are supposed to be involved in cell elongation, possibly by delivering wall material including CMF synthases.Abbreviation CMF cellulose microfibril  相似文献   

4.
Microfibrillar structure, cortical microtubule orientation andthe effect of amiprophos-methyl (APM) on the arrangement ofthe most recently deposited cellulose microfibrils were investigatedin the marine filamentous green alga, Chamaedoris orientalis.The thallus cells of Chamaedoris showed typical tip growth.The orientation of microfibrils in the thick cell wall showedorderly change in longitudinal, transverse and oblique directionsin a polar dependent manner. Microtubules run parallel to thelongitudinally arranged microfibrils in the innermost layerof the wall but they are never parallel to either transverseor obliquely arranged microfibrils. The ordered change in microfibrilorientation is altered by the disruption of the microtubuleswith APM. The walls, deposited in the absence of the microtubules,showed typical helicoidal pattern. However, the original crossedpolylamellate pattern was restored by the removal of APM. Thissuggests that cortical microtubules in this alga do not controlthe direction of microfibril orientation but control the orderedchange of microfibril orientation. Amiprophos-methyl, Chamaedoris orientalis, coenocytic green alga, cortical microtubule, microfibrillar structure, tip growth  相似文献   

5.
Summary By quantitative analysis of cellulose microfibril orientation at different levels in the primary cell wall of a number of cell types, the development of wall texture was studied. Meristematic, isodiametric and cylindrical parenchyma cells and cells of a suspension culture were used. Within the newly deposited microfibril population, various orientations were recognized on the micrographs. Within subpopulations the orientation of undercrossing and overcrossing microfibrils were measured. These measurements showed a gradual shift in cellulose microfibril orientation in the different levels. Microfibrils showed predominant orientations at particular levels but microfibrils of intermediate orientation also occurred, although at a much lower density. As cellulose microfibrils of intermediate orientation were not closely packed, lamellae were not formed. Interwoven microfibrils were occasionally present, indicating that differently orientated microfibrils are occasionally deposited simultaneously. Also gradual changes in orientation over the entire inner cell wall surface were observed. From these observations it was inferred that microfibril deposition occurs with a small but regular and progressive change in orientation, the rotational motion, related to that of a helicoidal system.Dedicated to Professor Dr. M. M. A. Sassen on the occasion of his 65th birthday  相似文献   

6.
Abstract: A theory for cell wall deposition has been formulated consistent with present day experimental data on cell walls and cellular processes. This theory has a generic origin, geometrical constraints, as the underlying cause for the cell wall architecture. The theory has been worked out as a fully mathematical model, allowing for specific predictions of a qualitative and quantitative nature. The key point of the geometrical theory is the coupling of the trajectory of the cellulose microfibril synthases, i.e., rosettes, to their density. This coupling provides the cell with a mechanism for manipulating the cell wall texture by creating controlled local variations in the number of active synthases. In the present paper we show that the geometrical model can explain the helicoidal, crossed polylamellate, helical and axial wall textures, which are the basic textures found in plant cell walls. In addition, we discuss the role of cortical microtubules in the wall deposition process and how the cell wall matrix contributes to cell wall texture determination.  相似文献   

7.
Summary. The roles of cellulose microfibrils and cortical microtubules in establishing and maintaining the pattern of secondary-cell-wall deposition in tracheary elements were investigated with direct dyes to inhibit cellulose microfibril assembly and amiprophosmethyl to inhibit microtubule polymerization. When direct dyes were added to xylogenic cultures of Zinnia elegans L. mesophyll cells just before the onset of differentiation, the secondary cell wall was initially secreted as bands composed of discrete masses of stained material, consistent with immobilized sites of cellulose synthesis. The masses coalesced, forming truncated, sinuous or smeared thickenings, as secondary cell wall deposition continued. The absence of ordered cellulose microfibrils was confirmed by polarization microscopy and a lack of fluorescence dichroism as determined by laser scanning microscopy. Indirect immunofluorescence showed that cortical microtubules initially subtended the masses of dye-altered secondary cell wall material but soon became disorganized and disappeared. Although most of the secondary cell wall was deposited in the absence of subtending cortical microtubules in dye-treated cells, secretion remained confined to discrete regions of the plasma membrane. Examination of non-dye-treated cultures following application of microtubule inhibitors during various stages of secondary-cell-wall deposition revealed that the pattern became fixed at an early stage such that deposition remained localized in the absence of cortical microtubules. These observations indicate that cortical microtubules are required to establish, but not to maintain, patterned secondary-cell-wall deposition. Furthermore, cellulose microfibrils play a role in maintaining microtubule arrays and the integrity of the secondary-cell-wall bands during deposition.Correspondence and reprints: Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, U.S.A.Present address: Biology Editors Co., Peacedale, Rhode Island, U.S.A.Present address: Department of Biology and Marine Biology, Roger Williams University, Bristol, Rhode Island, U.S.A.Present address: Department of Crop Science and Department of Botany, North Carolina State University, Raleigh, North Carolina, U.S.A.  相似文献   

8.
We used atomic force microscopy (AFM), complemented with electron microscopy, to characterize the nanoscale and mesoscale structure of the outer (periclinal) cell wall of onion scale epidermis – a model system for relating wall structure to cell wall mechanics. The epidermal wall contains ~100 lamellae, each ~40 nm thick, containing 3.5‐nm wide cellulose microfibrils oriented in a common direction within a lamella but varying by ~30 to 90° between adjacent lamellae. The wall thus has a crossed polylamellate, not helicoidal, wall structure. Montages of high‐resolution AFM images of the newly deposited wall surface showed that single microfibrils merge into and out of short regions of microfibril bundles, thereby forming a reticulated network. Microfibril direction within a lamella did not change gradually or abruptly across the whole face of the cell, indicating continuity of the lamella across the outer wall. A layer of pectin at the wall surface obscured the underlying cellulose microfibrils when imaged by FESEM, but not by AFM. The AFM thus preferentially detects cellulose microfibrils by probing through the soft matrix in these hydrated walls. AFM‐based nanomechanical maps revealed significant heterogeneity in cell wall stiffness and adhesiveness at the nm scale. By color coding and merging these maps, the spatial distribution of soft and rigid matrix polymers could be visualized in the context of the stiffer microfibrils. Without chemical extraction and dehydration, our results provide multiscale structural details of the primary cell wall in its near‐native state, with implications for microfibrils motions in different lamellae during uniaxial and biaxial extensions.  相似文献   

9.
We discuss a dynamical mathematical model to explain cell wall architecture in plant cells. The highly regular textures observed in cell walls reflect the spatial organisation of the cellulose microfibrils (CMFs), the most important structural component of cell walls. Based on a geometrical theory proposed earlier [A. M. C. Emons, Plant, Cell and Environment 17, 3–14 (1994)], the present model describes the space-time evolution of the density of the so-called rosettes, the CMF synthesizing complexes. The motion of these rosettes in the plasma membrane is assumed to be governed by an optimal packing constraint on the CMFs plus adherent matrix material, that couples the direction of motion, and hence the orientation of the CMF being deposited, to the local density of rosettes. The rosettes are created inside the cell in the endoplasmatic reticulum and reach the cell-membrane via vesicles derived from Golgi-bodies. After being inserted into the plasma membrane they are assumed to be operative for a fixed, finite lifetime. The plasma membrane domains within which rosettes are activated are themselves also supposed to be mobile. We propose a feedback mechanism that precludes the density of rosettes to rise beyond a maximum dictated by the geometry of the cell. The above ingredients lead to a quasi-linear first order PDE for the rosette-density. Using the method of characteristics this equation can be cast into a set of first order ODEs, one of which is retarded. We discuss the analytic solutions of the model that give rise to helicoidal, crossed polylamellate, helical, axial and random textures, since all cell walls are composed of (or combinations of) these textures. Received: 10 July 1999 / Revised version: 7 June 2000 / Published online: 16 February 2001  相似文献   

10.
Burk DH  Ye ZH 《The Plant cell》2002,14(9):2145-2160
It has long been hypothesized that cortical microtubules (MTs) control the orientation of cellulose microfibril deposition, but no mutants with alterations of MT orientation have been shown to affect this process. We have shown previously that in Arabidopsis, the fra2 mutation causes aberrant cortical MT orientation and reduced cell elongation, and the gene responsible for the fra2 mutation encodes a katanin-like protein. In this study, using field emission scanning electron microscopy, we found that the fra2 mutation altered the normal orientation of cellulose microfibrils in walls of expanding cells. Although cellulose microfibrils in walls of wild-type cells were oriented transversely along the elongation axis, cellulose microfibrils in walls of fra2 cells often formed bands and ran in different directions. The fra2 mutation also caused aberrant deposition of cellulose microfibrils in secondary walls of fiber cells. The aberrant orientation of cellulose microfibrils was shown to be correlated with disorganized cortical MTs in several cell types examined. In addition, the thickness of both primary and secondary cell walls was reduced significantly in the fra2 mutant. These results indicate that the katanin-like protein is essential for oriented cellulose microfibril deposition and normal cell wall biosynthesis. We further demonstrated that the Arabidopsis katanin-like protein possessed MT-severing activity in vitro; thus, it is an ortholog of animal katanin. We propose that the aberrant MT orientation caused by the mutation of katanin results in the distorted deposition of cellulose microfibrils, which in turn leads to a defect in cell elongation. These findings strongly support the hypothesis that cortical MTs regulate the oriented deposition of cellulose microfibrils that determines the direction of cell elongation.  相似文献   

11.
Mine I  Okuda K 《Planta》2007,225(5):1135-1146
The mechanical strength of cell walls in the tip-growing cells of Vaucheria terrestris is weakened by treatment with proteolytic enzymes. To clarify the morphological characteristics of the components maintaining cell wall strength, the fine structures of the cell walls, with and without protease treatment, were observed by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Observations indicated that cellulose microfibrils were arranged in random directions and overlapped each other. Most of the microfibrils observed in the inner surface of the cell wall were embedded in amorphous materials, whereas in the outer surface of the cell wall, microfibrils were partially covered by amorphous materials. The matrix components embedding and covering microfibrils were almost completely removed by protease treatment, revealing layers of naked microfibrils deposited deeply in the cell wall. Topographic data taken from AFM observations provided some additional information that could not be obtained by TEM, including more detailed images of the granular surface textures of the matrix components and the detection of microfibrils in the interior of the cell wall. In addition, quantitative AFM data of local surface heights enabled us to draw three-dimensional renderings and to quantitatively estimate the extent of the exposure of microfibrils by the enzymatic treatment.  相似文献   

12.
An improved 13C-density-labeling method was used to study cell wall synthesis in rapidly expanding, slowly expanding and recently mature internodes of Nitella translucens var axillaris (A.Br.) R.D.W. As cells matured, the rate of wall synthesis slowed and the deposition of cellulose microfibrils changed from a predominantly transverse direction in the primary wall of rapidly expanding internodes to a helicoidal array in the secondary wall of mature internodes. The secondary wall was characterized by relatively higher rates of cellulose synthesis and lower rates of pectin synthesis than the primary wall. The synthesis of xyloglucan also decreased markedly at the transition to secondary wall synthesis, while the synthesis of mannose-rich hemicellulose increased. Even though structural differences were striking between the primary and secondary walls of Nitella, compositional differences between the two types of wall were quantitative rather than qualitative. The authors appreciate the assistance of Martin Yousef with the electron microscopy.  相似文献   

13.
The cortical microtubule array provides spatial information to the cellulose-synthesizing machinery within the plasma membrane of elongating cells. Until now data indicated that information is transferred from organized cortical microtubules to the cellulose-synthesizing complex, which results in the deposition of ordered cellulosic walls. How cortical microtubules become aligned is unclear. The literature indicates that biophysical forces, transmitted by the organized cellulose component of the cell wall, provide a spatial cue to orient cortical microtubules. This hypothesis was tested on tobacco (Nicotiana tabacum L.) protoplasts and suspension-cultured cells treated with the cellulose synthesis inhibitor isoxaben. Isoxaben (0.25–2.5 μm) inhibited the synthesis of cellulose microfibrils (detected by staining with 1 μg mL−1 fluorescent dye and polarized birefringence), the cells failed to elongate, and the cortical microtubules failed to become organized. The affects of isoxaben were reversible, and after its removal microtubules reorganized and cells elongated. Isoxaben did not depolymerize microtubules in vivo or inhibit the polymerization of tubulin in vitro. These data are consistent with the hypothesis that cellulose microfibrils, and hence cell elongation, are involved in providing spatial cues for cortical microtubule organization. These results compel us to extend the microtubule/microfibril paradigm to include the bidirectional flow of information.  相似文献   

14.
Summary Microfibrillar textures and orientation of cellulose microfibrils (MFs) in the coenocytic green alga,Boergesenia forbesii, were investigated by fluorescence and electron microscopy. Newly formed aplanosporic spherical cells inBoergesenia start to form cellulose MFs on their surfaces after 2 h of culture at 25°C. Microfibrillar orientation becomes random, fountain-shaped, and helicoidal after 2, 4, and 5 h, respectively. The fountain orientation of MFs is usually apparent prior to helicoidal MF orientation and thus may be considered to initiate helicoid formation. Microfibrils continue to take on the helicoidal arrangement during the growth ofBoergesenia thallus. The helicoidal orientation of MFs occurs through gradual counterclockwise change in MF deposition by terminal complexes (TCs) viewed from inside the cell. On the dorsal side of curving TC impressions in helicoidal texture formation on a freeze-fractured plasma membrane, the aggregation of intramembranous particles (IMPs) occurs. Membrane flow may thus possibly affect the regulation of helicoidal orientation inBoergesenia. Following treatment with 3 M amiprophos-methyl (APM) or 1 mM colchicine, cortical microtubules (MTs) completely disappear within 24 h but helicoidal textures formation is not affected. With 15 M cytochalasin B or 30 M phalloidin, however, the helicoidal orientation of MFs becomes random. Treatment with CaCl2 (10 mM) causes the helicoidal MF orientation of cells to become random, but co-treatment with N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7) (100 mM) prevents this effect, though W-7 has no effect on the helicoidal MF formation. It thus follows that MF orientation inBoergesenia possibly involves actin whose action may be regulated by calmodulin.Abbreviations APM amiprophos-methyl - DMSO dimethylsulfoxide - IMP intramembranous particle - MF microfibril - MT microtubule - TC terminal complex; W-7 N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide  相似文献   

15.
The helicoidal plant cell wall can be considered as a composite in which cellulose is the constant reinforcing fiber. In order to strengthen the analogy with cholesteric liquid crystals, and taking into account a range of data, we describe a progressive series showing that cellulosic helicoidal systems are versatile and multifunctional. The following examples were considered: a) the cellulose microfibrils, with their rigid backbone possibly coated with a plastifying matrix; b) actual cholesteric cellulosic derivatives, such as in vitro liquid crystals and in vitro cellulosic mucilages; c) viscoplastic. growing cell walls; d) consolidated “stony” cell walls with their adaptation to intercellular communications. The series shows a dramatic progression from a liquid construction to what is the hardest in the plant cells, i.e. the sclerified walls.  相似文献   

16.
The extracellular matrix is constructed beyond the plasma membrane, challenging mechanisms for its control by the cell. In plants, the cell wall is highly ordered, with cellulose microfibrils aligned coherently over a scale spanning hundreds of cells. To a considerable extent, deploying aligned microfibrils determines mechanical properties of the cell wall, including strength and compliance. Cellulose microfibrils have long been seen to be aligned in parallel with an array of microtubules in the cell cortex. How do these cortical microtubules affect the cellulose synthase complex? This question has stood for as many years as the parallelism between the elements has been observed, but now an answer is emerging. Here, we review recent work establishing that the link between microtubules and microfibrils is mediated by a protein named cellulose synthase-interacting protein 1 (CSI1). The protein binds both microtubules and components of the cellulose synthase complex. In the absence of CSI1, microfibrils are synthesized but their alignment becomes uncoupled from the microtubules, an effect that is phenocopied in the wild type by depolymerizing the microtubules. The characterization of CSI1 significantly enhances knowledge of how cellulose is aligned, a process that serves as a paradigmatic example of how cells dictate the construction of their extracellular environment.  相似文献   

17.
Secondary walls in fibers and vessels are typically deposited in three distinct layers, which are formed by the successive re-orientation of cellulose microfibrils. Although cortical microtubules have been implicated in this process, the underlying mechanisms for the formation of three distinct wall layers are not known. The Fragile Fiber1 (FRA1) kinesin-like protein has been previously shown to be involved in the oriented deposition of cellulose microfibrils and important for cell wall strength in Arabidopsis thaliana. In the present report, we investigated the expression pattern of the FRA 1 gene and studied the effects of FRA1 overexpression on secondary wall deposition. The FRAI gene was found to be expressed not only in cells undergoing secondary wall deposition including developing interfascicular fibers and xylem cells, but also in dividing cells and expanding/elongating parenchyma cells. Overexpression of FRA1 caused a severe reduction in the thickness of secondary walls in interfascicular fibers and deformation of vessels, which are accompanied with a marked decrease in stem strength. Close examination of secondary walls revealed that unlike the wild-type walls having three typical layers with the middle layer being the thickest, the secondary walls in FRA1 overexpressors exhibited an increased number of layers, all of which had a similar width. Together, these results provide further evidence implicating an important role of the FRA1 kinesin-like protein in the ordered deposition of secondary walls, which determines the strength of fibers and vessels.  相似文献   

18.
It is shown that root hairs of most aquatic plants have a helicoidal cell-wall texture. Cell walls of root hairs of the aquatic/marshland plant Ranunculus lingua, however, have an axial microfibril alignment. The occurrence of a helicoidal wall texture is not limited to root hairs of aquatic plants: the terrestrial plant Zebrina purpusii has a helicoidal root-hair wall texture, too. With the exception of the grasses, the occurrence of root hairs with helicoidal cell walls pertains to species with predetermined root-hair-forming cells, trichoblasts. The rotation mode of the helicoid is species-specific. The average angle between fibrils of adjacent lamellae varies from 23° to 40°. In Hydrocharis morsus-ranae, cortical microtubules have a net-axial orientation and thus do not parallel nascent microfibrils. The deposition of the helicoidal cell wall is discussed.In honour of Prof. Dr. H.F Linskens (Nijmegen) on the occasion of his 65th birthday  相似文献   

19.
M. E. Galway  A. R. Hardham 《Protoplasma》1986,135(2-3):130-143
Summary Microtubule reorganization and cell wall deposition have been monitored during the first 30 hours of regeneration of protoplasts of the filamentous green algaMougeotia, using immunofluorescence microscopy to detect microtubules, and the cell-wall stain Tinopal LPW to detect the orientation of cell wall microfibrils. In the cylindrical cells of the alga, cortical microtubules lie in an ordered array, transverse to the long axis of the cells. In newly formed protoplasts, cortical microtubules exhibit some localized order, but within 1 hour microtubules become disordered. However, within 3 to 4 hours, microtubules are reorganized into a highly ordered, symmetrical array centered on two cortical foci. Cell wall synthesis is first detected during early microtubule reorganization. Oriented cell wall microfibrils, co-aligned with the microtubule array, appear subsequent to microtubule reorganization but before cell elongation begins. Most cells elongate in the period between 20 to 30 hours. Elongation is preceded by the aggregation of microtubules into a band intersecting both foci, and transverse to the incipient axis of elongation. The foci subsequently disappear, the microtubule band widens, and microfibrils are deposited in a band which is co-aligned with the band of microtubules. It is proposed that this band of microfibrils restricts lateral expansion of the cells and promotes elongation. Throughout the entire regeneration process inMougeotia, changes in microtubule organization precede and are paralleled by changes in cell wall organization. Protoplast regeneration inMougeotia is therefore a highly ordered process in which the orientation of the rapidly reorganized array of cortical microtubules establishes the future axis of elongation.  相似文献   

20.
Summary The study was devoted to the microstructure of the thick walled cells of the endocarp of prune (Prunus domestica L.), cherry (Prunus cerasus L.), walnut (Juglons regia L.). The tissue is formed of closely associated cells showing a homogeneous development characterized by an intense constructive activity of ordered walls with a typically twisted pattern (cholesteric-like). The arced layers are produced in tens, each corresponding to a 180° full rotation of the molecules (axis of rotation oriented radially) and their succession gives rise to a basic regular and monotonous periodicity. On the other hand, observation of the tissue revealed the large capacity of the helicoidal morphogenesis to adjust itself under the influence of two topological contingent constraints: (1) the spherical shape (and derivated shapes) of the cell and (2) the numerous pit canals which maintain the symplastic transport and produce a recess during the construction of the wall. Spherical shape (closed surfaces) and recess both introduce additional internal strains which are relieved by deviations of the molecular array in the basic pattern (moiré and knotty aspects). Special attention was given to the defects integrated in the spherical twist. The defects emerging in the angled stacks of microfibrils (disclinations, distortions) were a diagnostic feature of an actual liquid crystal behaviour under mechanical constraints. The abundance of such defects, of cusps and spiral motions strengthened the hypothesis that a transient fluid phase, later on consolidated and stiffened, operates during the cellulose ordering. The saddle-like figures developed in the complex polylobed situation of walnut were particularly demonstrative. The fractionation of the secondary wall yielded the glucidic matrix in the same ratio as cellulose. The bulk of this embedding matrix was composed of acidic xylans more or less tightly bound to the microfibrils. The coat of negatively charged polysaccharides visualized by the binding of cationic gold to wall strips might be expected to act as a surfactant generating an electrostatic repulsion between microfibrils. This could be a cooperative mechanism for the self-positioning (aligment in sheets and progressive rotation) of the composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号