首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In angiosperms, chlorophyll biosynthesis is light dependent. A key factor in this process is protochlorophyllide oxidoreductase (POR), which requires light to catalyze the reduction of protochlorophyllide to chlorophyllide. It is believed that this protein originated from an ancient cyanobacterial enzyme that was introduced into proto‐plant cells during the primary symbiosis. Here we report that PORs from the cyanobacteria Gloeobacter violaceus PCC7421 and Synechocystis sp. PCC6803 function in plastids. First, we found that the G. violaceus POR shows a higher affinity to its substrate protochlorophyllide than the Synechocystis POR but a similar affinity to plant PORs. Secondly, the reduced size of prolamellar bodies caused by a knockdown mutation of one of the POR genes, PORA, in Arabidopsis could be complemented by heterologous expression of the cyanobacterial PORs. Photoactive protochlorophyllide in the etioplasts of the complementing lines, however, was retained at a low level as in the parent PORA knockdown mutant, indicating that the observed formation of prolamellar bodies was irrelevant to the assembly of photoactive protochlorophyllide. This work reveals a new view on the formation of prolamellar bodies and provides new clues about the function of POR in the etioplast–chloroplast transition.  相似文献   

3.
During skotomorphogenesis in angiosperms, NADPH:protochlorophyllide oxidoreductase (POR) forms an aggregate of photolabile NADPH-POR-protochlorophyllide (Pchlide) ternary complexes localized to the prolamellar bodies within etioplasts. During photomorphogenesis, POR catalyzes the light-dependent reduction of Pchlide a to chlorophyllide (Chlide) a, which is subsequently converted to chlorophyll (Chl). In Arabidopsis there are three structurally related POR genes, denoted PORA, PORB and PORC. The PORA and PORB proteins accumulate during skotomorphogenesis. During illumination, PORA is only transiently expressed, whereas PORB and PORC persist and are responsible for bulk Chl synthesis throughout plant development. Here we have tested whether PORA is important for skotomorphogenesis by assisting in etioplast development, and normal photomorphogenic development. Using reverse genetic approaches, we have identified the porA-1 null mutant, which contains an insertion of the maize Dissociation transposable element in the PORA gene. Additionally, we have characterized PORA RNAi lines. The porA-1 and PORA RNAi lines display severe photoautotrophic growth defects, which can be partially rescued on sucrose-supplemented growth media. Elimination of PORA during skotomorphogenesis results in reductions in the volume and frequency of prolamellar bodies, and in photoactive Pchlide conversion. The porA-1 mutant characterization thus establishes a quantitative requirement for PORA in etioplast development by demonstrating significant membrane ultrastructural and biochemical defects, in addition to suggesting PORA-specific functions in photomorphogenesis and plant development.  相似文献   

4.

Background and Aims

Etiolation symptoms and the greening process are usually studied on dark-germinated seedlings and this raises the question – can these results be generalized for plants growing under field conditions? This work examines various aspects of the plastid differentiation under the covering of the achene wall, which often remains attached to the cotyledons of sunflower (Helianthus annuus) seedlings grown under light.

Methods

Cotyledons of 7- to 10-d-old sunflower seedlings grown in the dark and on light were examined. The partially covered cotyledons were sectioned into light-exposed, covered and transition zones. Pigment contents, 77 K fluorescence spectroscopy, electron microscopy and fluorescence imaging, along with fluorescence kinetic methods, were used.

Key Results

The light-exposed zone of the partially covered cotyledons was similar to cotyledons developed without achene covering. However, some of the plastids had prolamellar bodies among the granal thylakoid membranes; despite this no protochlorophyllide was detected. The fully covered, yellowish sections contained protochlorophyllide forms emitting at 633 and 655 nm and well-developed prolamellar bodies, similar to those of etiolated cotyledons. In addition, reduced amounts of chlorophyll a, chlorophyll b and stacked thylakoid membrane pairs were found in this region. The transitional sections showed a mixture of the characteristics of the covered and exposed sections. Various, but significantly different values of the photosynthetic activity parameters were found in each sector of the partially covered cotyledons.

Conclusions

The partial covering of the achene wall shades the cotyledon tissues effectively, enough to provoke the appearance of etiolation phenomena, i.e. the permanent presence of flash-photoactive protochlorophyllide complexes and prolamellar bodies (with or without protochlorophyllide), which proves that these phenomena may appear under natural illumination conditions.Key words: Cotyledon, etio-chloroplast, etioplast, etiolation, Helianthus annuus, photosynthetic activity, protochlorophyllide, prolamellar body, sunflower  相似文献   

5.
Photoactive Pchlide-POR-NADPH complexes were reconstituted using protochlorophyllide (Pchlide) and recombinant light-dependent protochlorophyllide oxidoreductase (POR) proteins, His₆-PORA, His₆-PORB and His₆-PORC, from Arabidopsis thaliana. We did not observe any differences in the kinetics of the protochlorophyllide photoreduction at room temperature among the PORA, PORB and PORC proteins. In contrast, the PORC protein showed lower yield of Chlide formation than PORA and PORB when preincubated in the dark for 30 min and then illuminated for a short time. The most significant observation was that reconstituted Pchlide-POR-NADPH complexes showed fluorescence maxima at 77 K similar to those observed for highly aggregated Pchlide-POR-NADPH complexes in prolamellar bodies (PLBs) in vivo. Homology models of PORA, PORB and PORC of Arabidopsis thaliana were developed to compare predicted structures of POR isoforms. There were only slight structural differences, mainly in the organisation of helices and loops, but not in the shape of whole molecules. This is the first comparative analysis of all POR isoforms functioning at different stages of A. thaliana development.  相似文献   

6.
The etioplast plastid type of dark-grown angiosperms is defined by the accumulation of the chlorophyll (Chl) precursor protochlorophyllide (Pchlide) and the presence of the paracrystalline prolamellar body (PLB) membrane. Both features correlate with the presence of NADPH:Pchlide oxidoreductase (POR), a light-dependent enzyme that reduces photoactive Pchlide-F655 to chlorophyllide and plays a key role in chloroplast differentiation during greening. Two differentially expressed and regulated POR enzymes, PORA and PORB, have recently been discovered in angiosperms. To investigate the hypothesis that etioplast differentiation requires PORA, we have constitutively overexpressed PORA and PORB in the Arabidopsis wild type and in the constitutive photomorphogenic cop1-18 (previously det340) mutant, which is deficient in the PLB and Pchlide-F655. In both genetic backgrounds, POR overexpression increased PLB size, the ratio of Pchlide-F655 to nonphotoactive Pchl[ide]-F632, and the amount of Pchlide-F655. Dramatically, restoration of either PORA or PORB to the cop1 mutant led to the formation of etioplasts containing an extensive PLB and large amounts of photoactive Pchlide-F655.  相似文献   

7.
An extraordinarily precise regulation of chlorophyll biosynthesis is essential for plant growth and development. However, our knowledge on the complex regulatory mechanisms of chlorophyll biosynthesis is very limited. Previous studies have demonstrated that miR171-targeted scarecrow-like proteins (SCL6/22/27) negatively regulate chlorophyll biosynthesis via an unknown mechanism. Here we showed that SCLs inhibit the expression of the key gene encoding protochlorophyllide oxidoreductase (POR) in light-grown plants, but have no significant effect on protochlorophyllide biosynthesis in etiolated seedlings. Histochemical analysis of β-glucuronidase (GUS) activity in transgenic plants expressing pSCL27::rSCL27-GUS revealed that SCL27-GUS accumulates at high levels and suppresses chlorophyll biosynthesis at the leaf basal proliferation region during leaf development. Transient gene expression assays showed that the promoter activity of PORC is indeed regulated by SCL27. Consistently, chromatin immunoprecipitation and quantitative PCR assays showed that SCL27 binds to the promoter region of PORC in vivo. An electrophoretic mobility shift assay revealed that SCL27 is directly interacted with G(A/G)(A/T)AA(A/T)GT cis-elements of the PORC promoter. Furthermore, genetic analysis showed that gibberellin (GA)-regulated chlorophyll biosynthesis is mediated, at least in part, by SCLs. We demonstrated that SCL27 interacts with DELLA proteins in vitro and in vivo by yeast-two-hybrid and coimmunoprecipitation analysis and found that their interaction reduces the binding activity of SCL27 to the PORC promoter. Additionally, we showed that SCL27 activates MIR171 gene expression, forming a feedback regulatory loop. Taken together, our data suggest that the miR171-SCL module is critical for mediating GA-DELLA signaling in the coordinate regulation of chlorophyll biosynthesis and leaf growth in light.  相似文献   

8.
Phosphorylation of photosystem II (PSII) proteins affects macroscopic structure of thylakoid photosynthetic membranes in chloroplasts of the model plant Arabidopsis. In this study, light-scattering spectroscopy revealed that stacking of thylakoids isolated from wild type Arabidopsis and the mutant lacking STN7 protein kinase was highly influenced by cation (Mg++) concentrations. The stacking of thylakoids from the stn8 and stn7stn8 mutants, deficient in STN8 kinase and consequently in light-dependent phosphorylation of PSII, was increased even in the absence of Mg++. Additional PSII protein phosphorylation in wild type plants exposed to high light enhanced Mg++-dependence of thylakoid stacking. Protein phosphorylation in the plant leaves was analyzed during day, night and prolonged darkness using three independent techniques: immunoblotting with anti-phosphothreonine antibodies; Diamond ProQ phosphoprotein staining; and quantitative mass spectrometry of peptides released from the thylakoid membranes by trypsin. All assays revealed dark/night-induced increase in phosphorylation of the 43 kDa chlorophyll-binding protein CP43, which compensated for decrease in phosphorylation of the other PSII proteins in wild type and stn7, but not in the stn8 and stn7stn8 mutants. Quantitative mass spectrometry determined that every PSII in wild type and stn7 contained on average 2.5±0.1 or 1.4±0.1 phosphoryl groups during day or night, correspondingly, while less than every second PSII had a phosphoryl group in stn8 and stn7stn8. It is postulated that functional cation-dependent stacking of plant thylakoid membranes requires at least one phosphoryl group per PSII, and increased phosphorylation of PSII in plants exposed to high light enhances stacking dynamics of the photosynthetic membranes.  相似文献   

9.
Sequential changes occurring in the etioplasts of the primary leaf of 7-day-old dark-grown barley seedlings upon continuous illumination with 20 lux have been investigated by electron microscopy, in vivo spectrophotometry, and thin-layer chromatography. Following photoconversion of the protochlorophyllide pigment to chlorophyllide and the structural transformation of the crystalline prolamellar bodies, the tubules of the prolamellar bodies are dispersed into the primary lamellar layers. As both chlorophyll a and b accumulate, extensive formation of grana takes place. After 4 hr of greening, protochlorophyllide starts to reaccumulate, and concomitantly both large and small crystalline prolamellar bodies are formed. This protochlorophyllide is rapidly photoconverted upon exposure of the leaves to high light intensity, which also effects a rapid reorganization of the recrystallized prolamellar bodies into primary lamellar layers.  相似文献   

10.
NADPH:protochlorophyllide oxidoreductase (POR) is a key enzyme for the light-induced greening of etiolated angiosperm plants. It belongs to the ‘RED’ family of reductases, epimerases and dehydrogenases. All POR proteins characterized so far contain evolutionarily conserved cysteine residues implicated in protochlorophyllide (Pchlide)-binding and catalysis. cDNAs were constructed by site-directed mutagenesis that encode PORB mutant proteins with defined Cys→Ala exchanges. These cDNAs were expressed in transgenic plants of a PORB-deficient knock-out mutant (porB) of Arabidopsis thaliana. Results show that porB plants expressing PORB mutant proteins with Ala substitutions of Cys276 or Cys303 are hypersensitive to high-light conditions during greening. Hereby, failure to assemble higher molecular weight complexes of PORB with its twin isoenzyme, PORA, as encountered with (Cys303→Ala)-PORB plants, caused more severe effects than replacing Cys276 by an Ala residue in the active site of the enzyme, as encountered in (Cys276→Ala)-PORB plants. Our results are consistent with the presence of two distinct pigment binding sites in PORB, with Cys276 establishing the active site of the enzyme and Cys303 providing a second, low affinity pigment binding site that is essential for the assembly of higher molecular mass light-harvesting PORB::PORA complexes and photoprotection of etiolated seedlings. Failure to assemble such complexes provoked photodynamic damage through the generation of singlet oxygen. Together, our data highlight the importance of PORB for Pchlide homoeostasis and greening in Arabidopsis.  相似文献   

11.
Lower plants and gymnosperms synthesize chlorophyll and develop photosynthetically competent chloroplasts even when grown in the dark. In cell-free extracts of pine (Pinus mugo, Turra, ssp. mugo) seedlings, light-independent and light-dependent protochlorophyllide-reducing activities are present. Two distinct NADPH-protochlorophyllide-oxidoreductase (POR) polypeptides can be detected immunologically with an antiserum raised against the POR of barley. The subcellular localization and amounts of the two POR polypeptides are differentially affected by light: one of them is predominantly present in prolamellar bodies of etiochloroplasts and its abundance rapidly declines once the pine seedlings are exposed to light; the other is found in thylakoid membranes and its amount does not change during illumination of dark-grown seedlings. Two types of cDNA sequences are identified that encode two distinct POR polypeptides in pine. The relevance of these POR polypeptides for the two chlorophyll biosynthetic pathways active in gymnosperms is discussed.  相似文献   

12.
Angiosperms require light for chlorophyll biosynthesis because one reaction in the pathway, the reduction of protochlorophyllide (Pchlide) to chlorophyllide, is catalyzed by the light-dependent protochlorophyllide oxidoreductase (POR). Here, we report that Cell growth defect factor1 (Cdf1), renamed here as CHAPERONE-LIKE PROTEIN OF POR1 (CPP1), an essential protein for chloroplast development, plays a role in the regulation of POR stability and function. Cdf1/CPP1 contains a J-like domain and three transmembrane domains, is localized in the thylakoid and envelope membranes, and interacts with POR isoforms in chloroplasts. CPP1 can stabilize POR proteins with its holdase chaperone activity. CPP1 deficiency results in diminished POR protein accumulation and defective chlorophyll synthesis, leading to photobleaching and growth inhibition of plants under light conditions. CPP1 depletion also causes reduced POR accumulation in etioplasts of dark-grown plants and as a result impairs the formation of prolamellar bodies, which subsequently affects chloroplast biogenesis upon illumination. Furthermore, in cyanobacteria, the CPP1 homolog critically regulates POR accumulation and chlorophyll synthesis under high-light conditions, in which the dark-operative Pchlide oxidoreductase is repressed by its oxygen sensitivity. These findings and the ubiquitous presence of CPP1 in oxygenic photosynthetic organisms suggest the conserved nature of CPP1 function in the regulation of POR.  相似文献   

13.
Part of the chlL gene encoding a component involved in light-independent protochlorophyllide reduction was deleted in wild type and in a photosystem I-less strain of Synechocystis sp. PCC 6803. In resulting mutants, chlorophyll biosynthesis was fully light-dependent. When these mutants were propagated under light-activated heterotrophic growth conditions (in darkness except for 15 min of weak light a day) for several weeks, essentially no chlorophyll was detectable but protochlorophyllide accumulated. Upon return of the chlL - mutant cultures to continuous light, within the first 6 h chlorophyll was synthesized at the expense of protochlorophyllide at a rate independent of the presence of photosystem I. Chlorophyll biosynthesized during this time gave rise to a 685 nm fluorescence emission peak at 77 K in intact cells. This peak most likely originates from a component different from those known to be directly associated with photosystems II and I. Development of 695 and 725 nm peaks (indicative of intact photosystem II and photosystem I, respectively) required longer exposures to light. After 6 h of greening, the rate of chlorophyll synthesis slowed as protochlorophyllide was depleted. In the chlL - strain, greening occurred at the same rate at two different light intensities (5 and 50 E m-2s-1), indicating that also at low light intensity the amount of light is not rate-limiting for protochlorophyllide reduction. Thus, in this system the rate of chlorophyll biosynthesis is limited neither by biosynthesis of photosystems nor by the light-dependent protochlorophyllide reduction. We suggest the presence of a chlorophyll-binding chelator protein (with 77 K fluorescence emission at 685 nm) that binds newly synthesized chlorophyll and that provides chlorophyll for newly synthesized photosynthetic reaction centers and antennae.  相似文献   

14.
15.
Singlet oxygen is reported to have the most potent damaging effect upon the photosynthetic machinery. Usually this reactive oxygen molecule acts in concert with other ROS types under stressful conditions. To understand the specific role of singlet oxygen we took advantage of the conditional flu mutant of Arabidopsis thaliana. In flu, the negative feedback loop is abolished, which blocks chlorophyll biosynthesis in the dark. Therefore high amounts of free protochlorophyllide accumulate during darkness. If flu gets subsequently illuminated, free protochlorophyllide acts as a photosensitiser leading almost exclusively to high amounts of 1O2. Analysing the thylakoid protein pattern by using 2D PAGE and subsequent MALDI-TOF analysis, we could show, in addition to previous described effects on photosystem II, that singlet oxygen has a massive impact on the thylakoid ATP synthase, especially on its γ subunit. Additionally, it could be shown that the activity of the ATP synthase is reduced upon singlet oxygen exposure and that the rate of non-photochemical quenching is affected in flu mutants exposed to 1O2.  相似文献   

16.
NADPH:protochlorophyllide oxidoreductase (POR) catalyzes the light-dependent reduction of protochlorophyllide (pchlide) to chlorophyllide (chlide) in the biosynthesis of chlorophyll. POR is a peripheral membrane protein that accumulates to high levels in the prolamellar bodies of vascular plant etioplasts and is present at low levels in the thylakoid membranes of developing and mature plastids. Clustered charged-to-alanine scanning mutagenesis of the pea (Pisum sativum L.) POR was carried out and the resulting mutant enzymes analyzed for their ability to catalyze pchlide photoconversion in vivo and to associate properly with thylakoid membrane preparations in vitro. Of 37 mutant enzymes examined, 5 retained wild-type levels of activity, 14 were catalytically inactive, and the remaining 18 exhibited altered levels of function. Several of the mutant enzymes showed temperature- dependent enzymatic activity, being inactive at 32°C, but partially active at 24°C. Mutations in predicted - helical regions of the protein showed the least effect on enzyme activity, whereas mutations in predicted -sheet regions of the protein showed a consistent adverse affect on enzyme function. In the absence of added NADPH, neither wild-type POR nor any of the mutant PORs resisted proteolysis by thermolysin following assembly onto the thylakoid membranes. In contrast, when NADPH was present in the assay mixture, 13 of the 37 mutant PORs examined were found to be resistant to thermolysin upon treatment, suggesting that the mutations did not affect their ability to be properly attached to the thylakoid membrane. In general, the replacement of charged amino acids by alanine in the most N- and C-terminal regions of the mature protein did not significantly affect POR assembly, whereas mutations within the central core of the protein (between residues 86 and 342) were incapable of proper attachment to the thylakoid. Failure to properly associate with the thylakoid membrane in a protease resistant manner was only weakly correlated to loss of catalytic function. These studies are a first step towards defining structural determinants crucial to POR function and intraorganellar localization.  相似文献   

17.
Antibody against the light-dependent NADPH-protochlorophyllide oxidoreductase of oat was used to detect a protein of the same molecular weight in cotyledons of 40-day-old dark-grown seedlings of Pinus pinea L. Exposure of the seedlings to light resulted in a rapid decrease in protochlorophyllide content without the concomitant decrease in 38 kDa protein which is observed on transfer of dark-grown angiosperm seedlings to light. The stability of the light-dependent NADPH-protochlorophyllide oxidoreductase in pine in the absence of accumulated substrate is consistent with either (1) a different mechanism of regulation of chlorophyll synthesis in gymnosperms or (2) a higher proportion of stable extra-plastidic protein reacting with the antibody to the light-dependent NADPH-protochlorophyllide oxidoreductase than is the case in angiosperms.Abbreviations Chl chlorophyll - Chlide chlorophyllide - NADPH-Pchlide oxidoreductase NADPH protochlorophyllide oxidoreductase - NC nitrocellulose - PBS phosphate buffered saline - Pchlide protochlorophyllide - SDS sodum dodecyl sulphate - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis  相似文献   

18.
Prolamellar bodies were isolated from etiolated leaves of wheat ( Triticum aestivum L. cv. Walde, Weibull), which were illuminated for 4 h and then grown in darkness for 16 h. The inner etiochloroplast membranes were isolated by differential centrifugation, and prolamellar bodies and thylakoids were separated on a 10–50% continuous sucrose density gradient. The reformed prolamellar bodies contained phototransformable protochlorophyllide as the main pigment as shown by low temperature fluorescence spectra and high performance liquid chromatography. After illumination with 3 flashes of white light almost all of the protochlorophyllide was transformed to chlorophyllide. In the thylakoids, however, most of the protochlorophyllide was not phototransformed. The reformed prolamellar bodies and the thylakoids showed a fluorescence emission ratio 657/633 nm of 5.6 and 0.5, respectively. Both membrane systems contained also chlorophyllide and chlorophyll synthesized during the illumination. Polyacrylamide gel electrophoresis showed the main chlorophyllide oxidoreductasse.
Teransmission and scanning electron micrographs indicated that the reformed prolamellar bodies are mainly of the "narrow" type and that the prolamellar body fraction had only a minor contamination with thylakoid membranes.
The results obtained showed that reformed prolamellar bodies isolated from illuminated redarkened etiolated wheat leaves had features very similar to the prolamellar bodies isolated from etiolated leaves. This provides support for the idea that prolamellar bodies are an important natural membrane system which plays a dynamic role in the development of the etio-chloroplasts in light.  相似文献   

19.
In most oxygenic phototrophs, including cyanobacteria, two independent enzymes catalyze the reduction of protochlorophyllide to chlorophyllide, which is the penultimate step in chlorophyll (Chl) biosynthesis. One is light-dependent NADPH:protochlorophyllide oxidoreductase (LPOR) and the second type is dark-operative protochlorophyllide oxidoreductase (DPOR). To clarify the roles of both enzymes, we assessed synthesis and accumulation of Chl-binding proteins in mutants of cyanobacterium Synechocystis PCC 6803 that either completely lack LPOR or possess low levels of the active enzyme due to its ectopic regulatable expression. The LPOR-less mutant grew photoautotrophically in moderate light and contained a maximum of 20 % of the wild-type (WT) Chl level. Both Photosystem II (PSII) and Photosystem I (PSI) were reduced to the same degree. Accumulation of PSII was mostly limited by the synthesis of antennae CP43 and especially CP47 as indicated by the accumulation of reaction center assembly complexes. The phenotype of the LPOR-less mutant was comparable to the strain lacking DPOR that also contained <25 % of the wild-type level of PSII and PSI when cultivated under light-activated heterotrophic growth conditions. However, in the latter case, we detected no reaction center assembly complexes, indicating that synthesis was almost completely inhibited for all Chl-proteins, including the D1 and D2 proteins.  相似文献   

20.
Lutescens-1, a tobacco mutant with a maternally inherited dysfunction, displayed an unusual developmental phenotype. In vivo measurement of chlorophyll fluorescence revealed deterioration in photosystem II (PSII) function as leaves expanded. Analysis of thylakoid membrane proteins by polyacrylamide gel electrophoresis indicated the physical loss of nuclear- and chloroplast-encoded polypeptides comprising the PSII core complex concomitant with loss of activity. Freeze fracture electron micrographs of mutant thylakoids showed a reduced density, compared to wild type, of the EFs particles which have been shown previously to be the structural entity containing PSII core complexes and associated pigment-proteins. The selective loss of PSII cores from thylakoids resulted in a higher ratio of antenna chlorophyll to reaction centers and an altered 77 K chlorophyll fluorescence emission spectra; these data are interpreted to indicate functional isolation of light-harvesting chlorophyll a/b complexes in the absence of PSII centers. Examination of PSII reaction centers (which were present at lower levels in mutant membranes) by monitoring the light-dependent phosphorylation of PSII polypeptides and flash-induced O2 evolution patterns demonstrated that the PSII cores which were assembled in mutant thylakoids were functionally identical to those of wild type. We conclude that the lutescens-1 mutation affected the correct stoichiometry of PSII centers, in relation to other membrane constituents, by disrupting the proper assembly and maintenance of PSII complexes in lutescens-1 thylakoid membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号