首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three species of creekside trees were monitored weekly during the 2007 and 2008 growing seasons. The 2007 growing season was wet early, but became drier as the season progressed. In contrast, the 2008 growing season was dry early, but became wetter as the season progressed. Creekside trees were measured to determine effects of changing water regimes on leaf-level processes. Lonicera tatarica plants were compared to Morus alba and Celtis occidentalis trees. Leaves were monitored for changes in stomatal conductance, transpiration, δ13C, δ15N, δD, leaf temperature, and heat losses via latent, sensible, and radiative pathways. δD of creek water was more similar to ground water than to rain water, but the creek was partially influenced by summer rains. δD of bulk leaf material was significantly higher in individuals of C. occidentalis compared to the other species, consistent with source water coming from shallower soil layers. Despite decreasing water levels, none of these tree species showed signs of water stress. There were no significant differences between species in stomatal conductance or transpiration. Leaf δ13C was significantly lower in individuals of L. tatarica compared to the other species. Differences in δ13C were attributed to a lower carboxylation capacity, consistent with lower leaf nitrogen content in L. tatarica plants. Leaf δ15N was significantly lower in individuals of L. tatarica compared to the other species, consistent with uptake of a different N source. Two of the three sites appeared to be affected by inorganic N from fertilizer run-off. Evidence is presented that these species acquired water and nitrogen from different sources, resulting from differences in root uptake patterns.  相似文献   

2.
Moisture availability has the potential to affect tropical forest productivity at scales ranging from leaf to ecosystem. We compared data for leaf photosynthetic, chemical and structural traits of canopy trees, litterfall production and seasonal availability of soil water at four sites across a precipitation gradient (1,800–3,500 mm year–1) in lowland Panamanian forest to determine how productivity at leaf and ecosystem scales may be related. We found stronger seasonality in soil water potential at drier sites. Values were close to zero at all sites during the wet season and varied between a minimum of –2.5 MPa and –0.3 MPa at the driest and wettest sites, respectively, during the dry season. Leaf photosynthesis and nitrogen concentration decreased with increasing precipitation, whereas leaf thickness increased with increasing precipitation. Leaf toughness and fiber/N ratios increased with increasing precipitation indicating reduced nutritional content and palatability with precipitation. Seasonality of litter production and quality decreased with increasing precipitation, but the amount of litterfall produced was not substantially different among sites. It appears that in Neotropical forest, moisture availability is associated with leaf photosynthetic and defensive traits that influence litterfall timing and quality. Therefore, variation in leaf physiological traits has the potential to influence decomposition and nutrient cycling through effects on litter quality.  相似文献   

3.
Leaf phenology dictates the time available for carbon assimilation, transpiration and nutrient uptake in plants. Understanding the environmental cues that control phenology is therefore vital for predicting climate‐related changes to plant and ecosystem function. In contrast to temperate systems, and to a lesser degree, tropical forest systems, the cues initiating leaf drop in tropical savannas are poorly studied. We investigated the cues for leaf fall in a tropical monodominant arid savanna species, Colophospermum mopane, using an irrigation experiment. We tracked soil moisture, solar radiation, air temperature, leaf water status, leaf health and leaf carbon balance through the dry season in both irrigated and control plants. Water was the primary cue driving leaf loss of C. mopane rather than temperature or light. Trees watered throughout the dry season retained their canopies. These leaves remained functional and continued photosynthesis throughout the dry season. Leaf carbon acquisition rates did not decline with leaf age but were affected by soil moisture availability and temperature. Leaf loss did not occur when leaf carbon gain was zero, or when a particular leaf carbon threshold was reached. Colophospermum mopane is facultatively deciduous as water availability determines leaf drop in this widespread arid savanna species. Obligate deciduosity is not the only successful strategy in climates with a long dry season.  相似文献   

4.
Soil nitrogen (N) supply and uptake by regenerating trees is an important ecosystem attribute but difficult to quantify in partial-cut forests where light availability varies. The foliar attributes of N concentration (N%) and N per unit area (Na) may help characterize the influence of soil nutrition, but ideally the relationship between soils and foliage would be tested separately by species across well-defined light gradients. To do this, we examined foliar attributes of four tree species across gradients of light availability in 12 year-old partially-cut forests in northwest British Columbia, Canada. There were no differences in forest floor or mineral soil N mineralization rates across the light gradients, and for western hemlock (Tsuga heterophylla) and hybrid white spruce (Picea glauca x sitchensis), this consistent level of soil N supply corresponded with unchanging foliar N%. In contrast, foliar N% of Betula papyrifera (paper birch) and Thuja plicata (western redcedar) declined with shading, perhaps due to shifts in root-shoot biomass allocation for B. papyrifera, and climatic constraints on shade tolerance for T. plicata. Leaf δ13C approached an asymptote at approx. 40% full light for the coniferous species, but increased linearly with light for B. papyrifera. Foliar Na was linearly correlated with leaf δ13C for three species, reflecting the dual effect of light and nutrition on photosynthesis processes, and suggesting that foliar Na may be a simple parameter to integrate both resource constraints on regenerating saplings. These results demonstrate both support for and limits to foliar attributes among species in isolating soil N effects against light constraints in partial-cut forests.  相似文献   

5.
Resorption efficiency (RE) and proficiency, foliar nutrient concentrations, and relative soil nutrient availability were determined during 3 consecutive years in tree species growing under contrasting topographic positions (i.e., top vs. bottom and north vs. south aspect) in a tropical dry forest in Mexico. The sites differed in soil nutrient levels, soil water content, and potential radiation interception. Leaf mass per area (g m–2) increased during the growing season in all species. Soil P availability and mean foliar P concentrations were generally higher at the bottom than at the top site during the 3 years of the study. Leaf N concentrations ranged from 45.4 to 31.4 mg g–1. Leaf P varied from 2.3 to 1.8 mg g–1. Mean N and P RE varied among species, occasionally between top and bottom sites, and were higher in the dry than in the wet years of study. Senesced-leaf nutrient concentrations (i.e., a measure of resorption proficiency) varied from 13.7 to 31.2 mg g–1 (N) and 0.4 to 3.3 mg g–1 (P) among the different species and were generally indicative of incomplete nutrient resorption. Phosphorus concentrations in senesced leaves were higher at the bottom than at the top site and decreased from the wettest to the the driest year. Soil N and P availability were significantly different in the north- and south-facing slopes, but neither nutrient concentrations of mature and senesced leaves nor RE differed between aspects. Our results suggest that water more than soil nutrient availability controls RE in the Chamela dry forest, while resorption proficiency may be interactively controlled by both nutrient and water availability.  相似文献   

6.
Huang J  Boerner RE 《Oecologia》2007,153(2):233-243
This study examined tissue nutrient responses of Desmodium nudiflorum to changes in soil total inorganic nitrogen (TIN) and available phosphorus (P) that occurred as the result of the application of alternative forest management strategies, namely (1) prescribed low-intensity fire (B), (2) overstory thinning followed by prescribed fire (T + B), and (3) untreated control C), in two Quercus-dominated forests in the State of Ohio, USA. In the fourth growing season after a first fire, TIN was significantly greater in the control plots (9.8 mg/kg) than in the B (5.5 mg/kg) and T + B (6.4 mg/kg) plots. Similarly, available P was greater in the control sites (101 μg/g) than in the B (45 μg/kg) and T + B (65 μg/kg) sites. Leaf phosphorus ([P]) was higher in the plants from control site (1.86 mg/g) than in either the B (1.77 mg/g) or T + B plants (1.73 mg/g). Leaf nitrogen ([N]) and root [N] showed significant site–treatment interactive effects, while stem [N], stem [P], and root [P] did not differ significantly among treatments. During the first growing season after a second fire, leaf [N], stem [N], litter [P] and available soil [P] were consistently lower in plots of the manipulated treatments than in the unmanaged control plot, whereas the B and T + B plots did not differ significantly from each other. N resorption efficiency was positively correlated with the initial foliar [N] in the manipulated (B and T + B) sites, but there was no such relation in the unmanaged control plots. P resorption efficiency was positively correlated with the initial leaf [P] in both the control and manipulated plots. Leaf nutrient status was strongly influenced by soil nutrient availability shortly after fire, but became more influenced by topographic position in the fourth year after fire. Nutrient resorption efficiency was independent of soil nutrient availability. These findings enrich our understanding of the effects of ecosystem restoration treatments on soil nutrient availability, plant nutrient relations, and plant–soil interactions at different temporal scales.  相似文献   

7.
Schmidt  Susanne  Stewart  George R.  Ashwath  N. 《Plant and Soil》1999,215(1):73-84
Biologically driven markers or monitors were used to evaluate plant and ecosystem health of uranium-mining affected sites. Plant water, nitrogen (N) and phosphorus (P) status were used to measure physiological characteristics of tree and shrub species at sites perturbed by mining activities (waste rock dumps: WRD 1, WRD 2; mine wastewater irrigated woodland) and of species at undisturbed woodland (tropical savanna). Plant water status was evaluated by measuring leaf relative water content (RWC) and carbon isotope discrimination (δ13C). Leaf RWC varied significantly (P<0.0001) between wet and dry season in species at the woodland sites with higher RWC in the wet season compared to the dry season. No seasonal differences were observed in RWC in species at the WRDs. Leaf δ13C was similar in species at woodland sites and WRD 2 (−28.8 to −28.1‰) but was significantly (P<0.05) lower in species at WRD 1 (−27.6‰). This suggests that species at WRD 1 had a lower water availability and/or lower water use compared to species at all other sites. WRD substrate had an up to 4-orders of magnitude greater availability of inorganic phosphate (Pi) compared to woodland soil as determined using in situ ion exchange resin. Pi concentrations in xylem sap of species at WRDs were 2- to 3-fold higher compared to species at woodland sites. Plant nitrate reductase (NR) activity was low in most species at woodland and WRD 1. In contrast, Eucalyptus and Acacia species had high NR activities of up to 300–700 pkat g-1 fw at WRD 2 indicating that these species had greater nitrate use than species at all other sites. Nitrate availability in the top five cm of the profile, as determined using in situ ion exchange resins, increased at all sites in the wet season, but no significant differences were observed between sites using this method. However, traditional soil analysis revealed that WRD substrate had a 2-times higher nitrate content (0 to 1000 mm depth) compared to woodland soil. Thus, it is likely that plants at WRD2 accessed nitrate from deeper parts of the profile. Proline, an indicator of plant stress, was found in appreciable quantities in leaves of herbaceous species but not in woody species. Soil and leaf δ15N were measured to investigate N-cycling and the contribution of diazotrophic N2 fixation to plant N nutrition. Soil δ15N values were highest and most variable at WRD 2 (6.2‰) compared to all other sites (irrigated woodland 3.1‰, undisturbed woodland 2.5‰, WRD 1 0.9‰). This may indicate that N-turnover and nitrification was greatest at WRD 2 leading to greater 15N enrichment of soil N. At all sites, Acacia species were nodulated and putatively fixing N2. With the exception of WRD 2 where leaf δ15N of Acacia species averaged 0.9‰, Acacia species had 15N depleted values characteristic of species that receive N derived from N2 fixation (−0.8 to −0.6‰). Eucalyptus species at the woodland also had 15N depleted values (average −0.4‰) but 15N enriched values (0.3 to 1.8‰) at the three mining affected sites. The results show that for the plants studied foliar δ15N could not be used as an unequivocal measure of plant N sources. The results suggest that biomonitoring of plant and ecosystem health has potential in evaluating performance of mine site revegetation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
James JJ  Richards JH 《Oecologia》2005,145(1):113-122
In arid ecosystems, the ability to rapidly capture nitrogen (N) from brief pulses is expected to influence plant growth, survival, and competitive ability. Theory and data suggest that N capture from pulses should depend on plant growth rate and availability of other limiting resources. Theory also predicts trade-offs in plant stress tolerance and ability to capture N from different size pulses. We injected K15NO3, to simulate small and large N pulses at three different times during the growing season into soil around the co-dominant Great Basin species Sarcobatus vermiculatus, Chrysothamnus nauseosus ssp. consimilis, and Distichlis spicata. Soils were amended with water and P in a partial factorial design. As predicted, all study species showed a comparable decline in N capture from large pulses through the season as growth rates slowed. Surprisingly, however, water and P availability differentially influenced the ability of these species to capture N from pulses. Distichlis N capture increased up to tenfold with water addition while Chrysothamnus N capture increased up to threefold with P addition. Sarcobatus N capture was not affected by water or P availability. Opposite to our prediction, Sarcobatus, the most stress tolerant species, captured less N from small pulses but more N from large pulses relative to the other species. These observations suggest that variation in N pulse timing and size can interact with variable soil water and P supply to determine how N is partitioned among co-existing Great Basin species.  相似文献   

9.
Post-fire changes in desert vegetation patterns are known, but the mechanisms are poorly understood. Theory suggests that pulse dynamics of resource availability confer advantages to invasive annual species, and that pulse timing can influence survival and competition among species. Precipitation patterns in the American Southwest are predicted to shift toward a drier climate, potentially altering post-fire resource availability and consequent vegetation dynamics. We quantified post-fire inorganic N dynamics and determined how annual plants respond to soil inorganic nitrogen variability following experimental fires in a Mojave Desert shrub community. Soil inorganic N, soil net N mineralization, and production of annual plants were measured beneath shrubs and in interspaces during 6 months following fire. Soil inorganic N pools in burned plots were up to 1 g m−2 greater than unburned plots for several weeks and increased under shrubs (0.5–1.0 g m−2) more than interspaces (0.1–0.2 g m−2). Soil NO3 −N (nitrate−N) increased more and persisted longer than soil NH4 +−N (ammonium−N). Laboratory incubations simulating low soil moisture conditions, and consistent with field moisture during the study, suggest that soil net ammonification and net nitrification were low and mostly unaffected by shrub canopy or burning. After late season rains, and where soil inorganic N pools were elevated after fire, productivity of the predominant invasive Schismus spp. increased and native annuals declined. Results suggest that increased N availability following wildfire can favor invasive annuals over natives. Whether the short-term success of invasive species following fire will direct long-term species composition changes remains to be seen, yet predicted changes in precipitation variability will likely interact with N cycling to affect invasive annual plant dominance following wildfire.  相似文献   

10.
Uncertainty about controls on long-term carbon (C) and nitrogen (N) balance, turnover, and isotopic composition currently limits our ability to predict ecosystem response to disturbance and landscape change. We used a two-century, postglacial chronosequence in Glacier Bay, Alaska, to explore the influence of C and N dynamics on soil and leaf stable isotopes. C dynamics were closely linked to soil hydrology, with increasing soil water retention during ecosystem development resulting in a linear decrease in foliar and soil δ13C, independent of shifts in vegetation cover and despite constant precipitation across sites. N dynamics responded to interactions among soil development, vegetation type, microbial activity, and topography. Contrary to the predictions of nutrient retention theory, potential nitrification and denitrification were high, relative to inorganic N stocks, from the beginning of the chronosequence, and gaseous and hydrological N losses were highest at mid-successional sites, 140–165 years since deglaciation. Though leaching of dissolved N is considered the predominant pathway of N loss at high latitudes, we found that gaseous N loss was more tightly correlated with δ15N enrichment. These results suggest that δ13C in leaves and soil can depend as much on soil development and associated water availability as on climate and that N availability and export depend on interactions between physical and biological state factors.  相似文献   

11.
Several hypotheses relate a negative relationship between foliar concentration of phenolic compounds and nitrogen to physiological processes such as leaf development, seasonal variation in allocation priorities, nutrient, light and water related growth limitation, as well as herbivore attack. We sampled four common deciduous woody species of central Tanzania monthly during the growing season to assess changes in this relation and their nutritional value to ruminants. We found a negative relationship between leaf N and phenolic compounds within and among species and sites that weakens during the course of the growing season that was consistent for total phenolics, but not for condensed tannins. Leaf N concentration decreased throughout the season, its withdrawal being positively related with leaf N at first sampling date. Secondary compounds concentration showed no consistent seasonal trend. Concentrations of leaf N and phenolics were correlated with 13C discrimination in the two shrub species and with soil P in the two tree species. Digestibility was positively correlated with foliar N and negatively correlated with secondary compounds. We conclude that phenolic compounds may serve as reliable clues for selecting foliage rich in N at site and species level only during the first months of the growing season.  相似文献   

12.
We investigated photosynthesis of five plant species growing in the understory at three sites (1,170-, 1,600- and 2,100-mm annual moisture inputs), along the geographical range of coastal California redwood forest, to determine whether greater inputs of rain and fog at northern sites enhance photosynthetic utilization of fluctuating light. Measurements of understory light environment and gas exchange were carried out to determine steady state and dynamic photosynthetic responses to light. Leaf area index ranged from 4.84 at the 2,100-mm site to 5.98 at the 1,170-mm site. Maximum rates of net photosynthesis and stomatal conductance (g) did not vary appreciably within species across sites. Photosynthetic induction after a change from low to high light was significantly greater in plants growing in lower light conditions regardless of site. Photosynthetic induction also increased with the rate of g in diffuse light, prior to the increase to saturating light levels. Post-illumination CO2 assimilation was the largest factor contributing to variation in C gain during simulated lightflecks. The duration of post-illumination photosynthetic activity, total CO2 assimilation per light received, and light use efficiency during simulated lightflecks increased significantly with moisture inputs in four out of five species. Increasing leaf N concentration with increasing moisture inputs in three out of five species, coupled with changes in leaf N isotopic composition with the onset of the summer fog season suggest that natural N deposition increases with rain and fog inputs and contributes to greater utilization of fluctuating light availability in coastal California redwood forests.  相似文献   

13.
In monoculture, certain plant species are able to preferentially utilize different nitrogen (N) forms, both inorganic and organic, including amino acids and peptides, thus forming fundamental niches based on the chemical form of N. Results from field studies, however, are inconsistent: Some showing that coexisting plant species predominantly utilize inorganic N, while others reveal distinct interspecies preferences for different N forms. As a result, the extent to which hypothetical niches are realized in nature remains unclear. Here, we used in situ stable isotope tracer techniques to test the idea, in temperate grassland, that niche partitioning of N based on chemical form is related to plant productivity and the relative availability of organic and inorganic N. We also tested in situ whether grassland plants vary in their ability to compete for, and utilize peptides, which have recently been shown to act as an N source for plants in strongly N-limited ecosystems. We hypothesized that plants would preferentially use NO3-N and NH4+-N over dissolved organic N in high-productivity grassland where inorganic N availability is high. On the other hand, in low-productivity grasslands, where the availability of dissolved inorganic N is low, and soil availability of dissolved organic N is greater, we predicted that plants would preferentially use N from amino acids and peptides, prior to microbial mineralization. Turves from two well-characterized grasslands of contrasting productivity and soil N availability were injected, in situ, with mixtures of 15N-labeled inorganic N (NO3 and NH4+) and 13C15N labeled amino acid (l-alanine) and peptide (l-tri-alanine). In order to measure rapid assimilation of these N forms by soil microbes and plants, the uptake of these substrates was traced within 2.5 hours into the shoots of the most abundant plant species, as well as roots and the soil microbial biomass. We found that, contrary to our hypothesis, the majority of plant species across both grasslands took up most N in the form of NH4+, suggesting that inorganic N is their predominant N source. However, we did find that organic N was a source of N which could be utilized by plant species at both sites, and in the low-productivity grassland, plants were able to capture some tri-alanine-N directly. Although our findings did not support the hypothesis that differences in the availability of inorganic and organic N facilitate resource partitioning in grassland, they do support the emerging view that peptides represent a significant, but until now neglected, component of the terrestrial N cycle.  相似文献   

14.
Successional changes in belowground ectomycorrhizal fungal (EMF) communities have been observed with increasing forest stand age; however, mechanisms behind this change remain unclear. It has been hypothesized that declines of inorganic nitrogen (N) and increases of organic N influence changes in EMF taxa over forest development. In a post-wildfire chronosequence of six jack pine (Pinus banksiana) stands ranging in age from 5 to 56 years, we investigated EMF community composition and compared shifts in taxa with detailed soluble inorganic and organic N data. Taxa were identified by internal transcribed spacer rDNA sequencing, and changes in community composition evaluated with non-metric multi-dimensional scaling (NMDS). Dissimilarities in the community data were tested for correlations with N variables. We observed a successional shift along NMDS axis 1 from such taxa as Suillus brevipes and Thelephora terrestris in sites age 5 and 11 to species of Cortinarius and Russula, among others, in the four older sites. This change was positively correlated with soluble organic N (SON) (r 2 = 0.902, P = 0.033) and free amino-acid N (r 2 = 0.945, P = 0.021), but not inorganic N. Overall, our results show a successional shift of EMF communities occurring between stand initiation and canopy closure without a change in species of the dominant plant–host, and associated with SON and free amino-acid N in soil. It is uncertain whether EMF taxa are responding to these organic N forms directly, affecting their availability, or are ultimately responding to changes in other site variables, such as belowground productivity.  相似文献   

15.
The effect of leaf nitrogen (N) on the photosynthetic capacity and the light and temperature response of photosynthesis was studied in the ecologically similar annuals Chenopodium album (C3) and Amaranthus retroflexus (C4). Photosynthesis was linearly dependent on leaf N per unit area (Na) in both species. A. retroflexus exhibited a greater dependence of photosynthesis on Na than C. album and at any given Na, it had a greater light saturated photosynthesis rate than C. album. The difference between the species became larger as Na increased. These results demonstrate a greater photosynthetic N use efficiency in A. retroflexus than C. album. However, at a given applied N level, C. album allocated more N to a unit of leaf area so that photosynthetic rates were similar in the two species. Leaf conductance to water vapor increased linearly with Na in both species, but at a given photosynthetic rate, leaf conductance was higher in C. album. Thus, A. retroflexus had a greater water use efficiency than C. album. Water use efficiency was independent of leaf N in C. album, but declined with decreasing N in A. retroflexus.  相似文献   

16.
Understanding the responses of invasive and native populations to environmental change is crucial for reliable predictions of invasions in the face of global change. While comparisons of responses across invasive species with different life histories have been performed before, comparing functional traits of congeneric native and invasive species may help to reveal driving factors associated with invasion. Here we compared morphological functional trait patterns of an invasive species (Impatiens parviflora) with its congeneric native species (I. noli-tangere) along an approximately 1600 km European latitudinal gradient from France (49°34′N) to Norway (63°40′N). Soil nitrogen was recorded during six weeks of the growing season, and light, soil moisture, and nutrient availability were estimated for each sampled population using community weighted means of indicator values for co-occurring species. Temperature data were gathered from nearby weather stations.Both the native and invasive species are taller at higher latitudes and this response is strongest in the invasive species. Seed mass and number of seeds per capsule increase in I. noli-tangere but decrease in I. parviflora towards higher latitudes. Surprisingly, plant height in the invasive I. parviflora decreases with increasing soil nitrogen availability. The latitudinal pattern in seed mass is positively related to temperature in I. noli-tangere and negatively in I. parviflora. Leaf area of both species decreases with increasing Ellenberg indicator values for nitrogen and light but increases with increasing soil moisture. Soil nitrogen concentrations and Ellenberg indicator values for nitrogen have significant positive (I. noli-tangere) and negative (I. parviflora) effects on the number of seeds per capsule. Our results show that the native I. noli-tangere has efficient reproduction at its range edge while the invasive I. parviflora shows a marked decrease in seed size and seed number per capsule. These patterns are unrelated to the growth and obtained size of the plants: even low soil nitrogen availability in the north seemed not to limit plant growth and size. Our results suggest that the invasive I. parviflora tends to become more invasive at lower latitudes by producing heavier seeds and more seeds per capsule.  相似文献   

17.
The first trifoliate of soybean was shaded when fully expanded, while the plant remained in high light; a situation representative for plants growing in a closed crop. Leaf mass and respiration rate per unit area declined sharply in the first few days upon shading and remained rather constant during the further 12 days of the shading treatment. Leaf nitrogen per unit area decreased gradually until the leaves were shed. Leaf senescence was enhanced by the shading treatment in contrast to control plants growing in low light. Shaded leaves on plants grown at low nutrient availability senesced earlier than shaded leaves on plants grown at high nutrient availability. The light saturated rate of photosynthesis decreased also gradually during the shading treatment, but somewhat faster than leaf N, whereas chlorophyll contents declined somewhat slower than leaf N.
Partitioning of N in the leaf over main photosynthetic functions was estimated from parameters derived from the response of photosynthesis to CO2. It appeared that the N exported from the leaf was more at the expense of compounds that make up photosynthetic capacity than of those involved in photon absorption, resulting in a change in partitioning of N within the photosynthetic apparatus. Photosynthetic nitrogen use efficiency increased during the shading treatment, which was for the largest part due to the decrease in leaf N content, to some extent to the decrease in respiration rate and only for a small part to change in partitioning of N within the photosynthetic apparatus.  相似文献   

18.
Resorption of nitrogen (N) from senescing leaves is an important conservation mechanism that allows plants to use the same N repeatedly. Seasonal variations in leaf nitrogen of mature green and senescing leaves and N resorption in Salix gordejevii Chang, a sandy shrub in northern China, were studied. Our objective was to compare N resorption of this Salix species that successfully occupy different habitats (shifting sandland, fixed sandland and lowland) with differences in soil N availability and moisture. Nitrogen concentrations in green and senescing leaves were higher in June and July. N resorption efficiency (percentage reduction of N between green and senescing leaves) was highest at shifting sandland, intermediate at fixed sandland, and lowest at lowland. There was a clear seasonal variation in N-resorption efficiency, with a lower value at the early growing season and a higher value during summer. N resorption efficiency was lower at the sites with higher soil N availability, suggesting that the efficiency of the resorption process is determined by the availability of the nutrient in the soil. Resorption from senescing leaves may play an important role in the nitrogen dynamics of sandy plants and reduce the nitrogen requirements for plant growth. We conclude that N resorption from senescing leaves in S. gordejevii was correlated to soil characteristics and higher N resorption on poor soils is a phenotypic adjustment by this species to maximize N-use at low availability.  相似文献   

19.

Key message

Borneo’s tropical heath (kerangas) forest has limited soil nutrient availability, and high variation in aboveground structure and fine-root biomass. This variation depends on altitude and soil nitrogen availability.

Abstract

To elucidate the biotic and abiotic factors affecting the variation in fine-root biomass (FRB, <2 mm diameter) of trees growing under nutrient-poor environments in Sabah, North Borneo, we investigated FRB in different forests with varying soil nitrogen (N) availability. We selected two study sites at different altitudes: the Maliau Basin (ca. 1000 m asl) and Nabawan (ca. 500 m asl). Both sites included tropical heath (kerangas) forest, on infertile soils (podzols) with a surface organic horizon overlying a bleached (eluviated) mineral horizon, and taller forests on more fertile non-podzolic soils. FRB was obtained from each plot by soil coring (to a depth of 15 cm). FRB increased with decreasing soil inorganic N content (NH4–N and NO3–N), tree height, and aboveground biomass. Thus, higher proportions of carbon resources were allocated to fine-roots in stands with lower N availability. FRB was significantly greater at the Maliau Basin than at Nabawan, reflecting lower soil N availability at higher altitude. Our results demonstrate high variation in FRB among the heath forests, and suggest that fine-root development is more prominent under a cooler climate where N availability limits tree growth owing to slower decomposition. The variation in N availability under the same climate (i.e., at the same altitude) appears to be related to the extent of soil podzolization.
  相似文献   

20.
Long-term exposure to elevated CO2 concentration will affect the traits of wild plants in association with other environmental factors. We investigated multiple effects of atmospheric CO2 concentration, irradiance, and soil N availability on the leaf photosynthetic traits of a herbaceous species, Polygonum sachalinense, growing around natural CO2 springs in northern Japan. Atmospheric CO2 concentration and its interaction with irradiance and soil N availability affected several leaf traits. Leaf mass per unit area increased and N per mass decreased with increasing CO2 and irradiance. Leaf N per area increased with increasing soil N availability at higher CO2 concentrations. The photosynthetic rate under growth CO2 conditions increased with increasing irradiance and CO2, and with increasing soil N at higher CO2 concentrations. The maximal velocity of ribulose 1,5-bisphosphate carboxylation (V cmax) was affected by the interaction of CO2 and soil N, suggesting that down-regulation of photosynthesis at elevated CO2 was more evident at lower soil N availability. The ratio of the maximum rate of electron transport to V cmax (J max/V cmax) increased with increasing CO2, suggesting that the plants used N efficiently for photosynthesis at high CO2 concentrations by changes in N partitioning. To what extent elevated CO2 influenced plant traits depended on other environmental factors. As wild plants are subject to a wide range of light and nutrient availability, our results highlight the importance of these environmental factors when the effects of elevated CO2 on plants are evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号