首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermoinhibition, or failure of seeds to germinate when imbibed at warm temperatures, can be a significant problem in lettuce (Lactuca sativa L.) production. The reliability of stand establishment would be improved by increasing the ability of lettuce seeds to germinate at high temperatures. Genes encoding germination- or dormancy-related proteins were mapped in a recombinant inbred line population derived from a cross between L. sativa cv. Salinas and L. serriola accession UC96US23. This revealed several candidate genes that are located in the genomic regions containing quantitative trait loci (QTLs) associated with temperature and light requirements for germination. In particular, LsNCED4, a temperature-regulated gene in the biosynthetic pathway for abscisic acid (ABA), a germination inhibitor, mapped to the center of a previously detected QTL for high temperature germination (Htg6.1) from UC96US23. Three sets of sister BC3S2 near-isogenic lines (NILs) that were homozygous for the UC96US23 allele of LsNCED4 at Htg6.1 were developed by backcrossing to cv. Salinas and marker-assisted selection followed by selfing. The maximum temperature for germination of NIL seed lots with the UC96US23 allele at LsNCED4 was increased by 2–3°C when compared with sister NIL seed lots lacking the introgression. In addition, the expression of LsNCED4 was two- to threefold lower in the former NIL lines as compared to expression in the latter. Together, these data strongly implicate LsNCED4 as the candidate gene responsible for the Htg6.1 phenotype and indicate that decreased ABA biosynthesis at high imbibition temperatures is a major factor responsible for the increased germination thermotolerance of UC96US23 seeds.  相似文献   

2.
Lettuce (Lactuca sativa ‘Salinas’) seeds fail to germinate when imbibed at temperatures above 25°C to 30°C (termed thermoinhibition). However, seeds of an accession of Lactuca serriola (UC96US23) do not exhibit thermoinhibition up to 37°C in the light. Comparative genetics, physiology, and gene expression were analyzed in these genotypes to determine the mechanisms governing the regulation of seed germination by temperature. Germination of the two genotypes was differentially sensitive to abscisic acid (ABA) and gibberellin (GA) at elevated temperatures. Quantitative trait loci associated with these phenotypes colocated with a major quantitative trait locus (Htg6.1) from UC96US23 conferring germination thermotolerance. ABA contents were elevated in Salinas seeds that exhibited thermoinhibition, consistent with the ability of fluridone (an ABA biosynthesis inhibitor) to improve germination at high temperatures. Expression of many genes involved in ABA, GA, and ethylene biosynthesis, metabolism, and response was differentially affected by high temperature and light in the two genotypes. In general, ABA-related genes were more highly expressed when germination was inhibited, and GA- and ethylene-related genes were more highly expressed when germination was permitted. In particular, LsNCED4, a gene encoding an enzyme in the ABA biosynthetic pathway, was up-regulated by high temperature only in Salinas seeds and also colocated with Htg6.1. The temperature sensitivity of expression of LsNCED4 may determine the upper temperature limit for lettuce seed germination and may indirectly influence other regulatory pathways via interconnected effects of increased ABA biosynthesis.  相似文献   

3.
Seed and seedling traits related to germination and stand establishment are important in the production of cultivated lettuce (Lactuca sativa L.). Six seed and seedling traits segregating in a L. sativa cv. Salinas x L. serriola recombinant inbred line population consisting of 103 F8 families revealed a total of 17 significant quantitative trait loci (QTL) resulting from three seed production environments. Significant QTL were identified for germination in darkness, germination at 25 and 35°C, median maximum temperature of germination, hypocotyl length at 72 h post-imbibition, and plant (seedling) quality. Some QTL for germination and early seedling growth characteristics were co-located, suggestive of pleiotropic loci regulating these traits. A single QTL (Htg6.1) described 25 and 23% of the total phenotypic variation for high temperature germination in California- and Netherlands-grown populations, respectively, and was significant between 33 and 37°C. Additionally, Htg6.1 showed significant epistatic interactions with other Htg QTL and a consistent effect across all the three seed production environments. L. serriola alleles increased germination at these QTL. The estimate of narrow-sense heritability (h2) of Htg6.1 was 0.84, indicating potential for L. serriola as a source of germination thermotolerance for lettuce introgression programs.  相似文献   

4.
The genomic architecture of disease resistance in lettuce   总被引:1,自引:0,他引:1  
Genbank and The Compositae Genome Project database, containing over 42,000 lettuce unigenes from Lactuca sativa cv. Salinas and L. serriola accession UC96US23 were mined to identify 702 candidate genes involved in pathogen recognition (RGCs), resistance signal transduction, defense responses, and disease susceptibility. In addition, to identify sequences representing additional sub-families of nucleotide binding site (NBS)-leucine-rich repeat encoding genes; the major classes of resistance genes (R-genes), NBS-encoding sequences were amplified by PCR using degenerate oligonucleotides designed to NBS sub-families specific to the subclass Asteridae, which includes the Compositae family. These products were cloned and sequenced resulting in 18 novel NBS sequences from cv. Salinas and 15 novel NBS sequences from UC96US23. Using a variety of marker technologies, 294 of the 735 candidate disease resistance genes were mapped in our primary mapping population, which consisted of 119 F7 recombinant inbred lines derived from an interspecific cross between cv. Salinas and UC96US23. Using markers shared across multiple genetic maps, 36 resistance phenotypic loci, including two new loci for resistance to downy mildew and two quantitative trait loci for resistance to anthracnose were positioned onto the reference map to provide a global view of the genomic architecture of disease resistance in lettuce and to identify candidate genes for resistance phenotypes. The majority but not all of the resistance phenotypes were genetically associated with RGCs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

5.
6.
Amburana cearensis (Fr. Allem) AC Smith is a native Caatinga species commonly found in the semiarid region of North East of Brazil, which possesses resistance to temperature and drought stress and is widely used in the folk medicine. This study aimed at a better understanding of seed imbibition and germination as well as to evaluate the effect of water restriction on total phenolics and antioxidant properties in cotyledons of A. cearensis (Fr. Allem) A.C. Smith. Seeds were imbibed in water (control) or PEG 8000 solution (?1.2 and ?1.4 MPa). Germinability was evaluated up to 180 h of seed imbibition, whereas cotyledons were collected at 0, 24, 48, 72 and 96 h of imbibition. The radical scavenging ability was enhanced in response to the water restriction after 96 h of imbibition as compared to the control. Water restriction affected water uptake and seed germinability while inducing a faster response in terms of biosynthesis of phenolic compounds, although total phenolic content decreased as compared to control. There is a high correlation between total phenolics and antioxidant activity for the seeds subjected to the water restriction conditions. These findings provide insights into the mechanisms underlying plant adaptation to harsh environmental conditions during germination, which would be very helpful to develop germination and seedling production protocols aimed at strategies for the sustainable exploitation of A. cearensis by local folk communities under the typical harsh conditions of the Brazilian Caatinga and semiarid regions.  相似文献   

7.
Lettuce (Lactuca sativa L. cv Minetto) seeds were primed in aerated solutions of 1% K3PO4 or water at 15°C in the dark for various periods of time to determine the manner by which seed priming bypasses thermodormancy. Seeds which were not primed did not germinate at 35°C, whereas those which were primed for 20 h in 1% K3PO4 or distilled H2O had up to 86% germination. The rate of water uptake and respiration during priming were similar regardless of soak solution. Cell elongation occurred in both water and 1% K3PO4, 4 to 6 h prior to cell division. Both processes commenced sooner in water than K3PO4. Radicle protrusion (germination) occurred in the priming solution at 21 h in water and 27 h in 1% K3PO4.

Respiration, radicle protrusion and cell division consistently occurred sooner in primed (redried) seeds compared to nonprimed seeds when they were imbibed at 25°C. Cell division and elongation commenced after 10 h imbibition in primed (redried) seeds imbibed at 35°C. Neither process occurred in nonprimed seeds. Respiratory rates were higher in both primed and nonprimed seeds imbibed at 35°C compared to those imbibed at 25°C, although radicle protrusion did not occur in nonprimed seeds which were imbibed at 35°C. It is apparent that cell elongation and division are inhibited during high temperature imbibition in nonprimed lettuce seeds. Seed priming appears to lead to the irreversible initiation of cell elongation, thus overcoming thermodormancy.

  相似文献   

8.
Stagonospora nodorum glume blotch (SNG), caused by the necrotrophic fungus Stagonospora nodorum, is one of the economically important diseases of bread wheat (Triticum aestivum L.). Resistance to SNG is known to be quantitative and previous studies of a recombinant inbred line (RIL) population identified a major quantitative trait locus (QTL) for resistance to SNG on the short arm of chromosome 3B. To localize this QTL (QSng.sfr-3BS) with high resolution, we constructed a genetic map for the QTL target region using information from sequenced flow-sorted chromosomes 3B of the two parental cultivars ‘Arina’ and ‘Forno’, the physical map of chromosome 3B of cultivar ‘Chinese Spring’ and BAC-clone sequences. The mapping population of near-isogenic lines (NIL) was evaluated for SNG resistance in field infection tests. NILs segregated for disease resistance as well as for plant height; additionally, we observed a high environmental influence on the trait. Our analysis detected a strong negative correlation of SNG resistance and plant height. Further analysis of the target region identified two linked loci associated with SNG resistance. One of them was also associated with plant height, revealing an effect of QSng.sfr-3BS on plant height that was hidden in the RIL population. This result demonstrates an unexpectedly high genetic complexity of resistance controlled by QSng.sfr-3BS and shows the importance of the study of QTL in mendelized form in NILs.  相似文献   

9.
Although heterosis is widely exploited in agriculture, a clear understanding of its genetic bases is still elusive. This work describes the development of maize recombinant near-isogenic lines (NILs) for the mendelization of six heterotic QTL previously identified based on a maize (Zea mays L.) RIL population. The efficient and inexpensive strategy adopted to generate sets of NILs starting from QTL-specific residual heterozygous lines (RHLs) is described and validated. In particular, we produced nine pairs of recombinant NILs for all six QTL starting from RHLs F4:5 originally obtained during the production of the RIL population mentioned above. Whenever possible, two different NIL pairs were generated for each QTL. The efficiency of this procedure was tested by analyzing two segregating populations for two of the selected heterotic QTL for plant height, yield per plant and ears per plant. Both additive and dominant effects were observed, consistently with the presence of the QTL within the introgressed regions. Refinement of QTL detection was consistent with previous observations in terms of effects and position of the considered QTL. The genetic material developed in this work represents the starting point for QTL fine mapping aimed at understanding the genetic bases of hybrid vigor in maize. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Summary Seeds of erect and prostrate plants ofTrianthema govindia Buch. ham. ex DC., growing in shade and open respectively, differed significantly in seed weight and percentage germination. Effect of high temperature exposure to these seeds has been studied in view of water depletion, imbibition and seed germination. The seeds of both the types were subjected to temperatures of 40, 50, 60, and 70° C for 24, 48, 96, and 144 hours. The three factors viz., loss of water, water imbibition and germination of seeds were positively correlated to the duration of treatment at different temperatures. A highly significant positive correlation was also observed between moisture depletion and imbibition, and between imbibition and germination. The percentage germination was favoured at 40° C in both the types of seeds and was increased with the increase of treatment duration. However, at higher temperatures (50 and 60° C) the percentage declined while at 70° C the seeds lost their vitality.  相似文献   

11.
In this study, a matric-potential control system was used todetermine the effect of matric-priming duration and primingwater potential on the germination response of Bouteloua curtipendula(Michx.) Torr., Cenchrus ciliaris L., Eragrostis lehmannianaNees, and Panicum coloratum L. Seeds were primed at water potentialsof –1·5 to –7·7 MPa for up to 14 d.Optimum germination generally occurred in treatments primedat high water potential for the shortest period. Germinationof seeds primed at lower water potential and for longer periodsexhibited a negative germination response relative to the control.Seeds were not redried after the priming treatment. Seed-wateruptake measurements suggest that a reduction in the lag timeof imbibition accounted for at least some germination-rate enhancementin the positive-priming treatments Key words: Germination, matric-priming, imbibition  相似文献   

12.
Sodium nitrite at 10 millimolar breaks dormancy of dehulled red rice (Oryza sativa). While germination is light independent, low pH conditions (pH 3) are required for maximum response. Water and buffer controls at pH 3 remain dormant. The response to nitrite occurs at 25 and 30°C but is reduced at 20°C, although nondormant seeds germinate readily at this temperature. The contact time for response to nitrite is less than 2 h at the start of imbibition. Seeds imbibed first in water show reduced germination when subsequently transferred to nitrite. Dehulled seeds show little or no response to nitrate and ammonium ions.

Intact seeds remain dormant in the presence of nitrite or nitrate unless partially dry-afterripened. The pH dependence of nitrite sensitivity is reduced in intact, afterripening seeds. In highly dormant seeds, vacuum infiltration experiments suggest that the hull restricts uptake of nitrite.

  相似文献   

13.
Photomanipulation of phytochrome in lettuce seeds   总被引:4,自引:2,他引:2       下载免费PDF全文
Seeds of lettuce (Lactuca sativa L. cv. Grand Rapids) were imbibed and given either short irradiation with red or far red light prior to drying or dried under continuous red or far red light. Seeds treated with either short or continuous red germinate in darkness, whereas seeds treated with either short or continuous far red require a short exposure to red light, after a period of imbibition, to stimulate germination. Irradiation of dry red seeds with far red light immediately before sowing results in a marked inhibition of germination. This result was predicted since far red-absorbing form phytochrome can be photoconverted to the intermediate P650 (absorbance maximum 650 nm) in freeze-dried tissue. A similar far red treatment to continuous red seeds is less effective and it is concluded that in these seeds a proportion of total phytochrome is blocked as intermediates between red-absorbing and far red-absorbing form phytochrome, which only form the far red-absorbing form of phytochrome on imbibition. The inhibition of dry short red seeds by far red light can be reversed by an irradiation with short red light given immediately before sowing, confirming that P650 can be photoconverted back to the far red-absorbing form of phytochrome. The results are discussed in relation to seed maturation (dehydration) on the parent plant.  相似文献   

14.

Background and Aims

Dormancy is a complex trait finely regulated by hormones and environmental factors. The phytochromes that sense red:far-red (R:FR) are the sole photoreceptors involved in the termination of dormancy and the induction of germination by light. The aims of this study were to identify and characterize loci controlling this process in seeds of Arabidopsis thaliana.

Methods

Recombinant inbred lines (RILs) derived from Landsberg erecta and Cape Verde Islands (Ler × Cvi), and Bayreuth and Shahdara (Bay-0 × Sha) were used to map loci related to light effects in seeds previously exposed to chilling and after-ripening periods.

Key Results

Substantial genetic variation was found between accessions of A. thaliana in the induction of germination by light. Twelve loci were identified under R, FR or darkness, some of which were novel loci: DOG8, DOG9, DOG13, DOG14 and DOG15 detected in the Ler × Cvi RIL population; and DOG10, DOG11 and DOG12 mapped in the Bay-0 × Sha RIL population. Furthermore, independent loci were mapped for the induction of germination by low fluence (DOG-LF1 and DOG-LF2) and very low fluence of light (DOG-VLF1) in the Ler × Cvi RIL population. Several loci were confirmed and characterized after different after-ripening and chilling treatments through near-isogenic lines (NILs) and heterogeneous inbred families (HIFs).

Conclusions

The results show that one group of loci act in a wide range of environmental scenarios, whereas a smaller group of loci are relevant only under a narrower set of conditions when the influence of the most-prevalent loci is reduced as a consequence of changes in the physiological status of the seeds. In addition, the identification of specific loci controlling the action modes of the phytochromes improves our understanding of the two independent signalling pathways that promote germination in response to light.Key words: Arabidopsis thaliana, dormancy, germination, phytochromes, very-low-fluence response (VLFR), low-fluence response (LFR), natural genetic variation, quantitative trait loci (QTL), recombinant inbred line (RIL), near-isogenic line (NIL) heterogeneous inbred family (HIF)  相似文献   

15.
Development of quantitative trait loci (QTL) near isogenic lines is a crucial step to QTL isolation using the strategy of map-based cloning. In this study, a recombinant inbred line (RIL) population derived from two indica rice varieties, Zhenshan 97 and HR5, was employed to map QTL for spikelets per panicle (SPP). One major QTL (qSPP7) and three minor QTL (qSPP1, qSPP2 and qSPP3) were identified on chromosomes 7, 1, 2 and 3, respectively. Four sets of near isogenic lines (NILs) BC4F2 targeted for the four QTL were developed by following a standard procedure of consecutive backcross, respectively. These QTL were not only validated in corresponding NILs, but also explained amounts of phenotypic variation with much larger LOD scores compared with those identified in RILs. SPP in the four QTL-NILs expressed bimodal or discontinuous distributions and followed the expected segregation ratio of single Mendelian factor by progeny test. Finally, qSPP1, qSPP2, qSPP3 and qSPP7 were respectively mapped to a locus, 0.5 cM from MRG2746, 0.6 cM from MRG2762, 0.8 cM from RM49 and 0.7 cM from MRG4436, as co-dominant markers on the basis of progeny tests. These results indicate no matter how small effect minor QTL is, QTL may still express the characteristics of single Mendelian factor in NILs and isolation of minor QTL will be possible using high quality NILs. Pyramiding these QTL into a variety will largely enhance rice grain yield.  相似文献   

16.
The effects of reduced water potential (ψ) on seed germination at 25 and 15 °C in unprimed (UP) and primed (P) seeds of two cultivars of sweet sorghum (cv. Keller and cv. Makueni local), were analyzed through the hydrotime model. Six ψ (from 0 to ?1.0 MPa) in polyethylene glycol 6000 (PEG) solutions were used for the tests. Seeds were primed in 250 g/L PEG solution at 15 °C for 48 h. Decreasing ψ of imbibition solution reduced and delayed germination. At 15 °C seeds germinated less and slower than at 25 °C at any ψ. Seeds of cv. Makueni local exhibited a greater sensitivity to water stress in terms of germination percentage, than seeds of cv. Keller, but they were faster in germination. Osmopriming was beneficial for seed germination, both in terms of final percentage and rate, at any temperature and ψ. The hydrotime analysis revealed that predicted θ H constant was increased when temperature was reduced to 15 °C and at this temperature median base water potential [ψ b(50)] for germination was higher (less negative) than at 25 °C. Seed priming shifted ψ b(50) towards more negative values and reduced θ H requirements for germination. At 25 °C the two cultivars behaved similarly while at 15 °C cv. Keller exhibited a ψ b more negative but required a greater θ H to germinate, indicating a greater water-stress tolerance but a slower germination, than cv. Makueni local. The application of the model allows to identify water stress tolerant cultivars during germination, to include into breeding programs for the selection of well-performing cultivars under stress conditions.  相似文献   

17.
Ethylene and CO2 were used to control induction of germination in thermodormant lettuce seed (Lactuca sativa L.). These experiments ultimately showed that germination depends on the presence of an active form of the phytochrome. The phytochrome system is functional and stable at 35 C, a temperature which completely inhibits germination. Phytochrome responses to red or far red light and darkness showed that this inhibition of germination under light must be due to some other block(s) rather than to a direct inactivation of the phytochrome system itself. A postred radiation increase in lettuce seed germination that is not reversed by far red light was observed. The CO2 requirement for C2H4 action is not due to a change in the medium's pH; addition of C2H4 plus CO2 at the start of imbibition did not result in as much germination as when they were added several hours after imbibition. This reduction in germination, when the gases are added at the start of imbibiton, is due to CO2.  相似文献   

18.
Abscisic acid (ABA) is one of the important plant hormones, which plays a critical role in seed development and adaptation to abiotic stresses. The sensitivity of rice (Oryza sativa L.) to exogenous ABA at seed germination and seedling stages was investigated in the recombinant inbred line (RIL) population derived from a cross between irrigated rice Zhenshan 97 and upland rice IRAT109, using relative germination vigor (RGV), relative germination rate (RGR) and leaf rolling scores of spraying (LRS) or culturing (LRC) with ABA as sensitivity indexes. The phenotypic correlation analysis revealed that only RGV at germination stage was positively correlated to ABA sensitivity at seedling stage. QTL detection using composite interval mapping (CIM) and mixed linear model was conducted to dissect the genetic basis of ABA sensitivity, and the single-locus QTLS detected by both methods are in good agreement with each other. Five single QTLs and six pairs of epistatic QTLs were detected for ABA sensitivity at germination stage. Eight single QTLs and five pairs of epistatic QTLs were detected for ABA sensitivity at seedling stage. Two QTLs were common between LRS and LRC; and one common QTL was detected for RGV, LRS and LRC simultaneously. These results indicated that both single and epistatic loci were involved in the ABA sensitivity in rice, and the genetic basis of ABA sensitivity at seed germination and seedling stage was largely different.  相似文献   

19.
Lewak S  Khan AA 《Plant physiology》1977,60(4):575-577
The seeds of lettuce (Lactuca sativa L. cv. Grand Rapids) germinate in darkness at 25 C when treated by gibberellic acid (GA3) for 1 hour following 2 hours of imbibition. The time of GA3 application influences the rate and the final percentage of seeds that germinate. In contrast, red light illumination given at different times affects only the rate and not the final germination percentage. The early process(es) of germination initiated by GA3 or light treatment can be arrested by subjecting the treated seeds to a nongerminative temperature of 35 C. The results suggest differences in the mode of action of light and GA3 during germination. They indicate that different kinds of processes are involved in the biochemical control of germination.  相似文献   

20.
Several quantitative trait loci (QTL) mapping strategies can successfully identify major-effect loci, but often have poor success detecting loci with minor effects, potentially due to the confounding effects of major loci, epistasis, and limited sample sizes. To overcome such difficulties, we used a targeted backcross mapping strategy that genetically eliminated the effect of a previously identified major QTL underlying high-temperature growth (Htg) in yeast. This strategy facilitated the mapping of three novel QTL contributing to Htg of a clinically derived yeast strain. One QTL, which is linked to the previously identified major-effect QTL, was dissected, and NCS2 was identified as the causative gene. The interaction of the NCS2 QTL with the first major-effect QTL was background dependent, revealing a complex QTL architecture spanning these two linked loci. Such complex architecture suggests that more genes than can be predicted are likely to contribute to quantitative traits. The targeted backcrossing approach overcomes the difficulties posed by sample size, genetic linkage, and epistatic effects and facilitates identification of additional alleles with smaller contributions to complex traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号