首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary Vegetative growth of two ecotypes (lat. 78° 15N and 69°37N) of Salix polaris L. was studied in phytotron experiments. Dormancy of the winter buds was broken by chilling at 0.5°C for 14 to 42 days. Chilling requirement increased with decreasing growth temperature. The optimum temperature for bud break and shoot growth was about 15°C for both ecotypes. Cessation of apical shoot growth and abscission of shoot tip was not prevented by long photoperiods. However, at high temperature, 15°C or more, and in 18 to 24 h photoperiod, two or three growth flushes occurred frequently in both ecotypes. Leaf abscission in the arctic ecotype from lat. 78°N was not affected by photoperiod when grown at 6°C, but was stimulated by short photoperiod when grown at 15°C. In the ecotype from lat. 69°N leaf abscission was enhanced by short photoperiod even at 6°C.  相似文献   

3.
Unsuitable temperatures are frequently encountered by soybean(Glycine max L. Merr.) plants grown in the field. Certain polyolshave been reported to protect plants from high temperature orfrost damage. Controlled environment studies were conductedto investigate the effect of stressful temperature regimes onthe content of pinitol (3-O-methyl-D-chiro-inositol) in soybeanplants. Hydroponically-grown soybean plants were subjected tohigh (35/30 C) or low (15/10 C) day/night temperature stresses,and pinitol content in different plant parts was determinedusing high performance liquid chromatography (HPLC). A syntheticplant growth regulator, PGR-IV, was foliarly applied to theplants to evaluate its effect on pinitol content in differentplant components. Uniformly-labelled 14C-glucose was fed intothe leaves via the transpiration stream, and the effects ofhigh temperature and EXP-S1089, another synthetic plant growthregulator, on the incorporation of 14C-glucose into pinitolwas evaluated using HPLC separation and scintillation spectrometry.High-temperature stress significantly increased plant pinitolcontent and the incorporation of 14C-glucose into pinitol, butdecreased the content of sucrose, glucose and fructose. Underlow-temperature stress, there was hardly any change in pinitolcontent, but a drastic increase in soluble sugars. PGR-IV enhancedpinitol translocation from leaves to stems and roots, whileEXP-S1089 increased pinitol/sucrose ratio. Accumulation of pinitolmay be an adjustment mechanism of the plant to reduce high-temperaturedamage, but not low-temperature injuries. Key words: Pinitol, soybean, temperature, plant growth regulator  相似文献   

4.
The impact of reduced sedoheptulose-1,7-bisphosphatase (SBPase) activity on photosynthetic capacity and carbohydrate status was examined during leaf expansion and maturation in antisense transgenic tobacco (Nicotiana tabacum L. cv Samsun) plants. In wild-type plants, photosynthetic capacity was lowest in young expanding leaves and reached a maximum in the fully expanded, mature leaves. In contrast, the transgenic antisense SBPase plants had the highest photosynthetic rates in the young expanding leaves and lowest rates in the mature leaves. In the mature, fully expanded leaves of the transgenic plants photosynthetic capacity was closely correlated with the level of SBPase activity. However, in the youngest leaves of the SBPase antisense plants, photosynthetic rates were close to, or higher than, those observed in wild-type plants, despite having a lower SBPase activity than the equivalent wild-type leaves. Reductions in SBPase activity affected carbohydrate levels in both the mature and young developing leaves. The overall trend was for decreased SBPase activity to lead to reductions in carbohydrate levels, particularly in starch. However, these changes in carbohydrate content were also dependent on the developmental status of the leaf. For example, in young expanding leaves of plants with the smallest reductions in SBPase activity, the levels of starch were higher than in wild-type plants. These data suggest that the source status of the mature leaves is an important determinant of photosynthetic development.  相似文献   

5.
The nitrate reductase (NR)-defective double mutant of Arabidopsis thaliana (nia1 nia2) has previously been shown to present a low endogenous content of NO in its leaves compared with the wild-type plants. In the present study, we analyzed the effect of NR mutation on floral induction and development of A. thaliana, as NO was recently described as one of the signals involved in the flowering process. The NO fluorescent probes diaminofluorescein-2 diacetate (DAF-2DA) and 1,2-diaminoanthraquinone (1,2-DAA) were used to localize NO production in situ by fluorescence microscopy in the floral structures of A. thaliana during floral development. Data were validated by incubating the intact tissues with DAF-2 and quantifying the DAF-2 triazole by fluorescence spectrometry. The results showed that NO is synthesized in specific cells and tissues in the floral structure and its production increases with floral development until anthesis. In the gynoecium, NO synthesis occurs only in differentiated stigmatic papillae of the floral bud, and, in the stamen, only anthers that are producing pollen grains synthesize NO. Sepals and petals do not show NO production. NR-deficient plants emitted less NO, although they showed the same pattern of NO emission in their floral organs. This mutant blossomed precociously when compared with wild-type plants, as measured by the increased caulinar/rosette leaf number and the decrease in the number of days to bolting and anthesis, and this phenotype seems to result from the markedly reduced NO levels in roots and leaves during vegetative growth. Overall, the results reveal a role for NR in the flowering process.  相似文献   

6.
The rates of maintenance and growth components of leaf dark respiration of a C3 plant (Phaseolus vulgaris L.) and C4 plant (Zea mays L.) as affected by temperature were studied using the McCree concept. Respiration rates were measured by means of infrared gas analysis in a closed gas exchange system. In both C3 and C4 species RD and Rm increased with temperature in the temperature range (15–62 °C) studied. RG depended on temperature with an optimum near the temperature optimum of gross photosynthetic rate, Pg. Significant correlation between RD and RM and between RG and PG was found.  相似文献   

7.
8.
9.
10.
Parathyroid hormone (PTH) is the major mediator of calcium homeostasis and bone remodeling and is now known to be an effective drug for osteoporosis treatment. Yet the mechanisms responsible for its functions in bone are largely unknown. Here we report that the expression of amphiregulin (AR), a member of the epidermal growth factor (EGF) family, is rapidly and highly up-regulated by PTH in several osteoblastic cell lines and bone tissues. Other osteotropic hormones (1alpha,25-dihydroxyvitamin D3 and prostaglandin E2) also strongly stimulate AR expression. We found all EGF-like ligands and their receptors are expressed in osteoblasts, but AR is the only member that is highly regulated by PTH. Functional studies demonstrated that although AR is a potent growth factor for preosteoblasts, it completely inhibits further differentiation. AR also strongly and quickly stimulated Akt and ERK phosphorylation and c-fos and c-jun expression in an EGF receptor-dependent manner. Moreover, AR null mice displayed significantly less tibial trabecular bone than wild-type mice. Taken together, we have identified a novel growth factor that is PTH-regulated and appears to have an important role in bone metabolism.  相似文献   

11.
Tobacco (Nicotiana tabacum L.) plants were cultured in vitro photoautotrophically at three levels of irradiance (PAR 400–700 nm): low (LI, 60 μmol m−2 s−1), middle (MI, 180 μmol m−2 s−1) and high (HI, 270 μmol m−2 s−1). Anatomy of the fourth leaf from bottom was followed during leaf development. In HI and MI plants, leaf area expansion started earlier as compared to LI plants, and both HI and MI plants developed some adaptations of sun species: leaves were thicker with higher proportion of palisade parenchyma to spongy parenchyma tissue. Furthermore, in HI and MI plants palisade and spongy parenchyma cells were larger and relative abundance of chloroplasts in parenchyma cells measured as chloroplasts cross-sectional area in the cell was lower than in LI plants. During leaf growth, chloroplasts crosssectional area in both palisade and spongy parenchyma cells in all treatments considerably decreased and finally it occupied only about 5 to 8 % of the cell cross-sectional area. Thus, leaf anatomy of photoautotrophically in vitro cultured plants showed a similar response to growth irradiance as in vivo grown plants, however, the formation of chloroplasts and therefore of photosynthetic apparatus was strongly impaired.  相似文献   

12.
In the ecological model plant Nicotiana attenuata, leaf wounding or herbivory lead to a reduction of root growth via jasmonic acid (JA) signaling. A single wounding treatment is sufficient to induce this response; multiple wounding does not increase the plant growth reaction. in a recent study, in which JA bursts were elicited in leaves of the molecular model species Arabidopsis thaliana in different ways,1 we tested whether JA induces the same response there. Root growth reduction was neither induced by foliar application of herbivore oral secretions nor by direct application of methyl jasmonate to leaves. Root growth reduction was observed when leaves were infected with the pathogen Pseudomonas syringae pv. tomato, which persistently induces the JA signaling pathway. Yet, growth analyses of this effect in wild type and JA-signaling mutants showed that it was elicited by the bacterial toxin coronatine which suggests ethylene—but not JA-induced root growth reduction in A. thaliana. Moreover, the growth effects were somewhat masked by a light-induced diurnal decrease of root growth. Overall, we conclude that the reaction of root growth to herbivore-induced JA signaling differs among species, which is related to different ecological defence strategies that have evolved in different species.Key words: coronatine, ethylene, image analysis, phytohormones, Pseudomonas syringae pv. tomato, woundingUpon pathogen or herbivore attack, plants have to meet the decision how much of their resources are invested in growth processes and how much into defense. The ecological model species Nicotiana attenuata increases defence measures and decreases root, but not leaf growth immediately after a single simulated herbivory event.2 This reaction is elucidated via jasmonic acid (JA) signaling.3 The intensity of root growth reduction is not amplified when multiple wounding events occur (Fig. 1A). This clearly demonstrates that wounding acts as a signal for the reduction of root growth and that root growth is not reduced due to a lack of growth resources as a consequence of a resource-based trade-off between growth and defence. This hypothesis is further supported by the finding that a surplus of carbohydrates is stored in the root system,4 which thereby acts as a safe retreat for future re-growth of the plant after herbivore damage.Open in a separate windowFigure 1Root growth in Nicotiana attenuata and Arabidopsis thaliana seedlings. (A) Root growth dynamics of Nicotiana attenuata seedlings after single and multiple wounding treatments as well as multiple wounding treatments followed by application of oral secretions of Manduca sexta (OS). Wounding treatments were applied at time points 0 h (single treatments) or at the time points 0 h, 2 h and 4 h (multiple treatments). Controls were not treated. (B) Normalized values of velocity of the root tip (vTip) of Arabidopsis thaliana seedlings whose roots were exposed to light (control and wounded) and seedlings whose roots were darkened by wrapping aluminium foil around the Petri dish throughout the growth period. Shaded areas indicate the night period. Mean ± SE. N = 4–8.We asked ourselves whether this is a general reaction pattern that is followed in more plant species. To test this, we performed a suite of experiments on the molecular model species Arabidopsis thaliana.1 Several studies showed that direct application of JA or methyl jasmonate (MeJA), which is commonly used to mimick herbivory-induced signaling, to the cultivation medium decrease root growth of A. thaliana. Yet, in contrast to the situation in N. attenuata, the application of MeJA to leaves did not lead to a decrease in root growth. To exclude the possibility that the MeJA applied to the leaf was not taken up by the plants, we induced plant-internal JA bursts by mechanical wounding and/or application of bacteria. The treatments were performed on Col-0 and Col-6 wild type plants. Additionally, two mutants defective in the JA signaling pathway were used to select for JA-induced effects. coi1-1 (coronatine-insensitive) is known to lack the F-box protein COI1 and shows decreased sensitivity to JA application compared to wild type plants.5 The aos mutant, in contrast, is unable to produce JA following mechanical wounding as the biosynthesis of the rate-limiting enzyme allene oxide synthase is blocked.6Upon mechanical wounding of two leaves with sterile tweezers, JA concentration in the seedlings increased and root growth decreased rapidly, but only very transiently in all four investigated A. thaliana lines. In contrast to the situation in N. attenuata, root growth in A. thaliana recovered to pre-treatment levels within a few hours (Fig. 1B) and growth was not further decreased upon addition of oral secretions of Spodoptera littoralis larvae. This suggests that the observed short-term growth reduction was caused by hydraulic decrease of the plant growth potential. A slight, but continuous decrease of root growth during the day was noted both in wounded and in control plants that were not completely protected from ambient light in the transparent Petri dishes. When root systems were completely protected from ambient light by shading, root growth was almost steady throughout 24 h (Fig. 1B).In another experimental approach to clarify the connection between JA signaling and root growth reduction, we infected leaves with the avirulent Pseudomonas syringae pv. tomato (Pst) DC3000 avrRpt2 strain. Upon mechanical wounding and application of bacterial suspension in order to facilitate infection, root growth decreased more rapidly than upon mere wounding. In the course of two days after infection, vTip was lower in the wild types and the aos mutant suggesting that JA was not the major reason of the decrease of root growth. With Pst DC3000 deficient in coronatine biosynthesis, it was verified that the bacterial toxin was the major reason of the root growth reduction following Pst infection. Using the ethylene reception blocker 1-methyl cyclopropene (1-MCP), ethylene was also figured out to be involved in coronatine-mediated root growth impairment in Arabidopsis. Thus, root growth of Arabidopsis is more sensitive to ethylene than to JA which is very different to observations on N. attenuata.The conclusion has to be drawn that elicitation of JA-bursts in the leaves of A. thaliana does not induce the same root growth reactions as in N. attenuata, although roots of both species react towards MeJA externally applied to the cultivation medium. This in turn demonstrates clearly that the interpretation of the JA signal differs between species. Possibly, this reflects different survival strategies to which the two investigated annual rosette species have evolved. While N. attenuata uses the root as a safe retreat for resources allowing later re-growth after the herbivore threat has passed by, A. thaliana is more successful in its ecological niche if it does not slow down growth in response to herbivory but continues its development as rapidly as possible.  相似文献   

13.
The specificities of the plant environment and its effects on fungal growth are not yet fully explored. Both pH and Eh play a key role during this interaction, but are often studied independently or at different scales. We aimed at investigating whether the methods developed for the joint characterization of the pH and Eh in soil could be transposed to fungi. On artificial media, the growth of all 16 species tested significantly altered either Eh, pH or both. Measuring Eh reveals that even the species not modifying pH can have an impact on the surrounding environment. Reciprocally, fungi responded to pH and Eh parameters, both quantitatively with a decrease in colony diameter and qualitatively with colony aspect repeatedly and thoroughly modified. In infected oilseed rape plant stems, pH and Eh were significantly altered. The observed alcalinisation or acidification correlates with canker length. The joint characterization of both parameters will allow understanding the impact of fungi on their environment, and conversely of the environment on fungal growth. The availability of methods for measurement opens the prospect to study combinations of stresses, and get an understanding of the involvement of pH and Eh modifications in these interactions.  相似文献   

14.
The catalase activity and the isozyme pattern of the metalloenzyme system superoxide dismutase (SOD) have been determined in pea ( Pisum sativum L., cv, Lincoln) leaves of different ages (apical, middle and lower), during several stages of plant development. Pea seedlings were grown in full nutrient solution in a phytotron. Catalase activity was determined polarographically, and superoxide dismutase isozymes (Mn-SOD, Cu, Zn-SOD I and Cu, Zn-SOD II) were separated by acrylamide gel electrophoresis and their relative amounts quantified by densitonietry. The results indicate that the relative amounts of SOD isozymes are slightly different in leaves of different ages during plant growth and, interestingly, each molecular form of SOD shows a clearly distinct pattern during plant development. These changes in the relative percentages of SOD isozymes could be due to the induction of the distinct molecular forms of SOD by the metals Mn, Cu and Zn, translocated to the different leaves as a result of plant development. The relative percentage of the Mn-SOD isozyme showed a similar pattern to that of catalase activity, suggesting a possible link between these two metalloenzymes at subcellular level, both cooperating to remove the toxic effects of O-2 and H2O2.
An additional conclusion is that before a certain metalloenzyme can be used as a marker to assess the plant micronutrient status, it is essential to have a detalled study of its activity pattern in leaves of different age during plant development.  相似文献   

15.
16.
KIFC1 is a C-terminal kinesin motor associated with the nuclear membrane and acrosome in round and elongating spermatids. This location in developing spermatids is consistent with possible roles in acrosome elongation and manchette motility or both. Here we describe the association of the KIFC1 motor with a complex containing the nucleoporin NUP62. Formation of this complex is developmentally regulated, being absent before puberty and appearing only after nuclear elongation has begun. In addition, the integrity of this complex is dependent on GTP hydrolysis and the GTP state of the small GTPase RAN. Concomitant with the association of this motor with the NUP62-containing complex is an apparent reorganization of the nuclear pore with loss of NUP62 from larger complexes containing other nucleoporins. The association of KIFC1 with a component of the nuclear membrane is more consistent with a role for this motor in acrosome/manchette transport along the nuclear membrane than for a role for this motor in transport of vesicles along the outer face of the manchette.  相似文献   

17.
Post-translational modifications play important roles during the stabilisation and activation of p53 by various genotoxic and non-genotoxic stresses. Ser392 has been reported to be a major UV-stimulated phosphorylation site that is modified through the p38 MAPK pathway in a manner that may involve recruitment of CK2. Here we show that phosphorylation of Ser392 is an integral event that occurs not only in response to UV, but also during the induction of p53 by a range of stimuli including treatment of cells with the MDM2 inhibitor, Nutlin 3a. Strikingly, phosphorylation of Ser392 and Ser33 was also observed following induction of the p53 pathway by ARF which has previously been thought to induce p53 in a phosphorylation-independent manner. The induction of Ser392 phosphorylation by diverse stimuli can be explained by a common mechanism in which its phosphorylation at a low rate, coupled with the rapid turnover of p53, limits the accumulation of phosphorylated molecules until a stimulus stabilises p53 and allows the Ser392-phosphorylated p53 to accumulate. We also provide biological evidence that Ser392 phosphorylation is not mediated by a UV-associated route involving p38 MAPK, either directly or indirectly via CK2. These data suggest that, physiologically, Ser392 may be phosphorylated by an, as yet, unidentified protein kinase.  相似文献   

18.
We cloned and sequenced the acetylcholinesterase gene and cDNA of zebrafish, Danio rerio. We found a single gene (ache) located on linkage group LG7. The relative organization of ache, eng2, and shh genes is conserved between zebrafish and mammals and defines a synteny. Restriction fragment length polymorphism analysis was allowed to identify several allelic variations. We also identified two transposable elements in non-coding regions of the gene. Compared with other vertebrate acetylcholinesterase genes, ache gene contains no alternative splicing at 5' or 3' ends where only a T exon is present. The translated sequence is 60-80% identical to acetylcholinesterases of the vertebrates and exhibits an extra loop specific to teleosts. Analysis of molecular forms showed a transition, at the time of hatching, from the globular G4 form to asymmetric A12 form that becomes prominent in adults. In situ hybridization and enzymatic activity detection on whole embryos confirmed early expression of the acetylcholinesterase gene in nervous and muscular tissues. We found no butyrylcholinesterase gene or activity in Danio. These findings make zebrafish a promising model to study function of acetylcholinesterase during development and regulation of molecular forms assembly in vivo.  相似文献   

19.
It has been shown previously that height growth and bud phenology are influenced by the temperature during zygotic embryogenesis in Picea abies. To test whether this phenomenon operates within individual plants, clones produced through somatic embryogenesis were used. Seeds were from a full-sib family produced in both a cold (outdoor) and a warm (inside a glasshouse) environment. Embryogenic clones derived from mature zygotic embryos from both crossing environments were cultured at 18, 23 and 28 degrees C during the proliferation and embryo maturation steps. After the second growing season in a glasshouse, plants from the warm seed production environment were taller and had significantly later bud set. For the first time, it is also shown that plants are influenced by the in vitro temperature during somatic embryo development. The warmer the temperature, the later the plants formed terminal buds. The differences were similar to those produced by a provenance separation of 4-6 degrees of latitude. The results indicate that there exists a mechanism in P. abies that operates during embryo development and adjusts the timing of bud set in accordance with the temperature conditions in which the mother tree lives. This in turn counteracts negative effects of gene flow among populations located along altitudinal and latitudinal gradients.  相似文献   

20.
The aim was to evaluate whether blockade of ANG II effects during renal development modifies the renal response to an increment of plasma amino acid concentration. It was also examined in anesthetized rats whether the reduction of the renal ability to eliminate an acute volume expansion (VE), elicited by blockade of ANG II during renal development, is sex and/or age dependent. Newborn Sprague-Dawley rats were treated with vehicle or an AT(1)-receptor antagonist (ARA) during postnatal nephrogenesis. Amino acid infusion induced increments (P < 0.05) of glomerular filtration rate (31 +/- 6%) and renal plasma flow (26 +/- 5%) in male but not in female vehicle-treated rats. Natriuretic and diuretic responses to amino acid infusion were similar in male and female vehicle-treated rats. These renal hemodynamics and excretory responses to amino acid infusion were abolished in ARA-treated rats. Renal responses to VE were evaluated at 3-4 and 9-10 mo of age in vehicle and ARA-treated rats. VE-induced natriuresis and diuresis were reduced by more than 38% (P < 0.05) in 3- to 4-mo-old male and female ARA-treated rats. An age-dependent reduction (P < 0.05) in the renal ability to eliminate VE was found in male but not in female rats treated with ARA. Our results demonstrate that the renal effects induced by an increment in amino acids are abolished when ANG II effects have been reduced during nephrogenesis. In addition, this reduction of ANG II effects elicits an impairment of the renal ability to eliminate an acute VE in males and females, which is aggravated by age only in male rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号