首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Woody plants in the temperate and boreal zone undergo annual cycle of growth and dormancy under seasonal changes. Growth cessation and dormancy induction in autumn are prerequisites for the development of substantial cold hardiness in winter. During evolution, woody plants have developed different ecotypes that are closely adapted to the local climatic conditions. In this study, we employed distinct photoperiodic ecotypes of silver birch (Betula pendula Roth) to elucidate differences in these adaptive responses under seasonal changes. In all ecotypes, short day photoperiod (SD) initiated growth cessation and dormancy development, and induced cold acclimation. Subsequent low temperature (LT) exposure significantly enhanced freezing tolerance but removed bud dormancy. Our results suggested that dormancy and freezing tolerance might partially overlap under SD, but these two processes were regulated by different mechanisms and pathways under LT. Endogenous abscisic acid (ABA) levels were also altered under seasonal changes; the ABA level was low during the growing season, then increased in autumn, and decreased in winter. Compared with the southern ecotype, the northern ecotype was more responsive to seasonal changes, resulting in earlier growth cessation, cold acclimation and dormancy development in autumn, higher freezing tolerance and faster dormancy release in winter, and earlier bud flush and growth initiation in spring. In addition, although there was no significant ecotypic difference in ABA level during growing season, the rates and degrees of ABA alterations were different between the ecotypes in autumn and winter, and could be related to ecotypic differences in dormancy and freezing tolerance.  相似文献   

2.
Survival and growth of temperate zone woody plants under changing seasonal conditions is dependent on proper timing of cold acclimation and development of vegetative dormancy, shortening photoperiod being an important primary signal to induce these adaptive responses. To elucidate the physiological basis for climatic adaptation in trees, we have characterized photoperiodic responses in the latitudinal ecotypes of silver birch ( Betula pendula Roth) exposed to gradually shortening photoperiod under controlled conditions. In all ecotypes, shortening photoperiod triggered growth cessation, cold acclimation and dormancy development, that was accompanied by increases in endogenous abscisic acid (ABA) and decreases in indole-3-acetic acid (IAA). There were distinct differences between the ecotypes in the rates and degrees of these responses. The critical photoperiod and the photoperiodic sensitivity for growth cessation varied with latitudinal origin of the ecotype. The northern ecotype had a longer critical photoperiod and a greater photoperiodic sensitivity than the southern ecotype. Compared with the southern ecotypes, the northern ecotype was more responsive to shortening photoperiod, resulting in earlier cold acclimation, dormancy development, increase in ABA content and decrease in IAA content. However, at the termination of the experiment, all the ecotypes had reached approximately the same level of cold hardiness (−12 to −14°C), ABA content (2.1–2.3 µg g−1 FW) and IAA content (17.2–20.3 ng g−1 FW). In all ecotypes, increase in ABA levels preceded development of bud dormancy and maximum cold hardiness. IAA levels decreased more or less parallel with increasing cold hardiness and dormancy, suggesting a role of IAA in the photoperiodic control of growth, cold acclimation and dormancy development in birch.  相似文献   

3.
Ofir M  Kigel J 《Annals of botany》2006,97(4):659-666
BACKGROUND AND AIMS: The timing of flowering and summer dormancy induction plays a central role in the adaptation of Mediterranean geophytes to changes in the length of the growth season along rainfall gradients. Our aim was to analyse the role of the variation in the responses of flowering and summer dormancy to vernalization, daylength and growth temperature for the adaptation of Poa bulbosa, a perennial geophytic grass, to increasing aridity. METHODS: Flowering and dormancy were studied under controlled daylengths [9 h short day (SD) vs. 16 h long day (LD)] and temperatures (16/10, 22/16 and 28/22 degrees C day/night) in four ecotypes originating in arid, semi-arid and mesic habitats (110, 276 and 810 mm rain year(-1), respectively) and differing in flowering capacity under natural conditions: arid-flowering, semi-arid-flowering, semi-arid-non-flowering and mesic-non-flowering. KEY RESULTS: Flowering and dormancy were affected in opposite ways by daylength and growth temperature. Flowering occurred almost exclusively under SD. In contrast, plants became dormant much earlier under LD than under SD. In both daylengths, high temperature and pre-chilling (6 weeks at 5 degrees C) enhanced dormancy imposition, but inhibited or postponed flowering, respectively. Induction of flowering and dormancy in the different ecotypes showed differential responsiveness to daylength and temperature. Arid and semi-arid ecotypes had a higher proportion of flowering plants and flowering tillers as well as more panicles per plant than mesic ecotypes. 'Flowering' ecotypes entered dormancy earlier than 'non-flowering' ecotypes, while the more arid the site of ecotype origin, the earlier the ecotype entered dormancy. CONCLUSIONS: Variation in the flowering capacity of ecotypes differing in drought tolerance was interpreted as the result of balanced opposite effects of daylength and temperature on the flowering and dormancy processes.  相似文献   

4.
A number of environmental cues including short day photoperiod (SD) and low temperature (LT) are known to interact in triggering growth cessation, cold acclimation and other adaptive responses in temperate-zone tree species. Proper timing of these responses is particularly important for survival of trees in the boreal and subarctic regions. Therefore, we used a northern tree species, silver birch ( Betula pendula Roth) as an experimental model to investigate the effect of SD and LT on development of freezing tolerance and on levels of endogenous abscisic acid (ABA) in short-term experiments under controlled conditions. We characterized differences in SD and LT-induced cold acclimation between three different climatic ecotypes from southern, central and northern habitats. The results demonstrated that cold acclimation was rapidly triggered by exposing the plants to SD or LT, and that a combination of the different treatments had an additive effect on freezing tolerance. Freezing tolerance induction was not uniform in the different tissues, the buds and leaves developed freezing tolerance more rapidly than the stem, and the young leaves had a higher freezing tolerance than the old leaves. The ability of the leaves to respond to SD and LT and similarity of the bud and leaf responses indicate that birch leaves provide a rapid and convenient system for studies on molecular mechanisms of cold acclimation. Development of freezing tolerance was dependent on the climatic ecotype, the northern ecotype was clearly more responsive to both SD and LT than the two more southern ecotypes. Development of freezing tolerance induced by SD and LT was accompanied by transient changes in ABA levels. These alterations in ABA levels were ecotype-dependent, the northern ecotype reacting more strongly to the environmental cues.  相似文献   

5.
Apical growth cessation as affected by photoperiod and temperature has been studied in seedlings of two latitudinal ecotypes of Salix and Betula. The critical photoperiod for apical growth cessation at constant temperatures of 15 and 21°C was about 22 h for a northern (69°C39′N) and about 15–16 h for a southern (59°C40′N) ecotype of Salix pentandra. Fluctuating day/night temperatures (21°C/9°C, 15°C/6°C) induced apical growth cessation in northern ecotypes even at 24–h photoperiod. Disagreements in critical photoperiods found in various studies are discussed.  相似文献   

6.
Dormancy is initiated by decreasing photoperiod or temperature in many woody species. We investigated the effect of photoperiod on the induction of dormancy in Vitis . Three genotypes ( Vitis riparia, Vitis spp. cv. Seyval Blanc and a F1 hybrid [ V. riparia ×'Seyval Blanc']) were monitored for morphological and physiological dormancy responses during 6 weeks of short (8 h, SD) and long (15 h, LD) photoperiod treatments. V. riparia became dormant after 4 weeks of SD as indicated by several morphologic changes. Cane elongation ceased, terminal meristems began to abscise, and primary dormant buds failed to grow after pruning and returning to LD. There was also a pronounced decrease in bud water content in response to SD. 'Seyval Blanc', in contrast, maintained actively growing meristems with no terminal abscission throughout SD treatment, and little delay in budbreak after pruning and returning to LD. Moderate decreases in bud water content were observed after 6 weeks of SD treatment in 'Seyval Blanc'. F1 plants displayed intermediate responses to SD treatment, but more closely paralleled that of the V. riparia parent. Growth cessation, terminal meristem abscission and absence of budbreak occurred in the F1 after 6 weeks of SD. Ten percent discontinuous SDS-PAGE protein profiles demonstrated SD-induced changes in polypeptide accumulation. A 19-kDa polypeptide increased 2–3-fold in response to SD in all genotypes. A 17-kDa polypeptide appeared at 4 weeks of SD, and represented 2.5–5% of all proteins visualized on the gels by 6 weeks of SD. These increases in polypeptides appear to be a general response to SD. This experimental system with heritable morphological and physiological variations in SD responsiveness will be valuable for studying dormancy initiation and maintenance in Vitis .  相似文献   

7.
8.
Poa bulbosa L., like many other Mediterranean geophytes, grows in the winter and enters a phase of summer dormancy in the spring. Summer dormancy enables these plants to survive the hot and dry summer. Long days are the main environmental factor active in the induction of summer dormancy in P . bulbosa and elevated temperatures accelerate dormancy development. P . bulbosa becomes dormant earlier than most other species that grow actively in the winter. Previous studies suggested that pre-exposure of P . bulbosa to short days and low temperatures during the autumn and early winter increased its sensitivity to photoperiodic induction in late winter, and thus enabled the early imposition of dormancy. To study this hypothesis, experiments were carried out under controlled photothermal conditions in the phytotron, under natural daylight extended with artificial lighting. The critical photoperiod for induction of summer dormancy at an optimal temperature (22/17°C day/night) was between 11 and 12 h. Photoperiods shorter than 12 h were noninductive, while 14- and 16-h days were fully inductive. A night break of 1 h of light given at the middle of the dark period of an 8-h photoperiod also resulted in full induction of dormancy. Pre-exposure to either low temperature (chilling at 5°C) or to short days of 8 h (SD) enhanced the inductive effect of subsequent 16-h long days (LD). The enhancing effect of chilling and SD increased with longer duration, i.e. fewer LDs were required to impose dormancy. However, the day-length during the low-temperature pretreatment had no effect on the level of induction at the following LD. Chilling followed by SD did not induce dormancy. The relevance of these responses to the development and survival of P . bulbosa in its natural habitat is discussed.  相似文献   

9.
Growth and dormancy as affected by photoperiod and temperature have been studied in Norway spruce ecotypes of different latitudinal and altitudinal origin. First-year seedlings were used. In all ecotypes apical growth cessation and terminal bud formation occurred within 2 weeks after exposure to SD at temperatures of 18 to 24°C. At lower temperatures or at near-critical photoperiods the response was delayed. The critical photoperiod for apical growth cessation varied from 21 hours in ecotype Steinkjer, Norway (64°N) to about 15 hours in ecotype Lankowitz, Austria (47°04′N). High-elevation ecotypes also had longer critical pholoperiods than low-elevation ecotypes from the same latitude. A detectable growth depression resulted from as little as 1 or 2 SDs of 10 hours, and with 4 or more SDs apical growth cessation took place. In contrast to the situation in the shoot, root growth was not affected by photoperiod. Accordingly, the top:root ratio is drastically affected by photoperiod. The critical photoperiod for cambial growth was shorter than that for apical growth in all ecotypes and cambial growth cessation was delayed for several weeks compared with cessation of apical growth. A transition to formation of late-wood tracheids with thick walls and narrow lumens took place upon exposure to SD. The photoperiodic effects were significantly modified by temperature, but the critical photoperiods were only slightly changed by temperature in the range of 12 to 24°C. However, a 10-hour “night” at 4°C caused growth cessation in continuous light in four ecotypes tested. Temperature optimum for apical growth under non-limiting photoperiods (24 hours) was 21°C in all ecotypes, but with little difference among 18,21 and 24°C. The Q10 for apical growth was 3.5 in the temperature range 12 to 18°C. The growth potential as determined in 24-hour photoperiods was not significantly different among the various ecotypes except for one northern eco-type which was clearly inferior to the others. However, the growth of ecotype Steinkjer (64°N) was greatly suppressed even by the long midsummer days at 59°40′N, thus demonstrating the misleading impression one gets of the growth potential of northern ecotypes when they are moved southwards.  相似文献   

10.
In many woody plants photoperiod signals the initiation of dormancy and cold acclimation. The photoperiod-specific physiological and molecular mechanisms have remained uncharacterised. The role of abscisic acid (ABA) and dehydrins in photope-riod-induced dormancy and freezing tolerance was investigated in birch, Betula pubescens Ehrh. The experiments were designed to investigate if development of dormancy and freezing tolerance under long-day (LD) and short-day (SD) conditions could be affected by manipulation of the endogenous ABA content, and if accumulation of dehydrin-like proteins was correlated with SD and/or the water content of the buds. Experimentally, the internal ABA content was increased by ABA application and by water stress treatment under LD, and decreased by blocking the synthesis of ABA with fluridone under SD. Additionally, high humidity (95% RH) was applied to establish if accidental water stress was involved in SD. ABA content was monitored by gas chromatography-mass spectrometry with selective ion monitoring (SIM). Short days induced a transient increase in ABA content, which was absent in 95% RH, whereas fluridone treatment decreased ABA. Short days induced a typical pattern of bud desiccation and growth cessation regardless of the treatment, and improved freezing tolerance except in the fluridone treatment. ABA content of the buds was significantly increased after spraying ABA on leaves and after water stress, treatments that did not induce cessation of growth and dormancy, but improved freezing tolerance. In addition to several constitutively produced dehydrins, two SD-specific proteins of molecular masses 34 and 36 kDa were found. Photoperiod- and experimentally-induced alterations in ABA contents affected freezing tolerance but not cessation of growth and dormancy. Therefore, involvement of ABA in the photoperiodic control of cold acclimation is more direct than in growth cessation and dormancy. As the typical desiccation pattern of the buds was found in all SD plants, and was not directly related to ABA content or to freezing tolerance, this pattern characterises the onset of photo-period-induced growth cessation and dormancy. The results provide evidence for the existence of various constitutively and two photoperiod-induced dehydrins in buds of birch, and reveal characteristics of dormancy and freezing tolerance that may facilitate further investigations of photoperiodic control of growth in trees.  相似文献   

11.
The environmental control of dormancy and flowering of the herbaceous perennial Sedum telephium was studied in controlled environments. Short photoperiods induced growth cessation and the formation of resting buds in both seedlings and mature plants, whereas long photoperiods resulted in immediate growth activation of dormant buds. No chilling was required for dormancy release, even in plants induced to dormancy and maintained at high temperature (21°C) for more than 3 months. The critical photoperiod for dormancy release was about 15 h, a minimum of four long-day (LD) cycles (24 h) being required. The true photoperiodic nature of this response was ascertained by night interruption experiments. Flowering of S. telephium was found to have an obligatory LD requirement, with no requirement for vernalization. The critical photoperiod and minimum number of inductive cycles for floral induction were the same as for dormancy release. Dormancy release by long days was also obtained in preliminary experiments with three other herbaceous perennials. The eco-physiological significance of photoperiodic control of dormancy is discussed, and it is concluded that the mechanism ensures stability of winter dormancy, even under conditions of climatic warming.  相似文献   

12.
There is increasing evidence that temperature, in addition to photoperiod, may be an important factor regulating bud dormancy. The impact of temperature during growth cessation, dormancy development, and subsequent cold acclimation was examined in four hybrid poplar clones with contrasting acclimation patterns: ‘Okanese’—EARLY, ‘Walker’—INT1, ‘Katepwa’—INT2, and ‘Prairie Sky’—LATE. Four day–night temperature treatments (13.5/8.5, 18.5/13.5, 23.5/8.5, and 18.5/3.5°C) were applied during a 60-day induction period to reflect current and predicted future annual variation in autumn temperature for Saskatoon, SK. Warm night temperature (18.5/13.5°C) strongly accelerated growth cessation, dormancy development, and cold acclimation in all four clones. Day temperature had the opposite effect of night temperature. Day and night temperatures appeared to act antagonistically against each other during growth cessation and subsequent dormancy development and cold acclimation. Growth cessation, dormancy development, and cold acclimation in EARLY and LATE were less affected by induction temperature than INT1 and INT2 suggesting that genotypic variations exist in response to temperature. Separating specific phenological stages and the impact by temperature on each clone revealed the complexity of fall phenological changes and their interaction with temperature. Most importantly, future changes in temperature may affect time to growth cessation, subsequently altering the depth of dormancy and cold hardiness in hybrid poplar.  相似文献   

13.
Juvenile trees of temperate and boreal regions cease growth and set buds in autumn in response to short day-lengths (SD) detected by phytochrome. Growth cessation and bud set are prerequisites for the development of winter dormancy and full cold hardiness. In this study we show that the SD-requirement for bud set and cold hardening can be overcome in hybrid aspen (Populus tremula L. × tremuloides Michx.) by low night temperature and inhibition of gibberellin (GA) biosynthesis. Bud set and increased cold hardiness were observed under normally non-inductive long day-length (LD) in wild-type plants, when exposed to low night temperature and paclobutrazol. In addition, the effect of PHYA overexpression could be overcome in transgenic plants, producing bud set and cold acclimation by treatment with: SD, low night temperature and paclobutrazol. After cold acclimation, the degree of bud dormancy was lower for wild-type plants prior treated with LD and transgenic plants (overexpressing PHYA), than SD-treated, wild-type plants. Thus, low night temperature in combination with reduced GA content induced bud set and promoted cold hardiness under normally non-inductive photoperiods in hybrid aspen, but was unable to affect development of dormancy. This might suggest separate signalling pathways from phytochrome regulating the induction of cold/cold hardiness and bud dormancy in hybrid aspen or alternatively, there might be one pathway that fails to complete its action in the transgenic and paclobutrazol treated plants.  相似文献   

14.
Summer‐dormancy occurs in geophytes that inhabit regions with a Mediterranean climate (mild, rainy winters and hot, dry summers). The environmental control of summer‐dormancy and the involvement of phytohormones in its induction have been little studied. Poa bulbosa L. is a perennial grass geophyte in which summer‐dormancy is induced by long days and by high temperature. Prolonged treatment with ABA (0.1‐1.0 m M ) under non‐inductive 8‐h short days (SD) resulted in cessation of leaf and tiller production and in the development of typical features of dormancy: bulbing at the base of the tillers and leaf senescence. Short‐term applications of ABA had similar effects but dormancy was transient, i.e. after a short while, leaf growth from the formed bulbs was resumed. ABA treatment of plants growing under an inductive 16‐h photoperiod (LD) enhanced the onset of dormancy. Endogenous levels of ABA in leaf blades and at the tiller base (where the bulb develops) increased markedly after the plants were transferred from SD to LD. This increase was greater in the tiller base, and concomitant with bulb maturation. High temperature (27/22 vs 22/17°C) accelerated both bulb development and ABA accumulation in leaf blades.
These results suggest that ABA plays a key role in the photoperiodic induction and development of summer‐dormancy in P. bulbosa .  相似文献   

15.

Background  

Growth cessation, cold acclimation and dormancy induction in grapevines and other woody perennial plants native to temperate continental climates is frequently triggered by short photoperiods. The early induction of these processes by photoperiod promotes winter survival of grapevines in cold temperate zones. Examining the molecular processes, in particular the proteomic changes in the shoot, will provide greater insight into the signaling cascade that initiates growth cessation and dormancy induction. To begin understanding transduction of the photoperiod signal, Vitis riparia Michx. grapevines that had grown for 35 days in long photoperiod (long day, LD, 15 h) were subjected to either a continued LD or a short photoperiod (short day, SD, 13 h) treatment. Shoot tips (4-node shoot terminals) were collected from each treatment at 7 and 28 days of LD and SD for proteomic analysis via two-dimensional (2D) gel electrophoresis.  相似文献   

16.
Salix paraplesia was used as an experimental model to investigate the effect of short day photoperiod (SD) and low temperature (LT) on development of freezing tolerance and on endogenous abscisic acid (ABA) contents. We characterized differences in SD and LT-induced cold acclimation in three ecotypes from different altitudes. The results demonstrated that cold acclimation could be triggered by exposing the plants to SD or LT alone, and that a combination of the different treatments had an additive effect on freezing tolerance in all ecotypes studied. However, the high altitudinal ecotype was more responsive to SD and LT than the low altitudinal ecotype. Development of freezing tolerance induced by SD and LT was accompanied by changes in ABA contents which were ecotype-dependent. Although the stem had higher initial freezing tolerance, the leaves developed freezing tolerance more quickly than the stem and thus leaves may provide an interesting experimental system for physiological and molecular studies of cold acclimation in woody plants.  相似文献   

17.
18.
In poplar (Populus deltoides Bartr. ex Marsh), bud dormancyand freezing tolerance were concomitantly induced by short-day(SD) photoperiods. Ultrastructural changes and the alterationin subcellular localization of calcium in apical bud cells associatedwith dormancy development were investigated. During the developmentof dormancy, the thickness of cell walls increased significantly,the number of starch granules increased, and there was a significantaccumulation of storage proteins in the vacuoles of the apicalbud cells. The most striking change was the constriction andblockage of the plasmodesmata. It was demonstrated that antimonate precipitation is a reliabletechnique for studying subcellular localization of calcium inpoplar apical bud cells. Under the long day (LD) photoperiod,electron-dense calcium antimonate precipitates were mainly localizedin vacuoles, intercellular spaces and plastids. Some antimonateprecipitates were also found in the cell walls and at the entranceof the plasmodesmata. However, there were few Ca2+ depositsfound in the cytosol and nucleus. After 20 d of SD exposure,when development of bud dormancy was initiated, calcium depositsin intercellular spaces were decreased, whereas some depositswere found in the cytosol and nuclei. From 28–49 d ofSD exposure, while dormancy was developing, a large number ofCa2+ precipitates were found in the cytosol and nuclei. Whendeep dormancy was reached after 77 d of SD exposure, Ca2+ depositsbecame fewer in both cytosol and nuclei, whereas numerous depositswere again observed in the cell walls and in the intercellularspaces. These results suggest that under the influence of SDphotoperiods, there are alterations in subcellular Ca2+ localization,and changes in ultrastructure of apical bud cells during thedevelopment of dormancy. The constriction and blockage of plasmodesmatamay cause the cessation of symplastic transport, limit cellularcommunication and signal transduction between adjacent cells,which in turn may lead to events associated with growth cessationand dormancy development in buds. Key words: Poplar, apical bud cells, Ca2+ subcellular localization, dormancy  相似文献   

19.
Environmental regulation of growth and dormancy of four Sorbus genotypes was studied in controlled environments. Emphasis was placed on assessment of the presence and nature of the deficient photoperiodic dormancy regulation system that has previously been reported for some woody Rosaceae species. Two genotypes of Sorbus aucuparia L. maintained indeterminate growth for 8 weeks and 9 weeks at temperatures of 15 °C and 21 °C in both 20 h and 10 h photoperiods, while at 9 °C, in the same photoperiodic conditions, they immediately ceased growing. At the higher temperatures, initiation of new leaves (nodes) was unaffected by photoperiod, while internode elongation was significantly enhanced by long days (LD). However, even after prolonged exposure to 9 °C, most plants resumed growth when moved to high temperature and LD, indicating a shallow state of dormancy. Seedlings of Sorbus intermedia (J. F. Ehrh.) Pers. and micro-propagated plantlets of S. commixta Hedl. 'Dodong' were also unaffected by photoperiod during primary growth, but failed to elongate and gradually became dormant regardless of temperature and day-length conditions. However, after chilling and breaking of dormancy, the plants elongated vigorously but changed to a determinate mode of growth. Furthermore, a temperature of 9 °C was found to be fully effective for breaking dormancy in S. intermedia plants. It is concluded that deficient photoperiodic dormancy control seems widespread in the Rosaceae and that, in such plants, both dormancy induction and release is brought about by low temperature. The potential impacts of climate change on such trees are discussed.  相似文献   

20.
To manipulate the occurrence of latewood formation and cambial dormancy in Picea abies (L.) Karst. stems, potted seedlings were transferred from the natural environment on 9 July, when tracheids early in the transition between earlywood and latewood were being produced, and cultured for up to 5 weeks in a controlled environment chamber having: (1) Warm LD, (25/15C during day/night) and long (16 h) photoperiod, (2) Warm SD, (25/15C) and short (8 h) photoperiod, or (3) Cold SD, (18/8°C) and short (8 h) photoperiod. In Warm LD trees, the radial enlargement of primary-walled derivatives on the xylem side of the cambium, as well as xylem production, continued at the same magnitude throughout the experiment. In Warm SD and Cold SD trees, the radial enlargement of primary-walled derivatives declined and the cambium entered dormancy, both developments occurring faster in the Warm SD trees. The concentrations of indole-3-acetic acid (IAA) was higher in developing xylem tissue than in cambium+phloem tissues, but did not vary with environmental treatment or decrease during the experimental period. The O2 concentration in the cambial region followed the order of Cold SD>Warm SD>Warm LD trees and was <5%, the threshold for the inhibition of IAA-induced proton secretion, for the first 3 weeks in Warm SD and Warm LD trees. Thus, neither latewood formation nor cambial dormancy can be attributed to decreased IAA in the cambial region. Nor does lower O2 concentration in the cambial region appear to be inhibiting the IAA action that is associated with cambial growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号