共查询到20条相似文献,搜索用时 15 毫秒
1.
G. Bertram A. Wessing 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1994,164(3):238-246
The functional significance of the apical vacuolar-type proton pump (V-ATPase) in Drosophila Malpighian tubules was studied by measuring the intracellular pH (pHi) and luminal pH (pHlu) with double-barrelled pH-microelectrodes in proximal segments of the larval anterior tubule immersed in nominally bicarbonate-free solutions (pHo 6.9). In proximal segments both pHi (7.43±0.20) and pHlu (7.10±0.24) were significantly lower than in distal segments (pHi 7.70±0.29, pHlu 8.09±0.15). Steady-state pHi of proximal segments was much less sensitive to changes in pHo than pH of the luminal fluid (pHlu/pHo was 0.49 while pHi/pHo was 0.18; pHo 6.50–7.20). Re-alkaliniziation from an NH4Cl-induced intracellular acid load (initial pHi recovery rate 0.55±0.34 pH·min-1) was nearly totally inhibited by 1 mmol·l-1 KCN (96% inhibition) and to a large degree (79%) by 1 mol·l-1 bafilomycin A1. In contrast, both vanadate (1 mmol·l-1) and amiloride (1 mmol·l-1) inhibited pHi recovery by 38% and 33%, respectively. Unlike amiloride, removal of Na+ from the bathing saline had no effect on pHi recovery, indicating that a Na+/H+ exchange is not significantly involved in pHi regulation. Instead pHi regulation apparently depended largely on the availability of ATP and on the activity of the bafilomycin-sensitive proton pump.Abbreviations DMSO
dimethylsulphoxide
- DNP
2,4-dinitrophenol
- NMDG
N-methyl-D-glucamine
- pHi
intracellular pH
- pHlu
pH of the luminal fluid
- pHo
pH of the superfusion medium
- I
intrinsic intracellular buffer capacity 相似文献
2.
Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation 总被引:1,自引:0,他引:1
PIP2;1 is an integral membrane protein that facilitates water transport across plasma membranes. To address the dynamics of Arabidopsis thaliana PIP2;1 at the single-molecule level as well as their role in PIP2;1 regulation, we tracked green fluorescent protein-PIP2;1 molecules by variable-angle evanescent wave microscopy and fluorescence correlation spectroscopy (FCS). Single-particle tracking analysis revealed that PIP2;1 presented four diffusion modes with large dispersion of diffusion coefficients, suggesting that partitioning and dynamics of PIP2;1 are heterogeneous and, more importantly, that PIP2;1 can move into or out of membrane microdomains. In response to salt stress, the diffusion coefficients and percentage of restricted diffusion increased, implying that PIP2;1 internalization was enhanced. This was further supported by the decrease in PIP2;1 density on plasma membranes by FCS. We additionally demonstrated that PIP2;1 internalization involves a combination of two pathways: a tyrphostin A23-sensitive clathrin-dependent pathway and a methyl-β-cyclodextrin-sensitive, membrane raft-associated pathway. The latter was efficiently stimulated under NaCl conditions. Taken together, our findings demonstrate that PIP2;1 molecules are heterogeneously distributed on the plasma membrane and that clathrin and membrane raft pathways cooperate to mediate the subcellular trafficking of PIP2;1, suggesting that the dynamic partitioning and recycling pathways might be involved in the multiple modes of regulating water permeability. 相似文献
3.
The tobacco plasma membrane aquaporin NtAQP1 总被引:9,自引:0,他引:9
Siefritz F Biela A Eckert M Otto B Uehlein N Kaldenhoff R 《Journal of experimental botany》2001,52(363):1953-1957
4.
5.
Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. 总被引:18,自引:0,他引:18
下载免费PDF全文

I Johansson M Karlsson V K Shukla M J Chrispeels C Larsson P Kjellbom 《The Plant cell》1998,10(3):451-459
PM28A is a major intrinsic protein of the spinach leaf plasma membrane and the major phosphoprotein. Phosphorylation of PM28A is dependent in vivo on the apoplastic water potential and in vitro on submicromolar concentrations of Ca2+. Here, we demonstrate that PM28A is an aquaporin and that its water channel activity is regulated by phosphorylation. Wild-type and mutant forms of PM28A, in which putative phosphorylation sites had been knocked out, were expressed in Xenopus oocytes, and the resulting increase in osmotic water permeability was measured in the presence or absence of an inhibitor of protein kinases (K252a) or of an inhibitor of protein phosphatases (okadaic acid). The results indicate that the water channel activity of PM28A is regulated by phosphorylation of two serine residues, Ser-115 in the first cytoplasmic loop and Ser-274 in the C-terminal region. Labeling of spinach leaves with 32P-orthophosphate and subsequent sequencing of PM28A-derived peptides demonstrated that Ser-274 is phosphorylated in vivo, whereas phosphorylation of Ser-115, a residue conserved among all plant plasma membrane aquaporins, could not be demonstrated. This identifies Ser-274 of PM28A as the amino acid residue being phosphorylated in vivo in response to increasing apoplastic water potential and dephosphorylated in response to decreasing water potential. Taken together, our results suggest an active role for PM28A in maintaining cellular water balance. 相似文献
6.
Bienert GP Cavez D Besserer A Berny MC Gilis D Rooman M Chaumont F 《The Biochemical journal》2012,445(1):101-111
AQPs (aquaporins) are conserved in all kingdoms of life and facilitate the rapid diffusion of water and/or other small solutes across cell membranes. Among the different plant AQPs, PIPs (plasma membrane intrinsic proteins), which fall into two phylogenetic groups, PIP1 and PIP2, play key roles in plant water transport processes. PIPs form tetramers in which each monomer acts as a functional channel. The intermolecular interactions that stabilize PIP oligomer complexes and are responsible for the resistance of PIP dimers to denaturating conditions are not well characterized. In the present study, we identified a highly conserved cysteine residue in loop A of PIP1 and PIP2 proteins and demonstrated by mutagenesis that it is involved in the formation of a disulfide bond between two monomers. Although this cysteine seems not to be involved in regulation of trafficking to the plasma membrane, activity, substrate selectivity or oxidative gating of ZmPIP1s (Zm is Zea mays), ZmPIP2s and hetero-oligomers, it increases oligomer stability under denaturating conditions. In addition, when PIP1 and PIP2 are co-expressed, the loop A cysteine of ZmPIP1;2, but not that of ZmPIP2;5, is involved in the mercury sensitivity of the channels. 相似文献
7.
Maize plasma membrane aquaporins belonging to the PIP1 and PIP2 subgroups are in vivo phosphorylated
Van Wilder V Miecielica U Degand H Derua R Waelkens E Chaumont F 《Plant & cell physiology》2008,49(9):1364-1377
Aquaporins are channel proteins that facilitate transmembrane water movement. In this study, we showed that plasma membrane intrinsic proteins (PIPs) from maize shoots are in vitro and in vivo phosphorylated on serine residues by a calcium-dependent kinase associated with the membrane fraction. Mass spectrometry identified phosphorylated peptides corresponding to the C-terminal region of (i) ZmPIP2;1, ZmPIP2;2 and/or ZmPIP2;7; (ii) ZmPIP2;3 and/or ZmPIP2;4; (iii) ZmPIP2;6; together with (iv) a phosphorylated peptide located in the N-terminal region of ZmPIP1;1, ZmPIP1;2, ZmPIP1;3 and/or ZmPIP1;4. The role of phosphorylation in the water channel activity of wild-type and mutant ZmPIP2;1 was studied in Xenopus laevis oocytes. Activation of endogenous protein kinase A increased the osmotic water permeability coefficient of ZmPIP2;1-expressing oocytes, suggesting that phosphorylation activates its channel activity. Mutation of S126 or S203, putative phosphorylated serine residues conserved in all plant PIPs, to alanine decreased ZmPIP2;1 activity by 30-50%, without affecting its targeting to the plasma membrane. Mutation of S285, which is phosphorylated in planta, to alanine or glutamate did not affect the water channel activity. These results indicate that, in oocytes, S126 and S203 play an important role in ZmPIP2;1 activity and that phosphorylation of S285 is not required for its activity. 相似文献
8.
Sidedness of plant plasma membrane vesicles altered by conditions of preparation 总被引:1,自引:0,他引:1
下载免费PDF全文

Right-side-out vesicles of plasma membrane from soybean (Glycine max Merr.) were isolated by aqueous two-phase partition. Inside-out vesicles were formed when these preparations were diluted or frozen and thawed. Sidedness (orientation) was determined by preparative free-flow electrophoresis, concanavalin A binding, and ATPase latency. Under usual conditions of aqueous two-phase partition, the bulk of the vesicles were strongly reactive with concanavalin A-peroxidase and showed a high level of structure-linked latency as expected of a right-side-out (cytoplasmic-side-in) orientation. The vesicles migrated as a single electrophoretic peak. When frozen and thawed, vesicle diameters were reduced and a second population of vesicles of increased electrophoretic mobility was obtained. This second population of vesicles was weakly reactive with concanavalin A-peroxidase and showed low latency as expected of an inside-out (cytoplasmic-side-out) orientation. If the plasma membrane vesicles were diluted with water, a mixture of right-side-out and inside-out vesicles again was obtained. However, some of the cytoplasmic-side-out vesicles that were concanavalin A-unreactive and had low ATPase latency migrated more slowly as a second, less electronegative peak, upon free-flow electrophoresis. The results suggest that right-side-out and inside-out plasma membrane vesicles differ in electrophoretic mobility but that both the orientation and the absolute electrophoretic mobility of the differently oriented vesicles may be influenced by the preparative conditions. 相似文献
9.
Intracellular apoA-I and apoB distribution in rat intestine is altered by lipid feeding 总被引:2,自引:0,他引:2
Intracellular forms of chylomicrons, very low density lipoprotein (VLDL) and high density lipoprotein (HDL) have previously been isolated from the rat intestine. These intracellular particles are likely to be nascent precursors of secreted lipoproteins. To study the distribution of intracellular apolipoprotein among nascent lipoproteins, a method to isolate intracellular lipoproteins was developed and validated. The method consists of suspending isolated enterocytes in hypotonic buffer containing a lipase inhibitor, rupturing cell membranes by nitrogen cavitation, and isolating lipoproteins by sequential ultracentrifugation. ApoB and apoA-I mass are determined by radioimmunoassay and newly synthesized apolipoprotein characterized following [3H]leucine intraduodenal infusion. Intracellular chylomicron, VLDL, low density lipoprotein (LDL), and HDL fractions were isolated and found to contain apoB, and apoA-IV, and apoA-I. In the fasted animal, less than 10% of total intracellular apoB and apoA-I was bound to lipoproteins and 7% of apoB and 35% of apoA-I was contained in the d 1.21 g/ml infranatant. The remainder of intracellular apolipoprotein was in the pellets of centrifugation. Lipid feeding doubled the percentage of intracellular apoA-I bound to lipoproteins and increased the percentage of intracellular apoB bound to lipoproteins by 65%. Following lipid feeding, the most significant increase was in the chylomicron apoB and HDL apoA-I fractions. These data suggest that in the fasting state, 90% of intracellular apoB and apoA-I is not bound to lipoproteins. Lipid feeding shifts intracellular apolipoprotein onto lipoproteins, but most intracellular apolipoprotein remains non-lipoprotein bound. The constant presence of a large non-lipoprotein-bound pool suggests that apolipoprotein synthesis is not the rate limiting step in lipoprotein assembly or secretion. 相似文献
10.
Phosphorylation of plasma membrane aquaporin regulates temperature-dependent opening of tulip petals 总被引:10,自引:0,他引:10
The opening and closing of tulip petals was reproduced in the dark by changing the temperature from 5 degrees C to 20 degrees C for opening and 20 degrees C to 5 degrees C for closing. The opening process was accompanied by (3)H(2)O transport through the stem from the incubation medium to the petals. A Ca(2+)-channel blocker and a Ca(2+)-chelator inhibited petal opening and (3)H(2)O transport. Several proteins in the isolated plasma membrane fraction were phosphorylated in the presence of 25 micro M Ca(2+) at 20 degrees C. The 31-kDa protein that was phosphorylated, was suggested immunologically as the putative plasma membrane aquaporin (PM-AQP). This phosphorylated PM-AQP clearly reacted with the anti-phospho-Ser. In-gel assay revealed the presence of a 45-kDa Ca(2+)-dependent protein kinase in the isolated plasma membrane. Phosphorylation of the putative PM-AQP was thought to activate the water channel composed of PM-AQP. Dephosphorylation of the phosphorylated PM-AQP was also observed during petal closing at 5 degrees C, suggesting the inactivation of the water channel. 相似文献
11.
Intracellular transport of cholesterol to the plasma membrane 总被引:10,自引:0,他引:10
We have modified a plasma membrane isolation procedure which utilizes DEAE-Sephadex beads (Gotlib, L. J., and Searls, D. B. (1980) Biochim. Biophys. Acta 602, 207-212) to rapidly measure intracellular transport of cholesterol from the site of synthesis in the endoplasmic reticulum to the plasma membrane. This transport process is rapid, with a half-time of about 10 min, has different kinetics from that of intracellular glycoprotein transport, and appears to be energy-dependent. 相似文献
12.
The plasma membrane aquaporin NtAQP1 is a key component of the leaf unfolding mechanism in tobacco 总被引:1,自引:0,他引:1
Siefritz F Otto B Bienert GP van der Krol A Kaldenhoff R 《The Plant journal : for cell and molecular biology》2004,37(2):147-155
Epinastic leaf movement of tobacco is based on differential growth of the upper and lower leaf surface and is distinct from the motor organ-driven mechanism of nyctinastic leaf movement of, for example, mimosa species. The epinastic leaf movement of tobacco is observed not only under diurnal light regimes but also in continuous light, indicating a control by light and the circadian clock. As the transport of water across membranes by aquaporins is an important component of rapid plant cell elongation, the role of the tobacco aquaporin Nt aquaporin (AQP)1 in the epinastic response was studied in detail. In planta NtAQP1-luciferase (LUC) activity studies, Northern and Western blot analyses demonstrated a diurnal and circadian oscillation in the expression of this plasma membrane intrinsic protein (PIP)1-type aquaporin in leaf petioles, exhibiting peaks of expression coinciding with leaf unfolding. Cellular water permeability of protoplasts isolated from leaf petioles was found to be high in the morning, i.e. during the unfolding reaction, and low in the evening. Moreover, diurnal epinastic leaf movement was shown to be reduced in transgenic tobacco lines with an impaired expression of NtAQP1. It is concluded that the cyclic expression of PIP1-aquaporin represents an important component of the leaf movement mechanism. 相似文献
13.
W G Moore 《Biochimica et biophysica acta》1986,870(2):372-374
Chymotrypsinogen was observed to have two bands in a low-pH gel electrophoresis system, though the protein was pure by other criteria. Other proteins have also been reported to give artifacts under these conditions. Removal of persulfate from the gel by pre-electrophoresis or by substituting riboflavin eliminated the artifacts. The affected amino acid residue was identified as tryptophan by titration of persulfate-treated proteins with 2-hydroxy-5-nitrobenzyl bromide and by the spectral method of Edelhoch. Persulfate-treated chymotrypsinogen had the same mobility as the artifact, while oxidation of Met-192 with hydrogen peroxide produced a protein with a different mobility. 相似文献
14.
BACKGROUND AND AIMS The inner cortical cells (IC-cells) of legume root nodules have been previously shown to regulate the resistance to nodule O2 diffusion by a rapid contraction/expansion mechanism, which controls the volume of intercellular spaces and their occlusion by a liquid phase. The expression of aquaporins in IC-cells was also found to be involved in this nodule O2 diffusion mechanism. The aim of this study was to compare the expression of plasma membrane intrinsic proteins (PIP) aquaporin isoforms with tonoplast intrinsic protein (gamma-TIP) in both IC-cells and adjacent cell types. METHODS: Using immunogold labelling in ultra-thin sections of Glycine max nodules, the expression of two PIP isoforms was observed and compared with the gamma-TIP pattern. KEY RESULTS: The plasma membrane aquaporins PIP1 and PIP2 were expressed more in IC-cells and endodermis than in pericycle and infected cells. The tonoplast aquaporin gamma-TIP has shown a distribution pattern similar to that of the PIPs. CONCLUSIONS: PIPs and gamma-TIP aquaporins are highly expressed in both plasmalemma and tonoplast of nodule IC-cells. This distribution is consistent with the putative role of water fluxes associated with the regulation of nodule conductance to O2 diffusion and the subsequent ATP-dependent nitrogenase activity. In the endodermis, these aquaporins might also be involved in nutrient transport between the infected zone and vascular traces. 相似文献
15.
16.
17.
1. Low pH inhibits microbial conditioning of leaf‐litter, which forms the principal energy input to many headwater streams. This reduces food quality and availability for the shredder assemblage, thereby creating a potential bottleneck in the flux of energy and biomass through acidified food webs. 2. We explored the consequences of acidity on the well‐characterised community of Broadstone Stream in southeast England, by quantifying the physiological condition (protein and lipid content) of three dominant shredder species (Leuctra nigra, L. hippopus and Nemurella pictetii) and relating this to changes in the numerical abundance and biomass of invertebrates across a longitudinal pH gradient (5.3–6.5). 3. Total taxon richness increased with pH, as did shredder diversity. The acid‐tolerant stonefly, L. nigra, exhibited a positive correlation between pH and protein content, but its abundance was suppressed in the less acid reaches. These results suggest that the impacts of environmental stressors might be manifested differently at the population (i.e. numerical and biomass abundance) versus the physiological (i.e. protein content of individuals) levels of organisation. Body composition of L. hippopus and N. pictetii did not exhibit any significant relationship with stream pH in the field. 4. The survey data were corroborated with a laboratory rearing experiment using N. pictetii, in which survival rate, growth rate, and protein and lipid content of individuals were measured in stream water of differing pH and acid versus circumneutral microbial conditioning regimes. Acid‐conditioned leaves were associated with increased mortality and reduced protein content in consumers’ tissues, with acid water also having the latter effect. 5. Our results suggest that biochemical constraints within key taxa might create energy flux bottlenecks in detrital‐based food webs, and that this could ultimately determine the productivity of the entire system. Hence assays of the body composition of macroinvertebrates could be an effective new tool that complements population level studies of the impacts of stressors in fresh waters. 相似文献
18.
19.
Two radiopharmaceuticals, Tc-99m-MIBI (MIBI) and Tc-99m-Tetrofosmin (Tfos), are currently used for in vivo non-invasive monitoring of the MultiDrug Resistant (MDR) status of tumours. As gliomas are highly multidrug resistant, it is expected that the tracers would be poorly retained in those cells, but the in vivo and in vitro studies to date have shown that Tfos was highly retained in malignant gliomas. The high degree of malignancy of tumour cells is linked to alterations of physiological parameters as plasma membrane potential and intracellular pH. In order to elucidate the contribution of those parameters to Tfos and MIBI uptakes in malignant gliomas, we used several glioma cell lines--G111, G5, G152, and 42 MG-BA. These cells showed to be chemoresistant with a high level of expression and activity of the Multidrug Resistant associated Protein 1 (MRP1). They also had an alkaline intracellular pH (pHi) related to the Na+/H+ antiporter (NHE-1) expression and depolarised plasma membranes (-45 to -55 mV). In spite of their chemoresistance, we have found a high accumulation of both radiotracers in gliomas, more important for Tfos than MIBI, related to the presence and activity of NHE-1. In conjunction, the uptakes of the tracers were only partially dependent upon the plasma membrane potential of the glioma cell lines, again Tfos uptake being less dependent on this parameter than MIBI uptake. In conclusion, the evidence accumulated in this study suggests that Tfos could be a suitable glioma marker in vivo. 相似文献
20.
Phosphatidylinositol bisphosphate (PIP2) directly regulates functions as diverse as the organization of the cytoskeleton, vesicular transport and ion channel activity. It is not known, however, whether dynamic changes in PIP2 levels have a regulatory role of physiological importance in such functions. Here, we show in both native cardiac cells and heterologous expression systems that receptor-regulated PIP2 hydrolysis results in desensitization of a GTP-binding protein-stimulated potassium current. Two receptor-regulated pathways in the plasma membrane cross-talk at the level of these channels to modulate potassium currents. One pathway signals through the betagamma subunits of G proteins, which bind directly to the channel. Gbetagamma subunits stabilize interactions with PIP2 and lead to persistent channel activation. The second pathway activates phospholipase C (PLC) which hydrolyses PIP2 and limits Gbetagamma-stimulated activity. Our results provide evidence that PIP2 itself is a receptor-regulated second messenger, downregulation of which accounts for a new form of desensitization. 相似文献