首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Vegetation change from drought-induced mortality can alter ecosystem community structure, biodiversity, and services. Although drought-induced mortality of woody plants has increased globally with recent warming, influences of soil type, tree and shrub groups, and species are poorly understood. Following the severe 2002 drought in northern Arizona, we surveyed woody plant mortality and canopy dieback of live trees and shrubs at the forest–woodland ecotone on soils derived from three soil parent materials (cinder, flow basalt, sedimentary) that differed in texture and rockiness. Our first of three major findings was that soil parent material had little effect on mortality of both trees and shrubs, yet canopy dieback of trees was influenced by parent material; dieback was highest on the cinder for pinyon pine (Pinus edulis) and one-seed juniper (Juniperus monosperma). Ponderosa pine (Pinus ponderosa) dieback was not sensitive to parent material. Second, shrubs had similar mortality, but greater canopy dieback, than trees. Third, pinyon and ponderosa pines had greater mortality than juniper, yet juniper had greater dieback, reflecting different hydraulic characteristics among these tree species. Our results show that impacts of severe drought on woody plants differed among tree species and tree and shrub groups, and such impacts were widespread over different soils in the southwestern U.S. Increasing frequency of severe drought with climate warming will likely cause similar mortality to trees and shrubs over major soil types at the forest–woodland ecotone in this region, but due to greater mortality of other tree species, tree cover will shift from a mixture of species to dominance by junipers and shrubs. Surviving junipers and shrubs will also likely have diminished leaf area due to canopy dieback.  相似文献   

3.
岷江冷杉林皆伐后次生群落结构和物种多样性的演替动态   总被引:1,自引:0,他引:1  
缪宁  周珠丽  史作民  冯秋红 《生态学报》2014,34(13):3661-3671
为阐明岷江冷杉林皆伐后次生群落的演替过程,采用空间代替时间的方法,在川西米亚罗林区海拔3100—3600 m的阴坡选择岷江冷杉林皆伐后次生演替10、20、30、40和50a阶段的次生群落作为研究对象,对其群落结构和物种多样性的动态进行了研究。不同演替阶段的树木均呈显著聚集分布。按群落中优势种的重要值将该演替序列划分为3个类型:悬钩子-蔷薇灌丛、白桦阔叶林和桦木-岷江冷杉针阔混交林。随次生演替,乔木和灌木种的物种丰富度趋于增加,而草本种的物种丰富度趋于减少;乔木和灌木种的Shannon-Wiener多样性指数趋于增大,而草本的Shannon-Wiener多样性指数趋于减小;乔木、灌木和草本层的Pielou均匀度指数均趋于增大;乔木层的Simpson优势度指数趋于减小,灌木和草本层的Simpson优势度指数在演替0—40年阶段趋于增大,而在演替50a阶段趋于减小。在该演替序列中,乔木、灌木和草本层的物种组成均呈耐荫种替代非耐荫种的趋势。  相似文献   

4.
Woody legumes can play an important role in forest restoration on degraded land but the knowledge of woody legumes has lagged behind their uses. This study is a pioneer investigation to explore the ability of native woody legumes to form root nodules and fix nitrogen in Hong Kong. Nine sites of different habitat types were surveyed during both wet and dry seasons for two years. Young plants of woody legumes along studied transects were excavated. The patterns of nodulation and nodule morphology were recorded and the nitrogen fixing ability was tested by acetylene-reduction-assay. Twenty-eight species in 16 genera were examined, of which 20 species were nodulating and eight non-nodulating, including all six species in the Caesalpinioideae. Five species were new records to the world’s nodulation inventory. Bowringia callicarpa was a new species and genus examined, which was non-nodulating. The overall nodulation pattern was consistent with previous studies. Nodulation was more profuse in some shrub species while inconsistent in most tree species. Species with higher proportion of nodulated individual plants also tended to have more nodules in each plant. Spherical nodules were common in shrub and woody climber species whilst tree species usually had woody indeterminate nodules. Seasonal difference in the amount of senescent nodules was noted in most species. All the nodules tested by acetylene-reduction-assay were effectively nitrogen-fixing, with nitrogenase activity ranging from 4 μmol C2H4 g?1 h?1 to 20 μmol C2H4 g?1 h?1, which was comparable to other tropical tree species. The findings in nodulation pattern and nitrogen fixing ability of these species are essential in their application in forest restoration on degraded lands.  相似文献   

5.
Vegetation in canopy gaps of two old-growth Abies-Betula forest stands, one with bamboo the other without, was measured. The structure of gap vegetation at each site was used to derive tree replacement probabilities. Transition probabilities indicate different tree replacement trends in forests with bamboo compared to those without. Projected compositions show Betula to be the most abundant species in bamboo stands while Abies remains most abundant where bamboo was absent. A dense bamboo sward seems to reduce the probability of Abies filling gaps by inhibiting establishment and growth of seedlings. Bamboo preempts space after canopy gap formation by increasing shoot production which reduces opportunities for establishment and growth of other woody species. Differences in dispersal ability and longevity of Abies and Betula appear to be important factors contributing to their coexistence forests with a small canopy gap disturbance regime.  相似文献   

6.
Abstract. The shrub Buxus sempervirens and the trees Abies alba and Fagus sylvatica have recently recolonized old‐pastures in the Central Pyrenees. We mapped all live and dead individuals (> 1.3 m tall) in a large forest plot in Ordesa Valley to examine the importance of density‐dependent processes during recolonization. Biotic interactions were inferred from changes in horizontal structure and the influences of neighbours on tree survival. Buxus differentially influenced establishment and survival of tree species, thereby controlling future canopy composition and spatial structure. The rapidly invading Abies formed denser patches on elevated sites less occupied by Buxus, whereas Fagus preferentially established within shrubs. Abies reached densities which led to intense intraspecific competition and high mortality rates among saplings. Self‐thinning in Abies led to smaller numbers of regularly spaced survivors, and greater relative dominance of Fagus. Disregarding intraspecific effects and abiotic environment, Abies survival was significantly lower under Buxus shrubs, which suggests that the spatial location and abundance of Abies was constrained by the location of Buxus. Fagus survival was not related to Buxus density, but remained significantly lower in denser Abies patches. The higher mortality of Fagus in denser Abies patches, and the resulting spatial segregation of the species, reflects asymmetric interspecific competition. Inhibition from Buxus shrubs and intraspecific competition prevent invading Abies from dominating and may therefore help in maintaining a mixed Abies‐Fagus stand.  相似文献   

7.
We compared species composition and diversity of the soil seed and seedling banks in three secondary vegetation types (shrubland, Populus bonatii forest, Lithocarpus regrowth forest) and a primary old-growth forest in the subtropical Ailao Mountains of southwestern China to clarify the importance of seed and seedling banks for forest dynamics. The average species richness was the highest in soil samples from the shrubland (26.80 ± 1.98), and the lowest from the primary forest (9.93 ± 0.50). The density of germinable tree seeds increased from the secondary vegetation to the primary forest, and the density of shrub, forb, and graminoid seeds decreased significantly. The most abundant seedlings recorded in soil samples were light-demanding species in the shrubland and Populus bonatii forest. For ground flora, the number of shrub seedlings strongly decreased with the increase in stand age, and shade-tolerant tree seedlings tended to increase. The species similarity between the seed bank and the aboveground vegetation in all sites was low (Sørensen’s index = 0.11–0.33), however, the shrubland had higher similarity compared with the other three plant communities. In the primary forest, light-demanding woody species dominated in soil seed banks, while shade-tolerant species dominated in the overstory and the forest floor. In the primary forest, seedlings of dominant tree species were rare in the understory, and no seeds of the dominant species were found in the soil. Results indicated that the early stages of vegetation recovery should take into account the possibility of recovering soil seed bank processes. However, colonization and establishment of tree seedlings will be difficult once a primary forest is destroyed.  相似文献   

8.
Resprouting of trees and shrubs in forest-grassland ecotones is a key process to understand the dynamics of these systems under different disturbance regimes. This study integrates resprouting of grassland shrubs and pioneer forest trees (??gullivers??), burned in subtropical lowland grassland and cut in temperate highland grassland of Rio Grande do Sul, Brazil. Per grassland site, 20 individuals each of 1?C2 grassland shrub species (Asteraceae) and two forest tree species (Myrsinaceae, Myrtaceae) were tagged, and post-disturbance survival and growth monitored for 1?year at 2?C4?month intervals. Differences in resprouting vigour (summed-up basal area of resprouted shoots per pre-disturbance summed-up area of basal stems), and in density and allometry of resprouted shoots (allocation mode) were compared between tree and shrub species by linear mixed effects modelling and multiple comparisons, using the Tukey test. All grassland shrub individuals resprouted and regained 73?C142?% (species average) of pre-disturbance basal area within one year, as opposed to 14?C24?% in trees. All Myrtaceae ??gullivers?? resprouted, but up to two-thirds of Myrsine individuals did not survive disturbance. Tree species tended to produce either many slender or few stout shoots, while shrub species were intermediate between these extremes. Forest trees regained 22?C46?% of pre-disturbance height, independent of allocation mode, and grassland shrubs up to 73?%. This suggests that grassland fires allow grassland shrubs but not forest trees to persist and to grow to reproductive size. Differing sprout allocation modes may reflect allometric constraints rather than strategies to outgrow the fire-prone grass matrix.  相似文献   

9.
In arid environments nurse-plants modify localised habitats and create regeneration opportunities for seedlings vulnerable to hostile conditions created by biotic and abiotic factors. Facilitation is thus recognised as an important process structuring plant communities in harsh environments. Here we use spatial patterns of species association and recruitment to infer species replacement patterns in arid subtropical thicket of South Africa. Although our study site was floristically impoverished, all major plant functional groups that characterise subtropical thicket were present. Portulacaria afra clumps comprised approximately 50% of the study site by area. The mean and median clump size was 16.5 and 6.9 m2, respectively, indicating the prevalence of small individuals in the population. Approximately 90% of tree seedlings were recorded under P. afra clumps and 93% of P. afra seedlings were recorded under woody shrubs. P. afra seedlings were recorded more frequently than expected beneath Rhigozum obovatum compared with other woody shrub species. No clear recruitment patterns were recorded for R. obovatum. Lycium cinereum, a woody shrub, and the stem-succulent Psilocaulon absimile were distributed more frequently on nutrient rich patches than expected and both these species are replaced by grass as the nutrient rich patch ages. Mature trees were generally recorded growing to the south of the assumed founding P. afra stem indicating that tree establishment was more frequent on the shaded side of P. afra clumps. However, most trees grew towards the sunny north and east-facing aspects. Plant species replacement patterns are facilitated by nurse-plant effects in arid subtropical thicket. These recruitment patterns together with our inferred species replacement on nutrient rich patches result in a predictable sequence of species replacement that is cyclic in nature.  相似文献   

10.
The role of forest plantations in biodiversity conservation has gained more attention in recent years. However, most work on evaluating the diversity of forest plantations focuses only on one spatial scale; thus, we examined the effects of sampling scale on diversity in forest plantations. We designed a hierarchical sampling strategy to collect data on woody species diversity in planted pine (Pinus tabuliformis Carr.), planted larch (Larix principis-rupprechtii Mayr.), and natural secondary deciduous broadleaf forests in a mountainous region of Beijing, China. Additive diversity partition analysis showed that, compared to natural forests, the planted pine forests had a different woody species diversity partitioning pattern at multi-scales (except the Simpson diversity in the regeneration layer), while the larch plantations did not show multi-scale diversity partitioning patterns that were obviously different from those in the natural secondary broadleaf forest. Compare to the natural secondary broadleaf forests, the effects of planted pine forests on woody species diversity are dependent on the sampling scale and layers selected for analysis. Diversity in the planted larch forest, however, was not significantly different from that in the natural forest for all diversity components at all sampling levels. Our work demonstrated that the species selected for afforestation and the sampling scales selected for data analysis alter the conclusions on the levels of diversity supported by plantations. We suggest that a wide range of scales should be considered in the evaluation of the role of forest plantations on biodiversity conservation.  相似文献   

11.
Interactions between trees and grasses that influence leaf area index (LAI) have important consequences for savanna ecosystem processes through their controls on water, carbon, and energy fluxes as well as fire regimes. We measured LAI, of the groundlayer (herbaceous and woody plants <1-m tall) and shrub and tree layer (woody plants >1-m tall), in the Brazilian cerrado over a range of tree densities from open shrub savanna to closed woodland through the annual cycle. During the dry season, soil water potential was strongly and positively correlated with grass LAI, and less strongly with tree and shrub LAI. By the end of the dry season, LAI of grasses, groundlayer dicots and trees declined to 28, 60, and 68% of mean wet-season values, respectively. We compared the data to remotely sensed vegetation indices, finding that field measurements were more strongly correlated to the enhanced vegetation index (EVI, r 2=0.71) than to the normalized difference vegetation index (NDVI, r 2=0.49). Although the latter has been more widely used in quantifying leaf dynamics of tropical savannas, EVI appears better suited for this purpose. Our ground-based measurements demonstrate that groundlayer LAI declines with increasing tree density across sites, with savanna grasses being excluded at a tree LAI of approximately 3.3. LAI averaged 4.2 in nearby gallery (riparian) forest, so savanna grasses were absent, thereby greatly reducing fire risk and permitting survival of fire-sensitive forest tree species. Although edaphic conditions may partly explain the larger tree LAI of forests, relative to savanna, biological differences between savanna and forest tree species play an important role. Overall, forest tree species had 48% greater LAI than congeneric savanna trees under similar growing conditions. Savanna and forest species play distinct roles in the structure and dynamics of savanna–forest boundaries, contributing to the differences in fire regimes, microclimate, and nutrient cycling between savanna and forest ecosystems.  相似文献   

12.
Although some studies have demonstrated temporal patterns of changes in spatial structure during forest development, few studies have examined the variability of spatial structure between stands at the same developmental stage. In the present study, we investigated variations of spatial structure between sites at the same developmental stage for three developmental stages (sapling, intermediate, and mature) in a wave-regenerated Abies veitchii and Abies mariesii forest. The spatial structure of tree heights in each plot was analyzed by using the mark correlation and mark variogram methods, and the pattern of tree locations in each plot was analyzed by using the pair-correlation function. Analysis of the spatial height structure indicated that a size hierarchy between neighboring trees (a local size hierarchy) generally did not develop at the sapling stage. A local size hierarchy developed in most plots during the two later stages. There was no obvious difference among developmental stages in the spatial pattern of tree locations because of the large variation within each stage. Our results demonstrate that large variation in spatial structure existed between sites in the wave-regenerated Abies forest, even at the same developmental stage. The variability in spatial structure confirmed the importance of stochastic factors in forest dynamics.  相似文献   

13.
In order to investigate the diversity of wood-inhabiting aphyllophoroid basidiomycetes in Swiss forests, 86 plots of 50 m 2 were established. They harboured a total of 3339 samples of woody debris, classified according to three categories (coarse, fine, and very fine woody debris), yielding 238 species of wood-inhabiting fungi. The selected sites cover the main forest types of Switzerland and various degrees of management intensity. A multiple linear regression analysis showed that substrate variation, i.e. differences in the quality of dead wood, including volume, age, degree of decomposition and host tree species, are the most important factors influencing diversity of wood-inhabiting fungi. In addition, a Principle Coordinate Analysis highlighted differences in the fungal communities in the different forest types. The greatest fungal species richness is found on thermophilic deciduous tree and woody shrub species. Fine and very fine woody debris, even present in intensively managed forests, often serve as important refuges for many species. Forests with a recent management intervention were found to be either species poor or species rich. Possible reasons for these differences may lay in forest size and landscape fragmentation, the distance to the nearest species pool or microclimatic factors. In Switzerland intensively managed forests harbour significantly less wood-inhabiting, aphyllophoroid fungi than non-managed or extensively managed forests. This is the case in both deciduous forests and in conifer forests. However, occasionally intensively managed forest will also harbour rare and endangered species.  相似文献   

14.
A large number of small-sized samples invariably shows that woody species are absent from forest soil seed banks, leading to a large discrepancy with the seedling bank on the forest floor. We ask: 1) Does this conventional sampling strategy limit the detection of seeds of woody species? 2) Are large sample areas and sample sizes needed for higher recovery of seeds of woody species? We collected 100 samples that were 10 cm (length) ×10 cm (width) ×10 cm (depth), referred to as larger number of small-sized samples (LNSS) in a 1 ha forest plot, and placed them to germinate in a greenhouse, and collected 30 samples that were 1 m×1 m×10 cm, referred to as small number of large-sized samples (SNLS) and placed them (10 each) in a nearby secondary forest, shrub land and grass land. Only 15.7% of woody plant species of the forest stand were detected by the 100 LNSS, contrasting with 22.9%, 37.3% and 20.5% woody plant species being detected by SNLS in the secondary forest, shrub land and grassland, respectively. The increased number of species vs. sampled areas confirmed power-law relationships for forest stand, the LNSS and SNLS at all three recipient sites. Our results, although based on one forest, indicate that conventional LNSS did not yield a high percentage of detection for woody species, but SNLS strategy yielded a higher percentage of detection for woody species in the seed bank if samples were exposed to a better field germination environment. A 4 m2 minimum sample area derived from power equations is larger than the sampled area in most studies in the literature. Increased sample size also is needed to obtain an increased sample area if the number of samples is to remain relatively low.  相似文献   

15.
苏日古嘎  张金屯  王永霞 《生态学报》2013,33(11):3394-3403
物种多样性是群落结构和功能复杂性的一种度量,物种多样性的空间分布格局受许多环境因子的影响.运用多样性指数,多层感知器网络,分析了松山保护区森林群落物种多样性与群落类型、结构和生境之间的关系.结果表明:(1)大果榆+山杨混交林、油松+青杨混交林物种丰富度、多样性和均匀度均较高,而大果榆林、华北落叶松林的各项指数值均较低.Patrick指数和Shannon-Weiner指数在森林群落中均表现为草本层>灌木层>乔木层;Pielou指数在榆林中表现为草本层>乔木层>灌木层,而在其他森林群落中表现为灌木层>草本层>乔木层.(2)功能层物种多样性在海拔梯度上的变化趋势不同,在乔木层,丰富度、多样性和均匀度随海拔的升高逐渐降低;在灌木层,丰富度、多样性和均匀度均呈比较明显的单峰曲线变化趋势;在草本层,丰富度和多样性随海拔的升高都呈下降趋势,而在草本层,均匀度变化不大.(3)用多层感知器网络预测功能层多样性效果很好,结果发现坡向对乔木层和灌木层物种多样性的影响最大,而海拔高度对草本层物种多样性的影响最大.  相似文献   

16.
Tree regeneration after bamboo die-back in Chinese Abies-Betula forests   总被引:2,自引:0,他引:2  
Abstract. Gaps created by disturbance in the forest canopy are important sites for tree regeneration from seed but plants already established in gaps may slow gap-filling. This study deals with consequences of bamboo die-back for tree regeneration and the dynamics of Abies-Betula forests in southwest China. Bamboo dominates the forest understory impeding tree regeneration when in its vegetative phase. Populations of tree seedlings were sampled in 1984–85 and 1990 in two sets of permanent plots where bamboo had died back in 1983. Both Abies and Betula density increased after bamboo die-back, Betula more so than Abies, especially in gaps. Before bamboo die-back, seedlings were established on raised surfaces such as logs but afterwards seedlings became common on the forest floor. This reduced the intensity of clumping of seedling populations between 1984 and 1990. A tree by tree replacement model predicts an increase in Abies and a decrease in Betula after bamboo die-back. Life histories of tree species, gap characteristics, and the bamboo growth cycle (mature/die-back/building) interact to promote fluctuating dominance of Abies and Betula in old-growth forests.  相似文献   

17.
How do tree species regenerate and which ecological conditions are required after forest fire in the Insubric region of the Alps? Are indigenous stand-forming tree species resistant over the invasion of alien plant species after such a disturbance? We addressed these questions in a case study in the Swiss canton of Ticino. In April 2006, a surface fire with severe intensity burnt a forest area of 55 ha on a south-facing slope (400-800 m.a.s.l.). The dominant trees in the investigated area were chestnut (Castanea sativa Mill.), beech (Fagus sylvatica L.) and deciduous oaks (Quercus spp.) mixed with tree species of intermediate height. Vegetation data were collected in May and August 2009 by systematic sampling. Resprouting of the survived trees and generative regeneration were analysed by counting vegetative shoots from sprouting stools, of seedling age, height and damage rate, respectively. Different vegetation structures related to low or high fire intensity were clearly visible three years after the forest fire, creating various habitats for both new invaders and seedlings of the stand-forming trees. The dominant chestnut was the only tree species that regenerated effectively by sprouting from stools. Seedlings of the stand-forming trees grew in high abundance under shadow conditions close to their mother trees which provided the seed source. In contrast, pioneer trees invaded patches where full light was available. Under such conditions the two main woody alien plant species, Ailanthus altissima and Robinia pseudoacacia, grew in high abundance. Due to the different ecological requirements of indigenous and alien tree seedlings, not any interaction between the two groups was detected.  相似文献   

18.
The major focus of ecological restorations has been on understanding local factors. However, landscape factors such as dispersal limitation of individuals or propagules across the surrounding matrix can also constrain the restoration progress. We investigated to what extent native woody species colonize and thrive in plantations, focusing on both the role of local factors such as grazing and canopy cover as well as on landscape factors. We recorded all native tree and shrub species in 60 small Eucalyptus plantations embedded in an open agricultural landscape at 0.1–12 km from a remnant continuous forest in central Ethiopia. We found a total of 1,571 individuals of native woody plants belonging to 55 species. Number of such species in a plantation increased significantly with the height of the grass sword indicating their sensitivity to grazing. Moreover, the number of woody species in the patches decreased significantly with distance to the forest. Our results illustrate the need for regulating the grazing pressure for a successful regeneration of native species in Eucalyptus plantations. In addition, sowing or planting native trees will be necessary in most plantations, as only few remnant natural forests that could act as seed sources occur across the Ethiopian highlands. Another main obstacle might be the prohibition of selling timber of native trees, which indirectly discourage farmers from letting native trees regenerate. Thus, the increasing cover of Eucalyptus seen across the country will not automatically foster a recovery of native woody plant biodiversity, even if managed to optimize local environmental conditions.  相似文献   

19.
Wof‐Washa forest is one of the few remaining dry Afromontane forests in the central plateau of Ethiopia. Woody species composition, structure and regeneration patterns of this forest were studied to generate information essential for formulating feasible management options for the forest. Vegetation data were collected from 64 quadrats of size 20 m × 20 m, 10 m × 10 m and 5 m × 5 m for tree/shrub, sapling and seedling, respectively, laid systematically along transects. A total of 62 woody species belonging to 54 genera and 40 families were recorded. Rosaceae was the most diverse family with five (12.5%) species followed by Anacardiaceae, Euphorbiaceae and Myrsinaceae with three (7.5%) species each. Tree/shrub, sapling and seedling densities were 699, 1178 and 7618.7 individuals/ha. About 56.7% of the importance value index was contributed by Juniperus procera, Maytenus arbutifolia, Podocarpus falcatus and Ilex mitis. Vegetation classification resulted in five plant communities: Ilex mitis – Maytenus obscura, Galiniera saxifraga – Maesa lanceolata, Juniperus procera – Erica arborea, Podocapus falcatus – Allophylus abyssinicus and Pittosporum viridiflorum – Polycias fulva community types. Regeneration status of all the woody plant species was categorized as ‘Good’ (28%), ‘Fair’ (19%), ‘Poor’ (8%), ‘None’ (40%) and ‘New’ (5%).  相似文献   

20.
Many plants release allelopathic chemicals that can inhibit germination, growth, and/or survival in neighboring plants. These impacts appear magnified with the invasion of some non-native plants which may produce allelochemicals against which native fauna have not co-evolved resistance. Our objective was to examine the potential allelopathic impact of an invasive non-native shrub/tree on multiple plant species using field observation and experimental allelopathy studies. We surveyed and collected an invasive, non-native tree/shrub (Rhamnus cathartica) at Tifft Nature Preserve (a 107-ha urban natural area near Lake Erie in Buffalo, NY). We also surveyed understory plant communities in the urban forest to examine correlations between R. cathartica abundance and local plant community abundance and richness. We then used experimental mesocosms to test if patterns observed in the field could be explained by adding increased dosages of R. cathartica to soils containing five plant species, including native and non-native woody and herbaceous species. In the highly invaded urban forest, we found that herbaceous cover, shrubs and woody seedlings negatively covaried with R. cathartica basal area and seedlings density. In the mesocosm experiments, R. cathartica resulted in significant decreases in plant community species richness, abundance, and shifted biomass allocation from roots. Our results provide evidence that R. cathartica is highly allelopathic in its invaded range, that R. cathartica roots have an allelopathic effect and that some plant species appear immune. We suggest that these effects may explain the plant’s ability to form dense monocultures and resist competitors, as well as shift community composition with species-specific impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号