首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In platelets, PGHS-1-dependant formation of thromboxane A2 is an important modulator of platelet function and a target for pharmacological inhibition of platelet function by aspirin. Since platelets are anucleated cells, we have used the immortalized human megakaryoblastic cell line MEG-01, which can be induced to differentiate into platelet-like structures upon addition of TPA as a model system to study PGHS-1 gene expression. Using a specific antibody to PGHS-1 we have developed a technique using immunofluorescence microscopy and analysis of multiple digital images to monitor PGHS-1 protein expression as MEG-01 cells were induced to differentiate by a single addition of TPA (1.6 × 10−8 M) over a period of 8 days. The method represents a rapid and economical alternative to flow cytometry. Using this technique we observed that TPA induced adherence of MEG-01 cells, and only the non-adherent TPA-stimulated cells demonstrated compromised viability. The differentiation of MEG-01 cells was evaluated by the expression of the platelet-specific cell surface antigen, CD-41. The latter was expressed in MEG-01 cells at the later stages of differentiation. We demonstrated a good correlation between PGHS-1 expression and the overall level of cellular differentiation of MEG-01 cells. Furthermore, PGHS-1 protein expression, which shows a consistent increase over the entire course of differentiation can be used as an additional and better index by which to monitor megakaryocyte differentiation. Published: December 12, 2001  相似文献   

3.
The serotonin transporter (SERT) is a key regulator of serotonergic signalling as it mediates the re-uptake of synaptic serotonin into nerve terminals, thereby terminating or modulating its signal. It is well-known that SERT regulation is a dynamic process orchestrated by a wide array of proteins and mechanisms. However, molecular details on possible coordinated regulation of SERT activity and 5-HT release are incomplete. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, interacts with SERT. This was documented in vitro, through GST pull-down assays, by co-immunoprecipitation experiments on heterologous cells and rat hippocampal synaptosomes, and with FRET analysis in live transfected HEK-293 MSR cells. The related isoforms VAMP1 and VAMP3 also physically interact with SERT. However, comparison of the three VAMP isoforms shows that only VAMP2 possesses a functionally distinct role in relation to SERT. VAMP2 influences 5-HT uptake, cell surface expression and the delivery rate of SERT to the plasma membrane differentially in HEK-293 MSR and PC12 cells. Moreover, siRNA-mediated knock-down of endogenous VAMP2 reduces 5-HT uptake in CAD cells stably expressing low levels of heterologous SERT. Deletion and mutant analysis suggest a role for the isoform specific C-terminal domain of VAMP2 in regulating SERT function. Our data identify a novel interaction between SERT and a synaptic vesicle protein and support a link between 5-HT release and re-uptake.  相似文献   

4.
Platelet plasminogen activator inhibitor I (PAI-1), a trace alpha-granule protein, is a key physiological regulator of fibrinolysis. Because information on the packaging of PAI-1 into alpha-granules during megakaryocytopoiesis may reveal novel approaches for controlling hemostasis, this study investigated basal, plasmid-mediated, and alphavirus-mediated PAI-1 packaging into alpha-granules-like structures in the megakaryocytic cell line MEG-01. Differentiation of MEG-01 cells with phorbol myristate acetate (PMA) was observed to result in a four-fold increase in both secreted and cell-associated PAI-1 antigen over a four day period. Subcellular fractionation of PMA-treated MEG-01 cells on 45% self-forming Percoll gradients was employed to separate low density membrane and Golgi-rich fractions from a high density granule-containing region. A subsequent 30-60% pre-formed Percoll gradient was employed to remove contaminating lysosomes from the PAI-1/glycoprotein IIbIIIa-containing granules. Electron microscopy showed that these MEG-01 granules share a similar size distribution (350-600 nm) and morphology to platelet alpha-granules. PAI-1 (40 ng/mg protein) in isolated MEG-01 storage granules was approximately 10% of the levels present in isolated platelet alpha-granules. To elevate PAI-1 production/storage, two expression systems were investigated. Experiments with plasmids encoding PAI-1 and beta-galactosidase resulted in low transfection efficiency (0.001%). In contrast, Semliki Forest virus (SFV)-mediated gene transfer increased cellular PAI-1 by 31-fold (1,200 ng/10(6) cells at 10 MOI) in comparison to mock-infected cells. Pulse-chase experiments demonstrated that SFV/PAI-1 mediated gene expression could enhance PAI-1 storage 6-9-fold, reaching levels present within platelets. To document the ability of PAI-1 to be stored in a rapidly releasable form in MEG-01 cells, we isolated platelet-like particles from the media conditioned by the cells and examined secretagogue-induced release of PAI-1. Particles from SFV/PAI-1 infected cells display a 5-fold enhanced secretion of PAI-1 following treatment with ADP in comparison to particles incubated in the absence of secretagogue. These results suggest that SFV mediated gene expression in MEG-01 cells provides a useful framework for analyzing the production and storage of alpha-granule proteins.  相似文献   

5.
The dopamine transporter (DAT) is a protein regulating dopamine concentration in the synaptic cleft through the re-uptake mechanism. The DAT is the main target of psychostimulants and seems to play a pivotal role in neuronal degeneration and different neuropsychiatric disorders involving the dopamine system. Exhaustive research, however, regarding the presence of this protein in human platelets is still inconclusive, although it is thought that it might provide a peripheral tool to serve as a mean of exploring the same structure present in the brain. Therefore, we assessed some binding assays in platelets derived from healthy human subjects by means of 3H-WIN 35,428, a compound which is considered a selective ligand for the labelling of this protein, and by means of 125I-RTI-121, another compound with high specificity for DAT. The results showed that the binding of 3H-WIN-35,428 was too low to enable the detection of any structure; the binding of 125I-RTI-121, on the other hand, revealed the presence of two binding sites with pharmacological profiles similar to that of the serotonin transporter (SERT). In conclusions, therefore, platelets would not seem to be a useful model for exploring the DAT, given the prevalence therein of the SERT and the difficulty of labelling the DAT with the currently available ligands.  相似文献   

6.
TGF-β1 is an important multifunctional cytokine with numerous protective effects on intestinal mucosa. The influence of TGF-β1 on serotonin transporter (SERT) activity, the critical mechanism regulating the extracellular availability of serotonin (5-HT), is not known. Current studies were designed to examine acute effects of TGF-β1 on SERT. Model human intestinal Caco-2 cells grown as monolayer’s or as cysts in 3D culture and ex vivo mouse model were utilized. Treatment of Caco-2 cells with TGF-β1 (10 ng/ml, 60 min) stimulated SERT activity (~2 fold, P<0.005). This stimulation of SERT function was dependent upon activation of TGF-β1 receptor (TGFRI) as SB-431542, a specific TGF-βRI inhibitor blocked the SERT stimulation. SERT activation in response to TGF-β1 was attenuated by inhibition of PI3K and occurred via enhanced recruitment of SERT-GFP to apical surface in a PI3K dependent manner. The exocytosis inhibitor brefeldin A (2.5 μM) attenuated the TGF-β1-mediated increase in SERT function. TGF-β1 increased the association of SERT with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) syntaxin 3 (STX3) and promoted exocytosis of SERT. Caco-2 cells grown as cysts in 3D culture recapitulated the effects of TGF-β1 showing increased luminal staining of SERT. Ussing chamber studies revealed increase in 3H-5-HT uptake in mouse ileum treated ex vivo with TGF-β1 (10 ng/ml, 1h). These data demonstrate a novel mechanism rapidly regulating intestinal SERT via PI3K and STX3. Since decreased SERT is implicated in various gastro-intestinal disorders e.g IBD, IBS and diarrhea, understanding mechanisms stimulating SERT function by TGF-β1 offers a novel therapeutic strategy to treat GI disorders.  相似文献   

7.
8.
In HEK-293 cells, serotonin (5-hydroxytryptamine, 5-HT) was found to induce cAMP production showing pharmacological characteristics consistent with the 5-HT(7) receptor. The presence of 5-HT(7) (and 5-HT(6)) receptor mRNA was confirmed by RT-PCR. Stable HEK-293 cell lines expressing either wild-type or haemagglutinin (HA)-tagged human 5-HT transporter (SERT) were selected and SERT function was confirmed using [3H]5-HT transport. The presence of SERT caused a 10-fold reduction in the potency of 5-HT-induced cAMP production compared to control cells. Downstream signalling by 5-HT(6/7) receptors could be detected as 5-HT-induced protein kinase A activation and phosphorylation of MAP kinase and CREB using phospho-specific antibodies. SERT inhibitors reversed the reduction in potency of 5-HT-induced cAMP production caused by the presence of SERT, resulting in a concentration-dependent left shift in EC(50) values but also a progressive decrease in the maximal response. Thus, when antidepressants were used to block SERT activity, 5-HT receptor signalling was effectively clamped within a mid-range.  相似文献   

9.
《Life sciences》1995,57(18):1675-1681
Various heterotrimeric GTP-binding proteins (G proteins) are possible to have important functions in hematopoietic cells. However, there has been no information regarding their expression in magakaryoblasts and/or megakaryocytes. In the present study, protein contents of seven G protein α subunits (Gs α, Gi2 α, Gi3 α, Gz α, G11 α, Gq α and G12 α) and β subunit in a human megakaryoblastic leukemia cell line, MEG-01, were analyzed by immunoblotting. Immature MEG-01 cells expressed the α subunits of Gs, Gi2, Gi3, Gz, G11 and G12 at protein molecule level. During the 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced differentiation process, the contents of Gi2 α and Gi3 α increased, whereas the protein levels of Gz α, Gs α, Gil a and G12 α were observed to hardly change, β Subunit was also observed to be present in immature MEG-01 cells and to increase continuously throughout the differentiation process. For the expression of Gi2 α and β subunits, chronic TPA-treatment was required although Rac2, a low Mr GTP-binding protein, was expressed abundantly by only 30 min-TPA-treatment followed by 3 day-culture.  相似文献   

10.
Thrombin, a potent platelet activating agent, has previously been found to increase intracellular calcium levels and/or thromboxane A2 synthesis in leukemic cell lines exhibiting specific markers of the megakaryocyte/platelet lineage. However, its functional role on these cells has not been defined. As thrombin is implicated in the regulation of cellular proliferation or differentiation in various other cell types, we investigated the functional effects of thrombin on the megakaryoblastic MEG-01 cell line, and further explored its receptor coupling mechanisms on these cells. We observed that thrombin caused in 1% serum containing culture medium, a reduction in the proliferation of MEG-01 cells, without affecting their differentiation stage as determined by the expression of platelet glycoproteins GPIIb/IIIa and GPIb, FVIII-related-antigen and cell-size measurement, which are specific markers for megakaryocyte maturation. In addition, incubation of MEG-01 cells with thrombin resulted in dose-dependent increases in cAMP levels, and in inositol-trisphosphate formation and intracellular Ca2+ levels. All these responses required thrombin proteolytic activity. The lipoxygenase inhibitor, nordihydroguaiaretic acid, blunted thrombin-induced calcium increase without affecting thrombin-induced increase in cAMP levels, suggesting different thrombin coupling mechanisms with these two second messenger pathways. In addition, the inhibitory effect of thrombin on MEG-01 cell growth was mimicked by cAMP level enhancing agents such as forskolin, prostaglandin E1 and Bt2cAMP. These results suggest the involvement of a cAMP-dependent mechanism in the thrombin-induced reduction in MEG-01 cell growth.  相似文献   

11.
The distribution of microtubules and platelet-specific glycoproteins (GPIIb/IIIa) in particles was probed by an immunofluorescence method using anti-tubulin and anti-GPIIb/IIIa antibodies to identify whether particles released from a human megakaryoblastic cell line (MEG-01) are platelets. The fluorescence image showing anti-tubulin staining of the particles revealed a characteristic ring structure observed in platelets. Anti-platelet GPIIb/IIIa antibody staining showed an image in which small patches or spots were seen throughout the particle with brighter staining at the periphery. No significant difference was observed between these particles and human blood platelets under immunofluorescent staining. These results show that MEG-01 cells released platelet-like particles.  相似文献   

12.
N-Acetylneuraminic acid (Neu5Ac) andN-glycoloylneuraminic acid (Neu5Gc) are distributed widely in nature. Using a Carbopac PA-1 anion exchange column, we have determined the ratios of Neu5Ac and Neu5Gc in hydrolysates of platelets and their precursors: a rat promegakaryoblastic (RPM) cell line and a human megakaryoblastic leukemia cell line (MEG-01). The ratio of Neu5Gc:Neu5Ac in cultured RPM cells is 16:1, whereas in platelet rich plasma and cultured MEG-01 cells it is 1:38 and 1:28, respectively. The nature of these sialic acids from RPM cells was verified using thin layer chromatography and liquid secondary ion mass spectrometry. The relevance of increased Neu5Gc levels in early stages of development is discussed.Abbreviations Neu5Ac N-acetylneuraminic acid - Neu5Gc N-glycoloylneuraminic acid - RPM rat promegakaryoblast - MEG-01 human megakaryoblastic leukaemia cell line - PAD pulsed amperometric detection - WGA wheat germ agglutinin - FCS foetal calf serum - PPEADF phosphatidylethanolamine dipalmitoyl - LSIMS liquid secondary ion mass spectrometry - HPAEC high performance anion exchange chromatography - TBA thiobarbituric acid  相似文献   

13.
Beneficial effects of docosahexaenoic acid (DHA) intake in the prevention of cardiovascular diseases are known, and platelets play a crucial role in cardiovascular complications. However, high doses of DHA may increase lipid peroxidation and induce deleterious effects, notably in platelets. This led us to investigate the effect of DHA on gene expression of some enzymes controlling redox status and prostanoid formation in human megakaryoblastic cells (MEG-01 cell line). MEG-01 cells were incubated in presence of DHA (10 and 100 μmol/L) for 6 h. DHA enrichment up-regulated glutathione peroxidase-1 and thromboxane synthase mRNA. DHA increased gene catalase expression and up-regulated PPAR β/δ and PPAR γ mRNA in presence of high concentration of DHA. In conclusion, our results support an antioxidant mechanism of DHA. The effects of DHA on cellular redox status could, with others, provide an explanation for the beneficial influence of low consumption of DHA on cardiovascular events.  相似文献   

14.
15.
Cellular protein kinases, phosphatases, and other serotonin transporter (SERT) interacting proteins participate in several signaling mechanisms regulating SERT activity. The molecular mechanisms of protein kinase G (PKG)-mediated SERT regulation and the site of transporter phosphorylation were investigated. Treatment of rat midbrain synaptosomes with 8-bromo-cGMP increased SERT activity, and the increase was selectively blocked by PKG inhibitors. The V(max) value for serotonin (5-HT) transport increased following cGMP treatment. However, surface biotinylation studies showed no change in SERT surface abundance following PKG activation. (32)P metabolic labeling experiments showed increased SERT phosphorylation in the presence of cGMP that was abolished by selectively inhibiting PKG. Phosphoamino acid analysis revealed that cGMP-stimulated native SERT phosphorylation occurred only on threonine residues. When added to CHO-1 cells expressing SERT, 8-bromo-cGMP stimulated 5-HT transport and SERT phosphorylation. Mutation of SERT threonine 276 to alanine completely abolished cGMP-mediated stimulation of 5-HT transport and SERT phosphorylation. Although the T276A mutation had no significant effect on 5-HT transport or SERT protein expression, mutation to aspartate (T276D) increased the level of 5-HT uptake to that of cGMP-stimulated 5-HT uptake in wild-type SERT-expressing cells and was no longer sensitive to cGMP. These findings provide the first identification of a phosphorylation site in SERT and demonstrate that phosphorylation of Thr-276 is required for cGMP-mediated SERT regulation. They also constitute the first evidence that in the central nervous system PKG activation stimulates endogenous SERT activity by a trafficking-independent mechanism.  相似文献   

16.
By transporting serotonin (5-HT) into neurons and other cells, serotonin transporter (SERT) modulates the action of 5-HT at cell surface receptors. SERT itself is modulated by several processes, including the cGMP signaling pathway. Activation of SERT by cGMP requires the cGMP-dependent protein kinase (PKG). Here we show that in HeLa cells lacking endogenous PKG, expression of PKGIα or PKGIβ was required for 8-bromoguanosine-3',5'-cyclic monophosphate (8-Br-cGMP) to stimulate SERT phosphorylation and 5-HT influx. Catalytically inactive PKG mutants and wild-type PKGII did not support this stimulation. However, a mutant PKGII (G2A) that was not myristoylated substituted for functional PKGI, suggesting that myristoylation and subsequent membrane association blocked productive interaction with SERT. PKG also influenced SERT expression and localization. PKGI isoforms increased total and cell surface SERT levels, and PKGII decreased cell surface SERT without altering total expression. Remarkably, these changes did not require 8-Br-cGMP or functional kinase activity and were also observed with a SERT mutant resistant to activation by PKG. Both PKGIα and PKGIβ formed detergent-stable complexes with SERT, and this association did not require catalytic activity. The nonmyristoylated PKGII G2A mutant stimulated SERT expression similar to PKGI isoforms. These results suggest multiple mechanisms by which PKG can modulate SERT and demonstrate that the functional difference between PKG isoforms results from myristoylation of PKGII.  相似文献   

17.
Abstract

Exposure of human platelets to 10 discharges from a 4.5 μF capacitor charged at 3 kV permitted isolation of a stable preparation of permeabilized platelets that, after equilibration with Ca2+ buffers (pCa < 6) for 15 min at 0°C, secreted 5-hydroxytryptamine (5-HT) at 25°C. Thrombin enhanced the sensitivity to Ca2+ of the secretion of 5-HT by about 10-fold, whereas Arg -vasopressin and the prostaglandin endoperoxide analogue, U-46619, increased sensitivity to Ca2+ by 3 to 4-fold. This action of thrombin was associated with stimulation of diacylglycerol formation, a marked increase in phosphorylation of protein P47 and a smaller increase in phosphorylation of the P-light chain of myosin. Thrombin exerted these effects at a [Ca2+ free] of 0.1 μM, suggesting that the receptor-activated breakdown of platelet phosphoinositides to diacylglycerol may not require prior Ca2+ mobilization in intact platelets. In both the presence and absence of thrombin, a higher [Ca2+ free] was required for optimal secretion than for maximal phosphorylation of P47 and myosin light-chain, indicating that Ca2+ and possibly diacylglycerol have roles in the secretory mechanism additional to activation of the enzymes that phosphorylate these proteins. Stable GTP analogues such as guanosine-5′-0-(3-thiotriphosphate) (GTPγS), and to a lesser extent GTP itself, enhanced the Ca2+ sensitivity of the secretion of 5-HT from permeabilized platelets. Moreover, GTP potentiated the stimulatory action of thrombin. These effects of GTPγS and GTP were associated with increased diacylglycerol formation and were inhibited by guanosine-5′-0-(2-thiodiphosphate) (GDPβS) suggesting that a GTP-binding protein may play a role in the receptor-activated breakdown of phosphoinositides. However, as GDPβS did not inhibit the potentiation of secretion caused by thrombin alone, a GTP-independent pathway of platelet activation may also exist.  相似文献   

18.
Pro-inflammatory cytokines have been implicated in the precipitation of depression and related disorders, and the antidepressant sensitive serotonin transporter (SERT) may be a major target for immune regulation in these disorders. Here, we focus on astrocytes, a major class of immune competent cells in the brain, to examine the effects of pro-longed treatment with tumor necrosis factor-alpha (TNF-α) on SERT activity. We first established that high-affinity serotonin uptake into C6 glioma cells occurs through a SERT-dependent mechanism. Functional SERT expression is also confirmed for primary astrocytes. In both cell types, exposure to TNF-α resulted in a dose- and time-dependent increase in SERT-mediated 5-HT uptake, which was sustained for at least 48 h post-stimulation. Further analysis in primary astrocytes revealed that TNF-α enhanced the transport capacity (Vmax) of SERT-specific 5-HT uptake, suggesting enhanced transporter expression, consistent with our observation of an increase in SERT mRNA levels. We confirmed that in both, primary astrocytes and C6 glioma cells, treatment with TNF-α activates the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Pre-treatment with the p38 MAPK inhibitor SB203580 attenuated the TNF-α mediated stimulation of 5-HT transport in both, C6 glioma and primary astrocytes. In summary, we show that SERT gene expression and activity in astrocytes is subject to regulation by TNF-α, an effect that is at least in part dependent on p38 MAPK activation.  相似文献   

19.
After treatment of human platelets by a sulfhydryl-dependent bacterial protein cytolysin, a glycoprotein was reproducibly purified by a one-step affinity chromatography using 6-fluorotryptamine as ligand and elution by serotonin (5-HT), cyanoimipramine, citalopram, or a Na(+)-free buffer. The purified fraction migrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a single band with an apparent molecular mass of 68 kDa. The purified glycoprotein bound the 5-HT uptake blockers 3H-paroxetine, 3H-cyanoimipramine, and 3H-citalopram with Kds similar to the ones observed for intact human platelets. No binding was detected with 3H-hydroxytetrabenazine, 3H-ouabain, 3H-gamma aminobutyric acid or 3H-BTCP, the respective markers of the granular monoamine transporter, the plasma membrane Na+, K(+)-ATPase, the gamma aminobutyric acid and dopamine carriers. The purified 68-kDa glycoprotein is therefore likely to correspond at least to the paroxetine and imipramine binding domains of the 5-HT transporter located at the human platelet plasma membrane. Finally a 68-kDa protein was purified in the same conditions from the human megakaryocytic cell line Dami and to a lesser extent from the human megakaryoblastic cell line MEG-01 but not from the human erythroleukaemic cell line HEL.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号