首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MicroRNAs (miRNAs) are a large class of small regulatory RNA molecules, however no study has been performed to elucidate the role of miRNAs in cotton (Gossypium hirsutum) response to the root knot nematode (RKN, Meloidogyne incognita) infection. We selected 28 miRNAs and 8 miRNA target genes to investigate the miRNA-target gene response to M. incognita infection. Our results show that RKN infection significantly affected the expression of several miRNAs and their targeted genes. After 10 days of RKN infection, expression fold changes on miRNA expressions ranged from down-regulated by 33% to upregulated by 406%; meanwhile the expression levels of miRNA target genes were 45.8% to 231%. Three miRNA-target pairs, miR159-MYB, miR319-TCP4 and miR167-ARF8, showed inverse expression patterns between gene targets and their corresponded miRNAs, suggesting miRNA-mediated gene regulation in cotton roots in response to RKN infection.  相似文献   

2.
3.
4.
Flowering is the primary trait affected by ambient temperature changes. Plant microRNAs (miRNAs) are small non-coding RNAs playing an important regulatory role in plant development. In this study, to elucidate the mechanism of flowering-time regulation by small RNAs, we identified six ambient temperature-responsive miRNAs (miR156, miR163, miR169, miR172, miR398 and miR399) in Arabidopsis via miRNA microarray and northern hybridization analyses. We also determined the expression profile of 120 unique miRNA loci in response to ambient temperature changes by miRNA northern hybridization analysis. The expression of the ambient temperature-responsive miRNAs and their target genes was largely anticorrelated at two different temperatures (16 and 23°C). Interestingly, a lesion in short vegetative phase (SVP), a key regulator within the thermosensory pathway, caused alteration in the expression of miR172 and a subset of its target genes, providing a link between a thermosensory pathway gene and miR172. The miR172-overexpressing plants showed a temperature-independent early flowering phenotype, suggesting that modulation of miR172 expression leads to temperature insensitivity. Taken together, our results suggest a genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs under non-stress temperature conditions.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
While in the last decade mRNA expression profiling was among the most popular research areas, over the past years the study of non-coding RNAs, especially microRNAs (miRNAs), has gained increasing interest. For almost 900 known human miRNAs hundreds of pretended targets are known. However, there is only limited knowledge about putative systemic effects of changes in the expression of miRNAs and their regulatory influence. We determined for each known miRNA the biochemical pathways in the KEGG and TRANSPATH database and the Gene Ontology categories that are enriched with respect to its target genes. We refer to these pathways and categories as target pathways of the corresponding miRNA. Investigating target pathways of miRNAs we found a strong relation to disease-related regulatory pathways, including mitogen-activated protein kinase (MAPK) signaling cascade, Transforming growth factor (TGF)-beta signaling pathway or the p53 network. Performing a sophisticated analysis of differentially expressed genes of 13 cancer data sets extracted from gene expression omnibus (GEO) showed that targets of specific miRNAs were significantly deregulated in these sets. The respective miRNA target analysis is also a novel part of our gene set analysis pipeline GeneTrail. Our study represents a comprehensive theoretical analysis of the relationship between miRNAs and their predicted target pathways. Our target pathways analysis provides a ‘miRNA-target pathway’ dictionary, which enables researchers to identify target pathways of differentially regulated miRNAs.  相似文献   

18.
19.
Although patients with coronary artery disease (CAD) have a high mortality rate, the pathogenesis of CAD is still poorly understood. The purpose of this study was to explore the underlying molecular mechanisms and potential target molecules for CAD. The platelet miRNA (GSE28858) and blood mRNA (GSE42148) expression profiles of patients with CAD and healthy controls were downloaded from Gene Expression Omnibus. Differentially expressed miRNAs and genes (DEGs) were identified by significant analysis of microarray algorithm after data preprocessing. Furthermore, the miRNA-target gene regulatory network was constructed based on miRecords database. The spearman correlation coefficients (ρ) between miRNAs and their target genes were calculated. Six up- (miR-340, miR-545, miR-451, miR454-5p, miR-624 and miR-585) and four down-regulated (miR-199a, miR-17-3p, miR-154 and miR-339) miRNAs were screened. Total 295 target genes of miR-545, miR-451, miR-585 and miR-154 were predicted. Among these 295 target genes, 7 genes were DEGs. Further analysis showed miR-545-TFEC and miR-585-SPOCK1 were highly positively correlated (ρ = 0.808091264; ρ = 0.874680776) in CAD samples. Therefore, differentially expressed miRNAs might participate in the pathogenesis of CAD by regulating their target genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号