首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 518 毫秒
1.
2.
3.
4.
5.
Senescence and reserve mobilization are integral components of plant development, are basic strategles in stress mitigation, and regulated at least in part by cytokinin. In the present study the effect of altered cytokinin metabolism caused by senescence-specific autoregulated expression of the Agrobacterium tumefaciens IPT gene under control of the PSAG12 promoter (PSAG12-IPT) on seed germination and the response to a water-deficit stress was studied in tobacco (Nicotiana tabacum L.). Cytokinin levels, sugar content and composition of the leaf strata within the canopy of wild-type and PSAG12-IPT plants confirmed the reported altered source–sink relations. No measurable difference in sugar and pigment content of discs harvested from apical and basal leaves was evident 72 h after incubation with (+)-ABA or in darkness, indicating that expression of the transgene was not restricted to senescing leaves. No difference in quantum efficiency, photosynthetic activity, accumulation of ABA, and stomatal conductance was apparent in apical, middle and basal leaves of either wild-type or PSAG12-IPT plants after imposition of a mild water stress. However, compared to wild-type plants, PSAG12-IPT plants were slower to adjust biomass allocation. A stress-induced increase in root:shoot ratio and specific leaf area (SLA) occurred more rapidly in wild-type than in PSAG12-IPT plants reflecting delayed remobilization of leaf reserves to sink organs in the transformant. PSAG12-IPT seeds germinated more slowly even though abscisic acid (ABA) content was 50% that of the wild-type seeds confirming cytokinin-induced alterations in reserve remobilization. Thus, senescence is integral to plant growth and development and an increased endogenous cytokinin content impacts source–sink relations to delay ontogenic transitions wherein senescence in a necessary process.  相似文献   

6.
7.
Leaf senescence is a complex and highly organized process resulting in numerous changes of gene expression and metabolic procedures. However, the exact mechanisms underlying these changes are not well understood. In this study, we reported a rice (Oryza sativa) T-DNA insertion mutant impaired in an Abc1 kinase family gene with a dwarf and pale-green phenotype. The mutant showed reduced pigment content and photosynthetic efficiency and increased superoxide dismutase activity in leaves. The mutated gene, designated OsABC1-2, is expressed primarily in green tissues and/or organs and encodes a protein localized in chloroplast envelope. Expression of the gene was drastically suppressed by dark treatment. Overexpression of the gene in rice enhanced tolerance to prolonged dark-induced stress. Phylogenetic analysis revealed that the plant Abc1 proteins could be divided into three subgroups and OsAbc1-2 resides in a subgroup with potential chloroplast origin. Our results suggest that divergence has occurred among plant Abc1 family and chloroplast Abc1 kinases play potential roles in regulating dark-induced senescence of plants.  相似文献   

8.
9.
10.
11.
Senescence is a highly regulated process accompanied by changes in gene expression. While the mRNA levels of most genes decline, the mRNA levels of specific genes (senescence associated genes, SAGs) increase during senescence. Arabidopsis SAG12 (AtSAG12) gene codes for papain-like cysteine protease. The promoter of AtSAG12 is SA-responsive and reported to be useful to delay senescence by expressing cytokinin biosynthesis gene isopentenyltransferase specifically during senescence in several plants including Arabidopsis, lettuce and rice. The physiological role of AtSAG12 is not known; the homozygous atsag12 mutant neither fails to develop senescence-associated vacuoles nor shows any morphological phenotype. Through BLAST search using AtSAG12 amino acid sequences as query, we identified a few putative homologues from rice genome (OsSAGs; Oryza sativa SAGs). OsSAG12-1 is the closest homologue of AtSAG12 with 64% similar amino acid composition. Expression of OsSAG12-1 is induced during senescence and pathogen-induced cell death. To evaluate the possible role of OsSAG12-1 we generated RNAi transgenic lines in Japonica rice cultivar TP309. The transgenic lines developed early senescence at varying levels and showed enhanced cell death when inoculated with bacterial pathogen Xanthomonas oryzae pv.oryzae. Our results suggest that OsSAG12-1 is a negative regulator of cell death in rice.  相似文献   

12.
An Arabidopsis thaliana mutant, exhibiting anther specific GUS expression, identified from a mutant population of Arabidopsis tagged with a promoterless β-glucuronidase (GUS), carries the T-DNA insertions at two distinct loci. We have been able to segregate the two inserts from each other by backcrossing with wild type plants. The insertion responsible for anther specific GUS expression in segregating population has been identified and confirmed to be in the upstream region of a putative peroxidase gene, AT2G24800. Here we report detailed histochemical and molecular characterization of the mutant Anth85, carrying a single insertion of T-DNA in the peroxidase gene. In Anth85, the GUS expression was observed in the anthers and rosette of the young seedlings. The expression of GUS in the anthers was restricted to the tapetum and microspores. The mutant has no developmental defects and the gene appears to be redundant for normal plant growth. Cloning of upstream region and detailed deletion study of upstream region in transgenic plants is likely to lead to the identification of anther specific promoter elements.  相似文献   

13.
14.
15.
SAG12, an Arabidopsis gene encoding a cysteine protease, is expressed only in senescent tissues. Studies of the expression patterns of a variety of genes showing senescence-specific or senescence-preferential expression indicate that plant senescence involves multiple regulatory pathways. In this study it is shown that the expression of SAG12 is specifically activated by developmentally controlled senescence pathways but not by stress- or hormone-controlled pathways. Using SAG12 as a molecular marker for the study of developmental senescence, we show that cytokinin, auxin, and sugars can repress developmental senescence at the molecular level. Studies using promoter deletions and recombination of promoter fragments indicate that a highly conserved region of the SAG12 promoter is responsible for senescence-specific regulation, while at least two other regions of the SAG12 promoter are important for full promoter activity. Extracts from young and senescent Arabidopsis leaves contain factors that exhibit differential binding to the senescence-responsive promoter element.  相似文献   

16.
17.
ALADIN is a component of the nuclear pore complex in higher eukaryotes. An Arabidopsis knockout line that had a T-DNA insertion in the ALADIN gene was defective in plant growth and thylakoid development and had reduced photosynthetic activity resulting from lower chlorophyll accumulation. The mutation appeared to decrease the level of chloroplast RuBisCO subunits and PSBA and PGL35 proteins. Unexpectedly, the T-DNA insertion in the ALADIN gene decreased the expression of the neighboring gene PSRP5, which functions in translation in chloroplasts. The mutant phenotype was rescued by expressing PSRP5, but not by expressing ALADIN. The abnormal phenotypes were also detected in an artificial microRNA (amiRNA)-mediated PSRPS5 knockdown, but not in an amiRNA-mediated ALADIN knockdown line. Thus, users of T-DNA insertions should be aware that a T-DNA insertion in one gene can have effects on the expression of neighboring genes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号