首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DUF579 (domain of unknown function 579) family proteins contain a DUF579 domain structure but vary greatly in their overall sequence similarity. Several DUF579 proteins have been found to play a role in cell wall biosynthesis in Arabidopsis, while DUF579 family genes have not yet been systematically investigated in Populus. In this study, the Populus DUF579 family proteins were found to be localized in different cell types and subcellular locations. The diverse expression patterns of the proteins indicate that they may perform different functions in Populus. Among the DUF579 family members, PtrDUF579-1 is found to be specifically expressed in vascular cambium zone cells where it is localized in the Golgi apparatus. Suppression of PtrDUF579-1 expression reduced plant height and stem diameter size. Cambium cell division and xylem tissue growth was inhibited while secondary cell wall formation was unchanged in PtrDUF579-1 suppressed plants. Cell walls analysis showed that the composition of the pectin fraction of the cambium cell wall was altered while other polysaccharides were not affected in PtrDUF579-1 suppressed plants. This observation suggest cambium expressed PtrDUF579-1 may affect cell wall biosynthesis and be involved in cambium cell proliferation in Populus. Overall, DUF579 family proteins play a diverse set of roles in Populus.  相似文献   

2.
DUF538 protein super family includes a number of plant proteins that their role is not yet clear. These proteins have been frequently reported to be expressed in plants under various stressful stimuli such as bacteria and elicitors. In order to further understand about this protein family we utilized bioinformatics tools to analyze its structure in details. As a result, plants DUF538 was predicted to be the partial structural homologue of BPI (bactericidal/permeability increasing) proteins in mammalian innate immune system that provides the first line of defense against different pathogens including bacteria, fungi, viruses and parasites. Moreover, on the base of the experimental data, it was identified that exogenously applied purified fused product of Celosia DUF538 affects the bacterial growth more possibly similar to BPI through the binding to the bacterial membranes. In conclusion, as the first ever time report, we nominated DUF538 protein family as the potential structural and functional homologue of BPI protein in plants, providing a basis to study the novel functions of this protein family in the biological systems in the future.  相似文献   

3.
Objective DUF538(domain of unknown function 538) domain containing proteins are known as putative hypothetical proteins in plants. Until yet, there is no much information regarding their structure and function. Methods In the present research work, the homologous structures and binding potentials were identified between plant/mammalian lipocalins and plant DUF538 protein by using bioinformatics and experimental tools including molecular dynamics simulation, molecular docking and recombinant tech...  相似文献   

4.
With the advance of sequencing technology, the number of sequenced plant genomes has been rapidly increasing. However, understanding of the gene function in these sequenced genomes lags far behind; as a result, many coding plant sequences in public databases are annotated as proteins with domains of unknown function (DUF). Function of a protein family DUF810 in rice is not known. In this study, we analysed seven members of OsDU810 (OsDUF810.1–OsDUF810.7) family with three distinct motifs in rice Nipponbare. By phylogenetic analysis, OsDUF810 proteins fall into three major groups (I, II, III). Expression patterns of the seven corresponding OsDUF810 protein-encoding genes in 15 different rice tissues vary. Under drought, salt, cold and heat stress conditions and ABA treatment, the expression of OsDUF810.7 significantly increases. Overexpression of this protein in E. coli lead to a significant enhancement of catalase (CAT) and peroxidase (POD) activities, and improved bacterial resistance to salt and drought.  相似文献   

5.
Glycosyltransferase family14 (GT14) belongs to the glycosyltransferase (GT) superfamily that plays important roles in the biosynthesis of cell walls, the most abundant source of cellulosic biomass for bioethanol production. It has been hypothesized that DUF266 proteins are a new class of GTs related to GT14. In this study, we identified 62 GT14 and 106 DUF266 genes (named GT14-like herein) in Arabidopsis, Oryza, Populus, Sorghum and Vitis. Our phylogenetic analysis separated GT14 and GT14-like genes into two distinct clades, which were further divided into eight and five groups, respectively. Similarities in protein domain, 3D structure and gene expression were uncovered between the two phylogenetic clades, supporting the hypothesis that GT14 and GT14-like genes belong to one family. Therefore, we proposed a new family name, GT14/GT14-like family that combines both subfamilies. Variation in gene expression and protein subcellular localization within the GT14-like subfamily were greater than those within the GT14 subfamily. One-half of the Arabidopsis and Populus GT14/GT14-like genes were found to be preferentially expressed in stem/xylem, indicating that they are likely involved in cell wall biosynthesis. This study provided new insights into the evolution and functional diversification of the GT14/GT14-like family genes.  相似文献   

6.
7.
The DUF26 domain-containing protein is an extracellular structural protein, which plays an important role in signal transduction. Dongxiang wild rice (Oryza rufipogon Griff.) is the northern-most common wild rice in China. Using domain analysis, 85 DUF26 domain-containing genes were identified in Dongxiang wild rice (DXWR) and further divided into four categories. The DUF26 domain-containing genes were unevenly distributed on chromosomes, and there were 18 pairs of tandem repeats. Gene sequence analysis showed that there were significant differences in the gene structure and motif distribution of the DUF26 domain in different categories. Motifs 3, 8, 9, 13, 14, 16, and 18 were highly conserved in all categories. It was also found that there were eight plasmodesmata localization proteins (PDLPs) with a unique motif 19. Collinearity analysis showed that DXWR had a large number of orthologous genes with wheat, maize, sorghum and zizania, of which 17 DUF26 domain-containing genes were conserved in five gramineous crops. Under the stress of anaerobic germination and seedling submergence treatment, 33 DUF26 domain-containing genes were differentially expressed in varying degrees. Further correlation analysis with the expression of known submergence tolerance genes showed that these DUF26 domain-containing genes may jointly regulate the submergence tolerance process with these known submergence tolerance genes in DXWR.  相似文献   

8.
9.
DUF1218 is a land plant-specific innovation and has previously been shown to be associated with cell wall biology, vasculature patterning and abiotic/biotic stress response. The Arabidopsis genome encodes 15 members, two of which (At1g31720 and At4g27435) are preferentially expressed in the secondary cell wall depositing inflorescence stems. To further our understanding of the roles of DUF1218-containing proteins in secondary cell wall biology, we functionally characterized At1g31720 (herein referred to as MODIFYING WALL LIGNIN-1 or MWL-1). Since related gene family members may contribute to functional redundancy, we also characterized At4g19370 (MWL-2), the most closely related gene to MWL-1 in the protein family. Subcellular localization revealed that both Arabidopsis proteins are targeted to the cell periphery. The single T-DNA knockout lines, mwl-1 and mwl-2, and independent overexpression lines showed no significant differences in plant growth or changes in total lignin content relative to wild-type (WT) control plants. However, the double homozygous mutant, mwl-1/mwl-2, had smaller rosettes with a significant decrease in rosette fresh weight and stem height relative to the WT control at four weeks and six weeks, respectively. Moreover, mwl-1/mwl-2 showed a significant reduction in total lignin content (by ca. 11% relative to WT) and an increase in syringyl/guaiacyl (S/G) monomer ratio relative to the control plants. Our study has identified two additional members of the DUF1218 family in Arabidopsis as novel contributors to secondary cell wall biology, specifically lignin biosynthesis, and these proteins appear to function redundantly.  相似文献   

10.
The dynamic responses of microtubules (MTs) to internal and external signals are modulated by a plethora of microtubule-associated proteins (MAPs). In higher plants, many plant-specific MAPs have emerged during evolution as advantageous to their sessile lifestyle. Some members of the IQ67 domain (IQD) protein family have been shown to be plant-specific MAPs. However, the mechanisms of interaction between IQD proteins and MTs remain elusive. Here we demonstrate that the domain of unknown function 4005 (DUF4005) of the Arabidopsis IQD family protein ABS6/AtIQD16 is a novel MT-binding domain. Cosedimentation assays showed that the DUF4005 domain binds directly to MTs in vitro. GFP-labeled DUF4005 also decorates all types of MT arrays tested in vivo. Furthermore, we showed that a conserved stretch of 15 amino acid residues within the DUF4005 domain, which shares sequence similarity with the C-terminal MT-binding domain of human MAP Kif18A, is required for the binding to MTs. Transgenic lines overexpressing the DUF4005 domain displayed a spectrum of developmental defects, including spiral growth and stunted growth at the organismal level. At the cellular level, DUF4005 overexpression caused defects in epidermal pavement cell and trichome morphogenesis, as well as abnormal anisotropic cell elongation in the hypocotyls of dark-grown seedlings. These data establish that the DUF4005 domain of ABS6/AtIQD16 is a new MT-binding domain, overexpression of which perturbs MT homeostasis in plants. Our findings provide new insights into the MT-binding mechanisms of plant IQD proteins.  相似文献   

11.
As a usual response, plants induce/activate various proteins which are thought to be involved in defense mechanisms against the biotic and abiotic stresses they may be confronted with. The novel DUF538 domain containing proteins with unknown functions have been found to be induced/activated in response to different environmental stress stimuli in plants. In order to perform biochemical studies with these new plant stress-responsive proteins, a cDNA containing DUF538 domain was amplified from Celosia cristata full-length leaf expression library using a specific primer set. The isolated cDNA was subsequently expressed in Escherichia coli as a part of maltose-binding fusion protein (MBP-DUF538 construct) and purified at the yield of about 32 mg per liter of cell culture by affinity chromatography without affecting the recombinant bacterial cell growth. The purified fusion product was exogenously applied (10 μg per 4 cm2) on the leaves of Nicotiana tobaccum L. The results revealed that fused DUF538 protein does not induce morphological reposes, but elevates redox enzyme activities including catalase, peroxidase, polyphenol oxidase and phenyalanine ammonia lyase. This is the first time ever time report with respect to the heterologous expression of a plant stress-responsive DUF538 domain that may provide a basis to study its physiological roles and biochemical activities in vitro and in vivo.  相似文献   

12.
13.
14.
The FK506 binding proteins (FKBPs) are abundant and ubiquitous proteins belonging to the large peptidyl-prolylcis-trans isomerase superfamily. FKBPs are known to be involved in many biological processes including hormone signaling, plant growth, and stress responses through a chaperone or an isomerization of proline residues during protein folding. The availability of complete strawberry genome sequences allowed the identification of 23 FKBP genes by HMMER and blast analysis. Chromosome scaffold locations of these FKBP genes in the strawberry genome were determined and the protein domain and motif organization of FaFKBPs analyzed. The phylogenetic relationships between strawberry FKBPs were also assessed. The expression profiles of FaFKBPs genes results revealed that most FaFKBPs were expressed in all tissues, while a few FaFKBPs were specifically expressed in some of the tissues. These data not only contribute to some better understanding of the complex regulation of the strawberry FKBP gene family, but also provide valuable information for further research in strawberry functional genomics.  相似文献   

15.
Genes involved in cell number regulation may affect plant growth and organ size and, ultimately, crop yield. The tomato (genus Solanum) fruit weight gene fw2.2, for instance, governs a quantitative trait locus that accounts for 30% of fruit size variation, with increased fruit size chiefly due to increased carpel ovary cell number. To expand investigation of how related genes may impact other crop plant or organ sizes, we identified the maize (Zea mays) gene family of putative fw2.2 orthologs, naming them Cell Number Regulator (CNR) genes. This family represents an ancient eukaryotic family of Cys-rich proteins containing the PLAC8 or DUF614 conserved motif. We focused on native expression and transgene analysis of the two maize members closest to Le-fw2.2, namely, CNR1 and CNR2. We show that CNR1 reduced overall plant size when ectopically overexpressed and that plant and organ size increased when its expression was cosuppressed or silenced. Leaf epidermal cell counts showed that the increased or decreased transgenic plant and organ size was due to changes in cell number, not cell size. CNR2 expression was found to be negatively correlated with tissue growth activity and hybrid seedling vigor. The effects of CNR1 on plant size and cell number are reminiscent of heterosis, which also increases plant size primarily through increased cell number. Regardless of whether CNRs and other cell number–influencing genes directly contribute to, or merely mimic, heterosis, they may aid generation of more vigorous and productive crop plants.  相似文献   

16.
DUF538 domain-containing protein family consists of several plant proteins of unknown functions. This protein family has already been discovered by genome annotation tools and cloned as an inducible gene product under various environmental stress conditions. For the first time, we presented a full length DUF538 cDNA (encoding 170 amino acid residues) clone, which was randomly isolated from Celosia cristata leaf cDNA library constructed under normal growth conditions and consistently amplified from leaf cDNA populations prepared from nonstressed and drought-stressed leaves. We predicted that a DUF538 gene product can be a putative candidate for common stress-related protein (regulatory factor) in the plant system. The nucleotide and deduced amino acid sequences of the isolated clone have been submitted to EMBL data bases under accession no. AJ535713.  相似文献   

17.
The evolution of spermatophyte plants involved fundamental changes in cell wall structure and function which resulted from diversification of carbohydrates and proteins. Cell wall proteomic analyses identified a novel family of proteins of yet unknown function, the DUF642 (Domain of Unknown Function 642) proteins. To investigate the evolution of the DUF642 gene family, 154 gene sequences from 24 plant species were analyzed, and phylogenetic inferences were conducted using the Maximum Likelihood and Bayesian Inference methods. Orthologous genes were detected in spermatophyte species and absent in non-seed known plant genomes. Protein sequences shared conserved motifs that defined the signature of the family. Distribution of conserved motifs indicated an ancestral intragenic duplication event. Gene phylogeny documented paleoduplication events originating three or four clades, depending on root position. When based on mid-point rooting, it retrieved four monophyletic clades: A, B, C, and D. A glycosylphosphatidylinositol (GPI)-anchor site and one or two galactose-binding domains-like (GBDLs) could be predicted for some DUF642 proteins. The B, C, and D clades grouped the predicted GPI-anchored proteins. First evidence of in vitro interaction of a DUF642 protein with a cell wall polysaccharide fraction is provided. A competition assay with cellulose prevented this interaction. The degree of diversification and the conservation of the family suggested that DUF642 proteins are key components in seed plant evolution.  相似文献   

18.
19.
Buchko GW  Robinson H 《FEBS letters》2012,586(4):350-355
The crystal structure for cce_0566 (171 aa, 19.4 kDa), a DUF269 annotated protein from the diazotrophic cyanobacterium Cyanothece sp. ATCC 51142, was determined to 1.60 Å resolution. Cce_0566 is a homodimer with each molecule composed of eight α-helices folded on one side of a three strand anti-parallel β-sheet. Hydrophobic interactions between the side chains of largely conserved residues on the surface of each β-sheet hold the dimer together. The fold observed for cce_0566 may be unique to proteins in the DUF269 family, hence, the protein may also have a function unique to nitrogen fixation. A solvent accessible cleft containing conserved charged residues near the dimer interface could represent the active site or ligand-binding surface for the protein’s biological function.Structured summary of protein interactionsDUF269 and DUF269 bind by x-ray crystallography (View interaction)  相似文献   

20.
Protein disulfide isomerases (PDI) are involved in catalyzing protein disulfide bonding and isomerization in the endoplasmic reticulum and functions as a chaperone to inhibit the aggregation of misfolded proteins. Brachypodium distachyon is a widely used model plant for temperate grass species such as wheat and barley. In this work, we report the first molecular characterization, phylogenies, and expression profiles of PDI and PDI-like (PDIL) genes in B. distachyon in different tissues under various abiotic stresses. Eleven PDI and PDIL genes in the B. distachyon genome by in silico identification were evenly distributed across all five chromosomes. The plant PDI family has three conserved motifs that are involved in catalyzing protein disulfide bonding and isomerization, but a different exon/intron structural organization showed a high degree of structural differentiation. Two pairs of genes (BdPDIL4-1 and BdPDIL4-2; BdPDIL7-1 and BdPDIL7-2) contained segmental duplications, indicating each pair originated from one progenitor. Promoter analysis showed that Brachypodium PDI family members contained important cis-acting regulatory elements involved in seed storage protein synthesis and diverse stress response. All Brachypodium PDI genes investigated were ubiquitously expressed in different organs, but differentiation in expression levels among different genes and organs was clear. BdPDIL1-1 and BdPDIL5-1 were expressed abundantly in developing grains, suggesting that they have important roles in synthesis and accumulation of seed storage proteins. Diverse treatments (drought, salt, ABA, and H2O2) induced up- and down-regulated expression of Brachypodium PDI genes in seedling leaves. Interestingly, BdPDIL1-1 displayed significantly up-regulated expression following all abiotic stress treatments, indicating that it could be involved in multiple stress responses. Our results provide new insights into the structural and functional characteristics of the plant PDI gene family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号