首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant BAHD acyltransferases perform a wide range of enzymatic tasks in primary and secondary metabolism. Acyl-CoA monolignol transferases, which couple a CoA substrate to a monolignol creating an ester linkage, represent a more recent class of such acyltransferases. The resulting conjugates may be used for plant defense but are also deployed as important “monomers” for lignification, in which they are incorporated into the growing lignin polymer chain. p-Coumaroyl-CoA monolignol transferases (PMTs) increase the production of monolignol p-coumarates, and feruloyl-CoA monolignol transferases (FMTs) catalyze the production of monolignol ferulate conjugates. We identified putative FMT and PMT enzymes in sorghum (Sorghum bicolor) and switchgrass (Panicum virgatum) and have compared their activities to those of known monolignol transferases. The putative FMT enzymes produced both monolignol ferulate and monolignol p-coumarate conjugates, whereas the putative PMT enzymes produced monolignol p-coumarate conjugates. Enzyme activity measurements revealed that the putative FMT enzymes are not as efficient as the rice (Oryza sativa) control OsFMT enzyme under the conditions tested, but the SbPMT enzyme is as active as the control OsPMT enzyme. These putative FMTs and PMTs were transformed into Arabidopsis (Arabidopsis thaliana) to test their activities and abilities to biosynthesize monolignol conjugates for lignification in planta. The presence of ferulates and p-coumarates on the lignin of these transformants indicated that the putative FMTs and PMTs act as functional feruloyl-CoA and p-coumaroyl-CoA monolignol transferases within plants.

A group of identified BAHD acyltransferases function as feruloyl-CoA monolignol transferases and/or p-coumaroyl-CoA monolignol transferases in vitro and in planta.  相似文献   

2.
Grabber JH  Lu F 《Planta》2007,226(3):741-751
Abstract Grass cell walls are atypical because their xylans are acylated with ferulate and lignins are acylated with p-coumarate. To probe the role and interactions of these p-hydroxycinnamates during lignification, feruloylated primary cell walls isolated from maize cell suspensions were lignified with coniferyl and sinapyl alcohols and with varying levels of p-coumarate esters. Ferulate xylan esters enhanced the formation of wall-bound syringyl lignin more than methyl p-coumarate, however, maximal concentrations of syringyl lignin were only one-third that of guaiacyl lignin. Including sinapyl p-coumarate, the presumed precursor of p-coumaroylated lignins, with monolignols unexpectedly accelerated peroxidase inactivation, interfered with ferulate copolymerization into lignin, and had minimal or adverse effects on cell wall lignification. Free phenolic groups of p-coumarate esters in isolated maize lignin and pith cell walls did not undergo oxidative coupling with each other or with added monolignols. Thus, the extensive formation of syringyl-rich lignins and the functional role of extensive lignin acylation by p-coumarate in grasses remains a mystery.  相似文献   

3.
Lignin is a major component of plant cell walls that is essential to their function. However, the strong bonds that bind the various subunits of lignin, and its cross-linking with other plant cell wall polymers, make it one of the most important factors in the recalcitrance of plant cell walls against polysaccharide utilization. Plants make lignin from a variety of monolignols including p-coumaryl, coniferyl, and sinapyl alcohols to produce the three primary lignin units: p-hydroxyphenyl, guaiacyl, and syringyl, respectively, when incorporated into the lignin polymer. In grasses, these monolignols can be enzymatically preacylated by p-coumarates prior to their incorporation into lignin, and these monolignol conjugates can also be "monomer" precursors of lignin. Although monolignol p-coumarate-derived units may comprise up to 40% of the lignin in some grass tissues, the p-coumarate moiety from such conjugates does not enter into the radical coupling (polymerization) reactions of lignification. With a greater understanding of monolignol p-coumarate conjugates, grass lignins could be engineered to contain fewer pendent p-coumarate groups and more monolignol conjugates that improve lignin cleavage. We have cloned and expressed an enzyme from rice that has p-coumarate monolignol transferase activity and determined its kinetic parameters.  相似文献   

4.
Studying lignin-biosynthetic-pathway mutants and transgenics provides insights into plant responses to perturbations of the lignification system, and enhances our understanding of normal lignification. When enzymes late in the pathway are downregulated, significant changes in the composition and structure of lignin may result. NMR spectroscopy provides powerful diagnostic tools for elucidating structures in the difficult lignin polymer, hinting at the chemical and biochemical changes that have occurred. COMT (caffeic acid O-methyl transferase) downregulation in poplar results in the incorporation of 5-hydroxyconiferyl alcohol into lignins via typical radical coupling reactions, but post-coupling quinone methide internal trapping reactions produce novel benzodioxane units in the lignin. CAD (cinnamyl alcohol dehydrogenase) downregulation results in the incorporation of the hydroxycinnamyl aldehyde monolignol precursors intimately into the polymer. Sinapyl aldehyde cross-couples 8-O-4 with both guaiacyl and syringyl units in the growing polymer, whereas coniferyl aldehyde cross-couples 8-O-4 only with syringyl units, reflecting simple chemical cross-coupling propensities. The incorporation of hydroxycinnamyl aldehyde and 5-hydroxyconiferyl alcohol monomers indicates that these monolignol intermediates are secreted to the cell wall for lignification. The recognition that novel units can incorporate into lignins portends significantly expanded opportunities for engineering the composition and consequent properties of lignin for improved utilization of valuable plant resources.  相似文献   

5.
Hatfield R  Ralph J  Grabber JH 《Planta》2008,228(6):919-928
Grass lignins are differentiated from other lignin types by containing relatively large amounts of p-coumaric acid (pCA) acylating the C-9 position of lignin subunits. In the case of a mature corn (Zea mays L.) stems, pCA constitutes 15–18% of a dioxane soluble enzyme lignin. The major portion of the pCA is specifically attached to syringyl residues. Studies with isolated corn wall peroxidases show that pCA readily undergoes radical coupling in the presence of hydrogen peroxide, whereas sinapyl alcohol radical coupling proceeds more slowly. Analysis of corn wall peroxidases did not reveal specific enzymes that would lead to the preferred incorporation of sinapyl alcohol as seen in other plants. The addition of ethyl ferulate, methyl p-coumarate, or sinapyl p-coumarate conjugates to a reaction mixture containing peroxidase, sinapyl alcohol, and hydrogen peroxide stimulated the rate of sinapyl alcohol radical coupling by 10–20-fold. Based on spectral analysis it appears that pCA and ferulate radicals form rapidly, but the radical is readily transferred to sinapyl alcohol. The newly formed sinapyl alcohol radicals undergo coupling and cross-coupling reactions. However, sinapyl alcohol radicals do not cross-couple with pCA radicals. As long as hydrogen peroxide is limiting pCA remains uncoupled. Ferulates have similar reaction patterns in terms of radical transfer though they appear to cross-couple in the reaction mixture more readily then pCA. The role of pCA may be to internally provide a radical transfer mechanism for optimizing radical coupling of sinapyl alcohol into the growing lignin polymer. Attachment of some pCA to sinapyl alcohol ensures localization of the radical transfer mechanism in areas where sinapyl alcohol is being incorporated into lignin.  相似文献   

6.
Grass lignins contain substantial amounts of p‐coumarate (pCA) that acylate the side‐chains of the phenylpropanoid polymer backbone. An acyltransferase, named p‐coumaroyl‐CoA:monolignol transferase (OsPMT), that could acylate monolignols with pCA in vitro was recently identified from rice. In planta, such monolignol‐pCA conjugates become incorporated into lignin via oxidative radical coupling, thereby generating the observed pCA appendages; however p‐coumarates also acylate arabinoxylans in grasses. To test the authenticity of PMT as a lignin biosynthetic pathway enzyme, we examined Brachypodium distachyon plants with altered BdPMT gene function. Using newly developed cell wall analytical methods, we determined that the transferase was involved specifically in monolignol acylation. A sodium azide‐generated Bdpmt‐1 missense mutant had no (<0.5%) residual pCA on lignin, and BdPMT RNAi plants had levels as low as 10% of wild‐type, whereas the amounts of pCA acylating arabinosyl units on arabinoxylans in these PMT mutant plants remained unchanged. pCA acylation of lignin from BdPMT‐overexpressing plants was found to be more than three‐fold higher than that of wild‐type, but again the level on arabinosyl units remained unchanged. Taken together, these data are consistent with a defined role for grass PMT genes in encoding BAHD (BEAT, AHCT, HCBT, and DAT) acyltransferases that specifically acylate monolignols with pCA and produce monolignol p‐coumarate conjugates that are used for lignification in planta.  相似文献   

7.
Lignins are complex natural polymers resulting from oxidative coupling of, primarily, 4-hydroxyphenylpropanoids. An understanding of their nature is evolving as a result of detailed structural studies, recently aided by the availability of lignin-biosynthetic-pathway mutants and transgenics. The currently accepted theory is that the lignin polymer is formed by combinatorial-like phenolic coupling reactions, via radicals generated by peroxidase-H2O2, under simple chemical control where monolignols react endwise with the growing polymer. As a result, the actual structure of the lignin macromolecule is not absolutely defined or determined. The ``randomness'' of linkage generation (which is not truly statistically random but governed, as is any chemical reaction, by the supply of reactants, the matrix, etc.) and the astronomical number of possible isomers of even a simple polymer structure, suggest a low probability of two lignin macromolecules being identical. A recent challenge to the currently accepted theory of chemically controlled lignification, attempting to bring lignin into line with more organized biopolymers such as proteins, is logically inconsistent with the most basic details of lignin structure. Lignins may derive in part from monomers and conjugates other than the three primary monolignols (p-coumaryl, coniferyl, and sinapyl alcohols). The plasticity of the combinatorial polymerization reactions allows monomer substitution and significant variations in final structure which, in many cases, the plant appears to tolerate. As such, lignification is seen as a marvelously evolved process allowing plants considerable flexibility in dealing with various environmental stresses, and conferring on them a striking ability to remain viable even when humans or nature alter ``required'' lignin-biosynthetic-pathway genes/enzymes. The malleability offers significant opportunities to engineer the structures of lignins beyond the limits explored to date. Abbreviations: 4CL – 4-coumarate:CoA ligase; C3H –p-coumarate 3-hydroxylase; HCT –p-hydroxycinnamoyl-CoA: quinate shikimate p-hydroxycinnamoyltransferase; CCoAOMT – caffeoyl-CoA O-methyltransferase; CCR – cinnamoyl-CoA reductase; F5H – ferulate 5-hydroxylase; CAld5H – coniferaldehyde 5-hydroxylase; COMT – caffeic acid O-methyltransferase; AldOMT – (5-hydroxyconifer)aldehyde O-methyltransferase; CAD – cinnamyl alcohol dehydrogenase; NMR – nuclear magnetic resonance (spectroscopy); DFRC – derivatization followed by reductive cleavage; TIZ – tosylation, iodination, zinc (a DFRC method); DHP – dehydrogenation polymer.  相似文献   

8.
Grasses are a predominant source of nutritional energy for livestock systems around the world. Grasses with high lignin content have lower energy conversion efficiencies for production of bioenergy either in the form of ethanol or to milk and meat through ruminants. Grass lignins are uniquely acylated with p-coumarates (pCA), resulting from the incorporation of monolignol p-coumarate conjugates into the growing lignin polymer within the cell wall matrix. The required acyl-transferase is a soluble enzyme (p-coumaroyl transferase, pCAT) that utilizes p-coumaroyl-CoenzymeA (pCA-CoA) as the activated donor molecule and sinapyl alcohol as the preferred acceptor molecule. Grasses (C3and C4) were evaluated for cell wall characteristics; pCA, lignin, pCAT activity, and neutral sugar composition. All C3 and C4 grasses had measurable pCAT activity, however the pCAT activities did not follow the same pattern as the pCA incorporation into lignin as expected.  相似文献   

9.
Incorporating ester interunit linkages into lignin could facilitate fiber delignification and utilization. In model studies with maize cell walls, we examined how partial substitution of coniferyl alcohol (a normal monolignol) with coniferyl ferulate (an ester conjugate from lignan biosynthesis) alters the formation and alkaline extractability of lignin and the enzymatic hydrolysis of structural polysaccharides. Coniferyl ferulate moderately reduced lignification and cell-wall ferulate copolymerization with monolignols. Incorporation of coniferyl ferulate increased lignin extractability by up to 2-fold in aqueous NaOH, providing an avenue for producing fiber with less noncellulosic and lignin contamination or of delignifying at lower temperatures. Cell walls lignified with coniferyl ferulate were more readily hydrolyzed with fibrolytic enzymes, both with and without alkaline pretreatment. Based on our results, bioengineering of plants to incorporate coniferyl ferulate into lignin should enhance lignocellulosic biomass saccharification and particularly pulping for paper production.  相似文献   

10.
Recent studies demonstrate that several polyphenolic compounds produced from beyond the canonical monolignol biosynthetic pathways can behave as lignin monomers, participating in radical coupling reactions and being incorporated into lignin polymers. Here, we show various classes of flavonoids, the chalconoid naringenin chalcone, the flavanones naringenin and dihydrotricin, and the flavone tricin, incorporated into the lignin polymer of papyrus (Cyperus papyrus L.) rind. These flavonoids were released from the rind lignin by Derivatization Followed by Reductive Cleavage (DFRC), a chemical degradative method that cleaves the β-ether linkages, indicating that at least a fraction of each was integrated into the lignin as β-ether-linked structures. Due to the particular structure of tricin and dihydrotricin, whose C-3ʹ and C-5ʹ positions at their B-rings are occupied by methoxy groups, these compounds can only be incorporated into the lignin through 4ʹ–O–β bonds. However, naringenin chalcone and naringenin have no substituents at these positions and can therefore form additional carbon–carbon linkages, including 3ʹ– or 5ʹ–β linkages that form phenylcoumaran structures not susceptible to cleavage by DFRC. Furthermore, Nuclear Magnetic Resonance analysis indicated that naringenin chalcone can also form additional linkages through its conjugated double bond. The discovery expands the range of flavonoids incorporated into natural lignins, further broadens the traditional definition of lignin, and enhances the premise that any phenolic compound present at the cell wall during lignification could be oxidized and potentially integrated into the lignin structure, depending only on its chemical compatibility. This study indicates that papyrus lignin has a unique structure, as it is the only lignin known to date that integrates such a diversity of phenolic compounds from different classes of flavonoids. This discovery will open up new ways to engineer and design lignins with specific properties and for enhanced value.

A series of flavonoids incorporate into the rind lignin of papyrus, participating as monomers during lignification.  相似文献   

11.
Genes encoding seven enzymes of the monolignol pathway were independently downregulated in alfalfa (Medicago sativa) using antisense and/or RNA interference. In each case, total flux into lignin was reduced, with the largest effects arising from the downregulation of earlier enzymes in the pathway. The downregulation of l-phenylalanine ammonia-lyase, 4-coumarate 3-hydroxylase, hydroxycinnamoyl CoA quinate/shikimate hydroxycinnamoyl transferase, ferulate 5-hydroxylase or caffeic acid 3-O-methyltransferase resulted in compositional changes in lignin and wall-bound hydroxycinnamic acids consistent with the current models of the monolignol pathway. However, downregulating caffeoyl CoA 3-O-methyltransferase neither reduced syringyl (S) lignin units nor wall-bound ferulate, inconsistent with a role for this enzyme in 3-O-methylation ofS monolignol precursors and hydroxycinnamic acids. Paradoxically, lignin composition differed in plants downregulated in either cinnamate 4-hydroxylase or phenylalanine ammonia-lyase. No changes in the levels of acylated flavonoids were observed in the various transgenic lines. The current model for monolignol and ferulate biosynthesis appears to be an over-simplification, at least in alfalfa, and additional enzymes may be needed for the 3-O-methylation reactions of S lignin and ferulate biosynthesis.  相似文献   

12.
A molecular marker compound, derived from lignin by the thioacidolysis degradative method, for structures produced when ferulic acid is incorporated into lignin in angiosperms (poplar, Arabidopsis, tobacco), has been structurally identified as 1,2,2-trithioethyl ethylguaiacol [1-(4-hydroxy-3-methoxyphenyl)-1,2,2-tris(ethylthio)ethane]. Its truncated side chain and distinctive oxidation state suggest that it derives from ferulic acid that has undergone bis-8-O-4 (cross) coupling during lignification, as validated by model studies. A diagnostic contour for such structures is found in two-dimensional (13)C-(1)H correlated (HSQC) NMR spectra of lignins isolated from cinnamoyl CoA reductase (CCR)-deficient poplar. As low levels of the marker are also released from normal (i.e. non-transgenic) plants in which ferulic acid may be present during lignification, notably in grasses, the marker is only an indicator for CCR deficiency in general, but is a reliable marker in woody angiosperms such as poplar. Its derivation, together with evidence for 4-O-etherified ferulic acid, strongly implies that ferulic acid is incorporated into angiosperm lignins. Its endwise radical coupling reactions suggest that ferulic acid should be considered an authentic lignin precursor. Moreover, ferulic acid incorporation provides a new mechanism for producing branch points in the polymer. The findings sharply contradict those reported in a recent study on CCR-deficient Arabidopsis.  相似文献   

13.
Lignins are cell wall phenolic heteropolymers which result from the oxidative coupling of three monolignols, p-coumaryl, coniferyl and sinapyl alcohol, in a reaction mediated by peroxidases. The most distinctive variation in the monomer composition of lignins in vascular plants is that found between the two main groups of seed plants. Thus, while gymnosperms lignins are typically composed of G units, with a minor proportion of H units, angiosperms lignins are largely composed of similar levels of G and S units. The presence of S units in angiosperm lignins raises certain concerns in relation with the step of lignin assembly due to the inability of most peroxidases to oxidize syringyl moieties. Zinnia elegans is currently used as a model for lignification studies: – first because of the simplicity and duality of the lignification pattern shown by hypocotyls and stems, in which hypocotyl lignins are typical of angiosperms, while young stem lignins partially resemble those occurring in gymnosperms. Secondly, because of the nature of the peroxidase isoenzyme complement, which is almost completely restricted to the presence of a basic peroxidase isoenzyme, which is capable of oxidizing both coniferyl and sinapyl alcohol, as well as both coniferyl and sinapyl aldehyde. In fact, the versatility of this enzyme is such that the substrate preference covers the three p-hydroxybenzaldehydes and the three p-hydroxycinnamic acids. The basic pI nature of this peroxidase is not an exceptional frame point in this system since basic peroxidases are differentially expressed during lignification in other model systems, show unusual and unique biochemical properties as regards the oxidation of syringyl moieties, and their down-regulation in transgenic plants leads to a reduction in lignin (G+S) levels. Basic peroxidase isoenzymes capable of oxidizing syringyl moieties are already present in basal gymnosperms, an observation that supports the idea that these enzymes were probably present in an ancestral plant species, pre-dating the early radiation of seed plants. It also suggests that the evolutionary gain of the monolignol branch which leads to the biosynthesis of sinapyl alcohol, and of course to syringyl lignins, was not only possible but also favored because the enzymes responsible for its polymerization had evolved previously. In this scenario, it is not surprising that these enzymes responsible for lignin construction appeared early in the evolution of land plants, and have been largely conserved during plant evolution. Abreviations: 4CL –p-hydroxycinnamate CoA ligase; C3H –p-coumarate-3-hydroxylase; C4H – cinnamate-4-hydroxylase; p-CA –p-coumaric acid; CAD – coniferyl alcohol dehydrogenase; CAld5H – coniferylaldehyde-5-hydroxylase; CCR –p-hydroxycinnamoyl-CoA reductase; CoI – compound I; CoII – compound II; G – guaiacyl unit; H –p-hydroxyphenyl unit; PAL – phenylalanine ammonia-lyase; S – syringyl unit.  相似文献   

14.
Tricin was recently discovered in lignin preparations from wheat (Triticum aestivum) straw and subsequently in all monocot samples examined. To provide proof that tricin is involved in lignification and establish the mechanism by which it incorporates into the lignin polymer, the 4′-O-β-coupling products of tricin with the monolignols (p-coumaryl, coniferyl, and sinapyl alcohols) were synthesized along with the trimer that would result from its 4′-O-β-coupling with sinapyl alcohol and then coniferyl alcohol. Tricin was also found to cross couple with monolignols to form tricin-(4′-O-β)-linked dimers in biomimetic oxidations using peroxidase/hydrogen peroxide or silver (I) oxide. Nuclear magnetic resonance characterization of gel permeation chromatography-fractionated acetylated maize (Zea mays) lignin revealed that the tricin moieties are found in even the highest molecular weight fractions, ether linked to lignin units, demonstrating that tricin is indeed incorporated into the lignin polymer. These findings suggest that tricin is fully compatible with lignification reactions, is an authentic lignin monomer, and, because it can only start a lignin chain, functions as a nucleation site for lignification in monocots. This initiation role helps resolve a long-standing dilemma that monocot lignin chains do not appear to be initiated by monolignol homodehydrodimerization as they are in dicots that have similar syringyl-guaiacyl compositions. The term flavonolignin is recommended for the racemic oligomers and polymers of monolignols that start from tricin (or incorporate other flavonoids) in the cell wall, in analogy with the existing term flavonolignan that is used for the low-molecular mass compounds composed of flavonoid and lignan moieties.Lignin, a complex phenylpropanoid polymer in the plant cell wall, is predominantly deposited in the cell walls of secondary-thickened cells (Vanholme et al., 2010). It is synthesized via oxidative radical coupling reactions from three prototypical monolignols, p-coumaryl, coniferyl, and sinapyl alcohols, differentiated by their degree of methoxylation ortho to the phenolic hydroxyl group. Considered within the context of the entire polymer, the main structural features of lignin can be defined in terms of its p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) units, derived respectively from these three monolignols (Ralph, 2010). Several novel monomers, all deriving from the monolignol biosynthetic pathway, have been found to incorporate into lignin in wild-type and transgenic plants. For example, monolignol acetate, p-hydroxybenzoate, and p-coumarate ester conjugates have all been shown to incorporate into lignin polymers and are the source of naturally acylated lignins (Ralph et al., 2004; Lu and Ralph, 2008); lignins derived solely from caffeyl alcohol were found in the seed coats of both monocot and dicot plants (Chen et al., 2012a, 2012b); lignins derived solely from 5-hydroxyconiferyl alcohol were found in a cactus (for example, in a member of the genera Astrophytum) seed coat (Chen et al., 2012a); a Medicago truncatula transgenic deficient in cinnamyl alcohol dehydrogenase exhibited a lignin that was overwhelmingly derived from hydroxycinnamaldehydes (instead of their usual hydroxycinnamyl alcohol analogs; Zhao et al., 2013); and iso-sinapyl alcohol was implicated as a monomer in caffeic acid O-methyltransferase down-regulated switchgrass (Panicum virgatum; Tschaplinski et al., 2012). These findings imply that plants are quite flexible in being able to use a variety of monomers during lignification to form the heterogenous lignin polymer. Most recently, and as addressed more fully here, the flavonoid tricin has been implicated as a monomer in monocot lignins (del Río et al., 2012). To our knowledge, tricin is the first monomer from outside the monolignol biosynthetic pathway to be implicated in lignification.Tricin [5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-chromen-4-one], a member of the flavonoid family, is recognized as a valuable human health compound due to its antioxidant, antiaging, anticancer, and cardioprotective potentials (Ogo et al., 2013). Tricin and its derivatives can be solvent extracted from monocot samples such as wheat (Triticum aestivum), oat bran (Avena sativa), bamboo (Leleba oldhami), sugarcane (Saccharum officinarum), and maize (Zea mays). Extracted compounds can take the form of tricin itself, 7-O-glycosylated tricin, or the flavonolignan in which tricin is 4′-O-etherified by putative coupling with coniferyl alcohol (Ju et al., 1998; Bouaziz et al., 2002; Wenzig et al., 2005; Duarte-Almeida et al., 2007; Van Hoyweghen et al., 2010; Nakano et al., 2011; Bottcher et al., 2013; Moheb et al., 2013).In 2012, we reported, to our knowledge, the first evidence that tricin was incorporated into lignin, as implicated by two previously unassigned correlation peaks at δCH 94.1/6.56 and 98.8/6.20 in a heteronuclear single-quantum coherence (HSQC) NMR spectrum from the whole cell wall and an isolated milled wood lignin of (unacetylated) wheat straw (del Río et al., 2012). The same evidence has now been found in the HSQC spectrum of wheat straw lignin isolated via different methods (Yelle et al., 2013; Zeng et al., 2013). Additional studies have verified the presence of tricin in lignin fractions from a variety of monocots, including bamboo (You et al., 2013), coconut coir (Cocos nucifera; Rencoret et al., 2013), maize, and others examined in our laboratories. The implication that tricin is the first phenolic from outside the monolignol biosynthetic pathway found to be integrated into the polymer has prompted further study with the aim of identifying and mechanistically delineating the role of tricin in lignin and its biosynthetic incorporation pathway.Tricin, unlike the monolignols that derive from the shikimate biosynthetic pathway (Sarkanen and Ludwig, 1971), is derived from a combination of the shikimate and acetate/malonate-derived polyketide pathways (Winkel-Shirley, 2001), as shown in Supplemental Figure S1. After p-coumaroyl-CoA is synthesized from p-coumaric acid by 4-coumarate:CoA ligase, it branches from the monolignol biosynthetic route to be transformed via chalcone synthase and chalcone isomerase into naringenin, the central precursor of most flavonoids. Naringenin is subsequently converted into apigenin by flavone synthase. Further hydroxylation at C-3′ and C-5′ followed by O-methylation furnishes tricin (Koes et al., 1994; Winkel-Shirley, 2001). The incorporation of tricin into lignin, therefore, suggests that an additional biosynthetic pathway, namely the polyketide pathway, may be associated with cell wall lignification in monocots.The revelation that tricin is incorporated into the lignin polymer was precipitated by closer study of signals found within the NMR spectra of various monocot samples. Before this discovery, tricin had not been noted in any lignin fractions, and although it is reasonable to anticipate compatibility based on its chemical structure, there is no direct and reliable evidence to date showing that tricin is able to react with monolignols through radical coupling; therefore, the efficiency and selectivity of the coupling reactions between tricin and various monolignols were also unknown. Synthetic model compounds that would facilitate the elucidation of the role of tricin within plant cell walls are desirable as aids to be used in a mechanistic study of flavonolignin generation. (We coin the term flavonolignin to describe the racemic oligomers and polymers of monolignols that start from tricin [or other flavonoids] in the cell wall, in analogy with the existing term flavonolignan that is used for the low-molecular mass compounds composed of flavonoid and lignan moieties that are presumably made in the cytoplasm [Begum et al., 2010; Niculaes et al., 2014; Dima et al., 2015]).The overall objective of this study is to demonstrate that tricin incorporates into the lignin polymer of monocots, with maize/corn stover as the representative experimental material. To this end, we have synthesized tricin and various model compounds in which tricin is conjugated to monolignols in the manner expected for the lignification process. Next, we verified whether these synthetic compounds could be made from their assumed precursors under the biomimetic radical conditions anticipated for lignification. Subsequently, NMR data generated from these synthetic and biomimetic coupling products were compared with NMR data from native maize stover lignin, including high-Mr fractions. We conclude that tricin is a monomer in monocot lignification and that, because little syringaresinol is found in maize lignin, tricin is functioning as a nucleation site that initiates lignin polymer chains.  相似文献   

15.
Lignin is a critical structural component of plants, providing vascular integrity and mechanical strength. Lignin precursors (monolignols) must be exported to the extracellular matrix where random oxidative coupling produces a complex lignin polymer. The objectives of this study were twofold: to determine the timing of lignification with respect to programmed cell death and to test if nonlignifying xylary parenchyma cells can contribute to the lignification of tracheary elements and fibers. This study demonstrates that lignin deposition is not exclusively a postmortem event, but also occurs prior to programmed cell death. Radiolabeled monolignols were not detected in the cytoplasm or vacuoles of tracheary elements or neighbors. To experimentally define which cells in lignifying tissues contribute to lignification in intact plants, a microRNA against CINNAMOYL CoA-REDUCTASE1 driven by the promoter from CELLULOSE SYNTHASE7 (ProCESA7:miRNA CCR1) was used to silence monolignol biosynthesis specifically in cells developing lignified secondary cell walls. When monolignol biosynthesis in ProCESA7:miRNA CCR1 lines was silenced in the lignifying cells themselves, but not in the neighboring cells, lignin was still deposited in the xylem secondary cell walls. Surprisingly, a dramatic reduction in cell wall lignification of extraxylary fiber cells demonstrates that extraxylary fibers undergo cell autonomous lignification.  相似文献   

16.
Radical coupling reactions between ethyl ferulate (Et-FA), a simple model for feruloyl polysaccharides in planta, and coniferyl alcohol (CA), a monolignol, were studied in order to better understand the polymer cross-coupling interactions among polysaccharides and monolignols or lignin, mediated by ferulate (FA), in plant cell walls. Cross-coupled FA/CA dimers produced in an aqueous buffer (pH 5.0) containing peroxidase/hydrogen peroxide were isolated and characterized by NMR. The total coupling products were characterized by 2D 13C–1H correlation (HSQC) NMR spectroscopy and GC–MS. Results from this study showed that ferulate readily cross-couples with coniferyl alcohol through free radical coupling mechanisms producing a series of cross-coupled FA/CA dimers with β-O-4-, β-5-/8-5-, and 8-β-linkages; the syntheses and isolation of β-5- and 8-5-cross-coupled dimers are reported here. The transformation from 8-β-coupled FA/CA hydroxyl esters into lactones through intramolecular transesterification is demonstrated for the first time and mechanisms behind these transformations are discussed. The finding of both β-5- and 8-5-cross-coupled dimers in this study suggests that analogs of both may be present in plant cell walls. Finally it is suggested that ferulates in plants indeed react with monolignols through free radical mechanisms producing a more diverse array of cross-coupled dimers than previously reported.  相似文献   

17.
Lignin acylation, the decoration of hydroxyls on lignin structural units with acyl groups, is common in many plant species. Monocot lignins are decorated with p-coumarates by the polymerization of monolignol p-coumarate conjugates. The acyltransferase involved in the formation of these conjugates has been identified in a number of model monocot species, but the effect of monolignol p-coumarate conjugates on lignification and plant growth and development has not yet been examined in plants that do not inherently possess p-coumarates on their lignins. The rice (Oryza sativa) p-COUMAROYL-Coenzyme A MONOLIGNOL TRANSFERASE gene was introduced into two eudicots, Arabidopsis (Arabidopsis thaliana) and poplar (Populus alba × grandidentata), and a series of analytical methods was used to show the incorporation of the ensuing monolignol p-coumarate conjugates into the lignin of these plants. In poplar, specifically, the addition of these conjugates did not occur at the expense of the naturally incorporated monolignol p-hydroxybenzoates. Plants expressing the p-COUMAROYL-Coenzyme A MONOLIGNOL TRANSFERASE transgene can therefore produce monolignol p-coumarate conjugates essentially without competing with the formation of other acylated monolignols and without drastically impacting normal monolignol production.Lignification of plant cell walls prototypically involves the polymerization of the monolignols (MLs), p-coumaryl alcohol, coniferyl alcohol (CA), and sinapyl alcohol (SA), predominantly by stepwise radical coupling of each monomer to the phenolic end of the growing polymer (Sarkanen and Ludwig, 1971; Boerjan et al., 2003; Ralph et al., 2004). The contribution of various MLs to the lignins depends on plant species, cell type, plant tissue, and tissue age. Although the majority of the lignin polymer is derived from these three MLs, the lignification process has a high degree of metabolic plasticity (Boerjan et al., 2003; Ralph et al., 2004; Ralph, 2007; Vanholme et al., 2012). Of particular interest are ML conjugates in which the ester group can be acetate (Ac; Sarkanen et al., 1967; Ralph, 1996; Ralph and Lu, 1998; Del Río et al., 2007; del Río et al., 2008; Martínez et al., 2008), p-hydroxybenzoate (pBz; Venverloo, 1971; Monties and Lapierre, 1981; Landucci et al., 1992; Tomimura, 1992a, 1992b; Hibino et al., 1994; Sun et al., 1999; Kuroda et al., 2001; Lu et al., 2004, 2015; Morreel et al., 2004; Rencoret et al., 2013), p-coumarate (pCA; Monties and Lapierre, 1981; Ralph et al., 1994; Crestini and Argyropoulos, 1997; del Río et al., 2008, 2012a, 2012b; Withers et al., 2012; Rencoret et al., 2013; Petrik et al., 2014), or ferulate (FA; Grabber et al., 2008; Ralph, 2010; Wilkerson et al., 2014). In all cases, the MLs are acylated before polymerization as proven by the presence in the lignins of unique β-β coupling products that only arise when one or both of the MLs are acylated, preventing the formation of the typical resinols from internal trapping of the quinone methide intermediates by the γ-OH (Lu and Ralph, 2002, 2008; Del Río et al., 2007; Lu et al., 2015).The BAHD acyltransferase, FERULOYL-CoA MONOLIGNOL TRANSFERASE (FMT), was recently identified in Angelica sinensis and transformed into poplar (Populus alba × grandidentata), which naturally incorporates other acylated MLs, namely ML-pBz conjugates, into its lignin (Wilkerson et al., 2014). Plants that incorporate ML-FAs into their lignins have the potential to be particularly important economically, because their lignin backbones are permeated with readily cleavable ester bonds, facilitating lignin breakdown and removal under alkaline pretreatment conditions. Determining the extent to which ML-FAs are incorporated into the lignin polymer is, however, extremely difficult because of the diversity of products generated during the polymerization events, which is described in the supplemental information in Wilkerson et al., 2014.There is currently only one technique, derivatization followed by reductive cleavage (DFRC), that can release diagnostic chemical marker compounds from lignins containing ML-FAs (Lu and Ralph, 2014; Wilkerson et al., 2014). The DFRC method selectively cleaves β-ethers while leaving ester linkages intact. This technique was recently used to show that ML-FA conjugates are fully incorporated into the lignin of the FMT poplar (Wilkerson et al., 2014), but the extent of incorporation, the spatial distribution, the exact mechanism of delivery to the developing cell wall, and the efficiency of incorporation remain largely unknown.The biological role of pCA in lignin has been highly speculative. It is hypothesized that the pCA moieties may function as a radical sensitizer (Takahama and Oniki, 1996, 1997; Takahama et al., 1996; Ralph et al., 2004; Hatfield et al., 2008; Ralph, 2010). Peroxidases and/or laccases readily oxidize pCA to a radical but are poor oxidizers for SA. Free radicals of pCA readily undergo radical transfer to SA, which in turn, forms a homodimer or couples to the end of a growing polymer chain. Conjugating pCA to an ML, like SA, to form SA-pCA, the most prevalent ML-pCA conjugate in grasses, creates a compound with a built-in radical sensitizer that can participate in the polymerization event. The prevalence of these conjugates in potential biofuel crops and the impact that these ester-linked conjugates have on the lignin polymer during pretreatment and downstream fermentation processes have driven the search to find the genes and their enzymes responsible for acylating MLs in monocots (Withers et al., 2012; Marita et al., 2014; Petrik et al., 2014; Wilkerson et al., 2014).In rice (Oryza sativa), enzymes have been characterized that function specifically in the addition of pCA onto hemicelluloses (Bartley et al., 2013) or lignin (Withers et al., 2012; Petrik et al., 2014). The p-COUMAROYL-CoA MONOLIGNOL TRANSFERASE (PMT) was identified as one of many grass-specific BAHD acyltransferases produced by rice and found to coexpress with many ML biosynthetic enzymes (Withers et al., 2012). The enzyme preferentially forms a γ-ester through its specificity toward p-coumaroyl-CoA and an ML, and has kinetic efficiency with p-coumaryl alcohol > SA > CA. In most grasses, the PMT enzyme predominantly produces SA-pCA conjugates that are then incorporated into the lignin polymer (Petrik et al., 2014).To test the role of PMT during cell wall lignification, genetic manipulation of PMT genes has been performed in Brachypodium distachyon and maize (Zea mays), two model monocots. The suppression and overexpression of a BdPMT revealed the PMT to be involved only in the acylation of MLs before polymerization and not in the acylation of hemicelluloses (Petrik et al., 2014). RNA interference-mediated suppression of BdPMT resulted in decreased incorporation of ML-pCA conjugates into the cell wall without adversely affecting growth, height, or digestibility of the mature plants. Even deleterious mutations in the BdPMT gene, which resulted in a complete absence of pCA-acylating B. distachyon lignins, did not affect plant growth or development (Petrik et al., 2014). The arabinose-bound FA and pCA levels remained virtually unchanged in the PMT-misregulated plants, illustrating the specificity of the PMT enzyme for the p-coumaroyl-CoA substrate and its ML acylation. The PMT enzyme identified in maize (pCAT = ZmPMT) also displayed the highest catalytic efficiency with p-coumaroyl-CoA and SA as substrates (Marita et al., 2014). RNAi-mediated suppression of ZmPMT also resulted in decreased production of the ML conjugates. The effect on the lignin polymer when introducing PMT into plants that do not normally express a homologous enzyme is, however, unknown.pCAs, because they favor radical transfer over radical coupling, are overwhelmingly seen as free-phenolic pendant entities on the lignin polymer (Ralph et al., 1994; Ralph, 2010). As a result, the pCA itself can be completely quantified by simple saponification. The units to which the pCA is attached are, like their normal ML-derived counterparts, not fully releasable from lignin as identifiable monomers (during degradative reactions), but the pCA’s terminal location makes p-coumaroylated units more readily releasable and detectable than if they participated in lignification (as FAs do). Examining the effect of PMT and its resulting conjugates on lignification in plants that do not naturally produce such conjugates will contribute to our understanding of the role of PMT in lignification in general.In this study, we aimed to assess the ability of the model eudicot plants Arabidopsis (Arabidopsis thaliana) and poplar, neither of which naturally produces ML-pCA conjugates, to express a PMT gene and incorporate these novel conjugates into their cell wall lignins. We also investigated the effect that the introduction of PMT has on the native levels of ML-pBz conjugates in poplar lignin. Various analytical techniques were optimized and used to examine the cell walls of the transgenic plants for pCA conjugates and determine whether they were specifically incorporated into the lignin polymer in the cell wall.  相似文献   

18.
K Zhang  MW Bhuiya  JR Pazo  Y Miao  H Kim  J Ralph  CJ Liu 《The Plant cell》2012,24(7):3135-3152
Although the practice of protein engineering is industrially fruitful in creating biocatalysts and therapeutic proteins, applications of analogous techniques in the field of plant metabolic engineering are still in their infancy. Lignins are aromatic natural polymers derived from the oxidative polymerization of primarily three different hydroxycinnamyl alcohols, the monolignols. Polymerization of lignin starts with the oxidation of monolignols, followed by endwise cross-coupling of (radicals of) a monolignol and the growing oligomer/polymer. The para-hydroxyl of each monolignol is crucial for radical generation and subsequent coupling. Here, we describe the structure-function analysis and catalytic improvement of an artificial monolignol 4-O-methyltransferase created by iterative saturation mutagenesis and its use in modulating lignin and phenylpropanoid biosynthesis. We show that expressing the created enzyme in planta, thus etherifying the para-hydroxyls of lignin monomeric precursors, denies the derived monolignols any participation in the subsequent coupling process, substantially reducing lignification and, ultimately, lignin content. Concomitantly, the transgenic plants accumulated de novo synthesized 4-O-methylated soluble phenolics and wall-bound esters. The lower lignin levels of transgenic plants resulted in higher saccharification yields. Our study, through a structure-based protein engineering approach, offers a novel strategy for modulating phenylpropanoid/lignin biosynthesis to improve cell wall digestibility and diversify the repertories of biologically active compounds.  相似文献   

19.
Livestock performance can be improved by increasing the digestibility of feeds, one of the key elements of nutritional quality. Digestibility of feeds can be improved by breeding forage crops with modified cell-wall structure, increasing the potential availability of energy from the cell wall to rumen microbes and livestock. The objectives of this research were to identify interrelationships among lignin and phenolic components of the fibre fraction of three perennial grasses and to determine their influence on in vitro fibre digestibility. Differences in etherified and esterified ferulate and esterified p-coumarate among clones of three perennial grasses were generally repeatable across harvests. The concentration of neutral detergent fibre (NDF) and Klason lignin within the NDF fraction were the factors most limiting to 24-h in vitro digestibility, with NDF being the most important. Klason lignin and etherified ferulate were the factors most limiting to 96-h in vitro digestibility for all three species. Due to its positive correlation with NDF, selection for low etherified ferulate should be avoided in smooth bromegrass (Bromus inermis Leyss) and cockfsoot (Dactylis glomerata L.). It should be possible to select and breed for low concentrations of lignin to improve digestibility without decreasing NDF in these two species. However, in reed canarygrass (Phalaris arundinacea L.), both lignin and etherified ferulate were positively correlated with NDF, indicating that selection for increased digestibility should be based directly on some measure of in vitro digestibility to avoid the fitness problems associated with reduced NDF.  相似文献   

20.
Lignin is an aromatic polymer derived from the combinatorial coupling of monolignol radicals in the cell wall. Recently, various glycosylated lignin oligomers have been revealed in Arabidopsis thaliana. Given that monolignol oxidation and monolignol radical coupling are known to occur in the apoplast, and glycosylation in the cytoplasm, it raises questions about the subcellular localization of glycosylated lignin oligomer biosynthesis and their storage. By metabolite profiling of Arabidopsis leaf vacuoles, we show that the leaf vacuole stores a large number of these small glycosylated lignin oligomers. Their structural variety and the incorporation of alternative monomers, as observed in Arabidopsis mutants with altered monolignol biosynthesis, indicate that they are all formed by combinatorial radical coupling. In contrast to the common believe that combinatorial coupling is restricted to the apoplast, we hypothesized that the aglycones of these compounds are made within the cell. To investigate this, leaf protoplast cultures were cofed with 13C6-labeled coniferyl alcohol and a 13C4-labeled dimer of coniferyl alcohol. Metabolite profiling of the cofed protoplasts provided strong support for the occurrence of intracellular monolignol coupling. We therefore propose a metabolic pathway involving intracellular combinatorial coupling of monolignol radicals, followed by oligomer glycosylation and vacuolar import, which shares characteristics with both lignin and lignan biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号