首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogen (N) deficiency is a major constraint to the productivity of the African smallholder farming systems. Grain, green manure and forage legumes have the potential to improve the soil N fertility of smallholder farming systems through biological N2-fixation. The N2-fixation of bean (Phaseolus vulgaris), soyabean (Glycine max), groundnut (Arachis hypogaea), Lima bean (Phaseolus lunatus), lablab (Lablab purpureus), velvet bean (Mucuna pruriens), crotalaria (Crotalaria ochroleuca), jackbean (Canavalia ensiformis), desmodium (Desmodium uncinatum), stylo (Stylosanthes guianensis) and siratro (Macroptilium atropurpureum) was assessed using the 15N natural abundance method. The experiments were conducted at three sites in western Kenya, selected on an agro-ecological zone (AEZ) gradient defined by rainfall. On a relative scale, Museno represents high potential AEZ 1, Majengo medium potential AEZ 2 and Ndori low potential AEZ 3. Rainfall in the year of experimentation was highest in AEZ 2, followed by AEZ 1 and AEZ 3. Experimental fields were classified into high, medium and low fertility classes, to assess the influence of soil fertility on N2-fixation performance. The legumes were planted with triple super phosphate (TSP) at 30 kg P ha?1, with an extra soyabean plot planted without TSP (soyabean-P), to assess response to P, and no artificial inoculation was done. Legume grain yield, shoot N accumulation, %N derived from N2-fixation, N2-fixation and net N inputs differed significantly (P<0.01) with rainfall and soil fertility. Mean grain yield ranged from 0.86 Mg ha?1, in AEZ 2, to 0.30 Mg ha?1, in AEZ 3, and from 0.78 Mg ha?1, in the high fertility field, to 0.48 Mg ha?1, in the low fertility field. Shoot N accumulation ranged from a maximum of 486 kg N ha?1 in AEZ 2, to a minimum of 10 kg N ha?1 in AEZ 3. Based on shoot biomass estimates, the species fixed 25–90% of their N requirements in AEZ 2, 23–90% in AEZ 1, and 7–77% in AEZ 3. Mean N2-fixation by green manure legumes ranged from 319 kg ha?1 (velvet bean) in AEZ 2 to 29 kg ha?1 (jackbean) in AEZ 3. For the forage legumes, mean N2-fixation ranged from 97 kg N ha?1 for desmodium in AEZ 2 to 39 kg N ha?1 for siratro in AEZ 3, while for the grain legumes, the range was from 172 kg N ha?1 for lablab in AEZ 1 to 3 kg N ha?1 for soyabean-P in AEZ 3. Lablab and groundnut showed consistently greater N2-fixation and net N inputs across agro-ecological and soil fertility gradients. The use of maize as reference crop resulted in lower N2-fixation values than when broad-leaved weed plants were used. The results demonstrate differential contributions of the green manure, forage and grain legume species to soil fertility improvement in different biophysical niches in smallholder farming systems and suggest that appropriate selection is needed to match species with the niches and farmers’ needs.  相似文献   

2.

Background and aims

Symbiotic N2 fixation is essential in the development of sustainable agriculture, but the nodulation of legumes is usually inhibited by N fertilization. Here, the intercropping of maize and pea in strips under various N managements was used as a means to alleviate the inhibitory effect of mineral N on pea nodulation and N2 fixation and to improve system performance.

Methods

N natural abundance (δ 15N) analysis was employed to quantify N2 fixation in the 3 years (2012 to 2014) of field experiment in Hexi Corridor of Northwestern China. Four N management systems with N rate of 0 kg N ha?1 (the control), 90?+?45 kg N ha?1 (base N plus topdressing N), 90?+?90 kg N ha?1, and 90?+?135 kg N ha?1 were implemented in the maize/pea strip intercropping to form different ratios of base N to topdressing N.

Results

Intercropped pea improved nodule biomass per plant by 99 %, increased nitrogen derived from the atmosphere (Ndfa) by 35 %, and promoted aboveground plant tissue N accumulation by 35 % as compared with sole pea, averaged across the four N treatments. Compared to the highest N fertilizer treatment, a reduction of topdressing to 45 kg N ha?1 increased the nodule biomass of intercropped pea by 116 %, Ndfa by 35 %, and grain yield by 6 %.

Conclusions

Adaptation of suitable N management in cereal/legume intercropping systems will allow an effective conversion of atmospheric N2 into crop available N and thus maximizing the system productivity.
  相似文献   

3.
The δ15N natural abundance (‰) of the total soil N pool varies at the landscape level, but knowledge on short-range variability and consequences for the reliability of isotopic methods are poorly understood. The short-range spatial variability of soil δ15N natural abundance as revealed by the 15N abundance in spring barley and N2-fixing pea was measured within the 0.15–4 m scale at flowering and at maturity. The short-range spatial variability of soil δ15N natural abundance and symbiotic nitrogen fixation were high at both growth stages. Along a 4-m row, the δ15N natural abundance in barley reference plants varied up to 3.9‰, and sometimes this variability was observed even between plants grown only 30 cm apart. The δ15N natural abundance in pea varied up to 1.4‰ within the 4-m row. The estimated percentage of nitrogen derived from the atmosphere (%Ndfa) varied from 73–89% at flowering and from 57–95% at maturity. When increasing the sampling area from 0.01 m2 (single plants) and up to 0.6 m2 (14 plants) the %Ndfa coefficient of variation (CV) declined from 5 to 2% at flowering and from 12 to 2% at maturity. The implications of the short-range variability in δ15N natural-abundance are that estimates of symbiotic N2-fixation can be obtained from the natural abundance method if at least half a square meter of crop and reference plants is sampled for the isotopic analysis. In fields with small amounts of representative reference crops (weeds) it might be necessary to sow in reference crop species to secure satisfying N2-fixation estimates.  相似文献   

4.
Yields of above ground biomass and total N were determined in summer-grown maize and cowpea as sole crops or intercrops, with or without supplementary N fertilizer (25 kg N ha−1, urea) at an irrigated site in Waroona, Western Australia over the period 1982–1985. Good agreement was obtained between estimates of N2 fixation of sole or intercrop cowpea (1984/85 season) based on the15N natural abundance and15N fertilizer dilution techniques, both in the field and in a glasshouse pot study. Field-grown cowpea was estimated to have received 53–69% of its N supply from N2-fixation, with N2-fixation onlyslightly affected by intercropping or N fertilizer application. Proportional reliance on N2-fixation of cowpea in glasshouse culture was lower (36–66%) than in the field study and more affected by applied N. Budgets for N were drawn up for the field intercrops, based on above-ground seed yields, return of crop residues, inputs of fixed N and fertilizer N. No account was taken of possible losses of N through volatilization, denitrification and leaching or gains of N in the soil from root biomass. N2-fixation was estimated tobe 59 kg N ha−1 in the plots receiving no fertilizer N, and 73 kg N ha−1 in plots receiving 25 kg N ha−1 as urea. Comparable fixation by sole cowpea was higher (87 and 82 kg N ha−1 respectively) but this advantage was outweighed by greater land use efficiency by the intercrop than sole crops.  相似文献   

5.
Radish is one of the major dry field crops in Asia commonly grown with plastic mulch and high rates of N fertilization, and potentially harming the environment due to N2O emissions and nitrate leaching. Despite the widespread use of plastic mulch, biogeochemical models so far do not yet consider impacts of mulch on soil environmental conditions and biogeochemistry. In this study, we adapted and successfully tested the LandscapeDNDC model against field data by simulating crop growth, C and N turnover and associated N2O emissions as well as nitrate leaching for radish cultivation with plastic mulch and in conjunction with different rates of N fertilization (465–765 kg N ha?1 year?1). Due to the sandy soil texture and monsoon climate, nitrate leaching with rates up to 350 kg N ha?1 year?1 was the dominant reason for overall low nitrogen use efficiency (32–43 %). Direct or indirect N2O emissions (calculated from simulated nitrate leaching rates and IPCC EFind = 0.0075) ranged between 2 and 3 kg N ha?1 year?1, thus contributing an equal amount to total field emissions of about 5 kg N ha?1 year?1. Based on our results, emission factors for direct N2O emissions ranged between 0.004 and 0.005. These values are only half of the IPCC default value (0.01), demonstrating the need of biogeochemical models for developing site and/or region specific EFs. Simulation results also revealed that changes in agricultural management by applying the fertilizer only to the rows would be an efficient mitigation strategy, effectively decreasing field nitrate leaching and N2O emissions by 50–60 %.  相似文献   

6.
A field experiment was conducted using15N methodology to study the effect of cultivation of faba bean (Vicia faba L.), pea (Pisum sativum L.) and barley (Hordeum vulgare L.) on the N status of soil and their residual N effect on two succeeding cereals (sorghum (Sorghum vulgare) followed by barley). Faba bean, pea and barley took up 29.6, 34.5 and 53.0 kg N ha–1 from the soil, but returned to soil through roots only 11.3, 10.8 and 5.7 kg N ha–1, respectively. Hence, removal of faba bean, pea and barley straw resulted in a N-balance of about –18, –24, and –47 kg ha–1 respectively. A soil nitrogen conserving effect was observed following the cultivation of faba bean and pea compared to barley which was of the order of 23 and 18 kg N ha–1, respectively. Cultivation of legumes resulted in a significantly higher AN value of the soil compared to barley. However, the AN of the soil following fallow was significantly higher than following legumes, implying that the cultivation of the legumes had depleted the soil less than barley but had not added to the soil N compared to the fallow. The beneficial effect of legume cropping also was reflected in the N yield and dry matter production of the succeeding crops. Cultivation of legumes led to a greater exploitation of soil N by the succeeding crops. Hence, appreciable yield increases observed in the succeeding crops following legumes compared to cereal were due to a N-conserving effect, carry-over of N from the legume residue and to greater uptake of soil N by the succeeding crops when previously cropped to legumes.  相似文献   

7.
The effects of dairy cow urine and defoliation severity on biological nitrogen fixation and pasture production of a mixed ryegrass-white clover sward were investigated over 12 months using mowing for defoliation. A single application of urine (equivalent to 746 kg N ha–1), was applied in late spring to plots immediately after light and moderately-severe defoliation (35 mm and 85 mm cutting heights, respectively) treatments were imposed. Estimates of percentage clover N derived from N2 fixation (%Ndfa) were compared by labelling the soil with 15N either by applying a low rate of 15N-labelled ammonium sulphate, immobilising 15N in soil organic matter, adding 15N to applied urine, or by utilising the small differences in natural abundance of 15N in soil. Urine application increased annual grass production by 85%, but had little effect on annual clover production. However, urine caused a marked decline in %Ndfa (using an average of all 15N methods) from 84% to a low of 22% by 108 days, with recovery to control levels taking almost a year. As a result, total N fixed (in above ground clover herbage) was reduced from 232 to 145 kg N ha–1 yr–1. Moderately–severe defoliation had no immediate effect on N2 fixation, but after 108 days the %Ndfa was consistently higher than light defoliation during summer and autumn, and increased by up to 18%, coinciding with an increase in growth of weeds and summer-grass species. Annual N2 fixation was 218 kg N ha–1 yr–1 under moderately-severe defoliation compared to 160 kg N ha–1 yr–1 under light defoliation. Estimates of %Ndfa were generally similar when 15N-labelled or immobilised 15N were used to label soil regardless of urine and defoliation severity. The natural abundance technique gave highly variable estimates of %Ndfa (–56 to 24%) during the first 23 days after urine application but, thereafter, estimates of %Ndfa were similar to those using 15N-labelling methods. In contrast, in urine treated plots the use of 15N-labelled urine gave estimates of %Ndfa that were 20–30% below values calculated using conventional 15N-labelling during the first 161 days. These differences were probably due to differences in the rooting depth between ryegrass and white clover in conjunction with treatment differences in 15N distribution with depth. This study shows that urine has a prolonged effect on reducing N2 fixation in pasture. In addition, defoliation severity is a potential pasture management tool for strategically enhancing N2 fixation.  相似文献   

8.
Two-year potato rotations were evaluated for their effects on soil mineralizable N and soil N supply. Pre-plant soil samples (0–15 cm) collected from the potato year after seven rotation cycles were used to estimate soil mineralizable N using a 24 week aerobic incubation. Potentially mineralizable N (N 0 ) ranged from 102 to 149 kg N ha?1, and was greater after pea/white clover and oats/Italian ryegrass than after oats by an average of 35 and 22%, respectively. Labile, intermediate and stable mineralizable N pools were increased after pea/white clover compared with oats, whereas only the stable mineralizable N pool was increased after oats/Italian ryegrass. Potato plant N uptake with no fertilizer applied was greater in potato-pea/white clover compared with the three other rotations (126 vs. average of 67 kg N ha?1). Choice of rotation crop in potato production influences both the quantity and quality of soil mineralizable N.  相似文献   

9.
Symbiotic relationships between N2-fixing prokaryotes and their autotrophic hosts are essential in nitrogen (N)-limited ecosystems, yet the importance of this association in pristine boreal peatlands, which store 25 % of the world’s soil (C), has been overlooked. External inputs of N to bogs are predominantly atmospheric, and given that regions of boreal Canada anchor some of the lowest rates found globally (~1 kg N ha?1 year?1), biomass production is thought to be limited primarily by N. Despite historically low N deposition, we show that boreal bogs have accumulated approximately 12–25 times more N than can be explained by atmospheric inputs. Here we demonstrate high rates of biological N2-fixation in prokaryotes associated with Sphagnum mosses that can fully account for the missing input of N needed to sustain high rates of C sequestration. Additionally, N amendment experiments in the field did not increase Sphagnum production, indicating that mosses are not limited by N. Lastly, by examining the composition and abundance of N2-fixing prokaryotes by quantifying gene expression of 16S rRNA and nitrogenase-encoding nifH, we show that rates of N2-fixation are driven by the substantial contribution from methanotrophs, and not from cyanobacteria. We conclude biological N2-fixation drives high sequestration of C in pristine peatlands, and may play an important role in moderating fluxes of methane, one of the most important greenhouse gases produced in peatlands. Understanding the mechanistic controls on biological N2-fixation is crucial for assessing the fate of peatland carbon stocks under scenarios of climate change and enhanced anthropogenic N deposition.  相似文献   

10.
Few studies have assessed the levels of symbiotic N nutrition in legumes grown by farmers in Africa. In this study, the shoots of cowpea plants were sampled from 63 farms in 12 villages within 5 districts of the Upper West Region of Ghana, and assessed for growth and symbiotic N nutrition. The data revealed considerable differences in cowpea plant density per m2, plant growth,15N natural abundance (δ15N), %Ndfa, and N-fixed among different farms under one village, and between villages under the same district, and between districts in the Upper West Region. In farms where there were fewer cowpea plants per m2, plant growth was better and dry matter yield per plant significantly greater, leading to strong variations in δ15N values. Except for four farms at Bamahu which had cowpea shoot Ndfa values of 12.1%, 30.0%, 36.5% and 46.6%, one farm at Babile with Ndfa value of 58.1%, and three farms at Silbelle with Ndfa values of 56.8%, 57.9% and 68.7%, the remaining 55 out of the 63 farms studied showed high shoot Ndfa values, ranging from 70.6% to 99.7%, which clearly indicates that cowpea cultivated by farmers in the Upper West Region of Ghana meet a large proportion of their N requirements from symbiotic fixation. At the district level, isotopic analysis showed that, on average, the15N natural abundance values (%0) of cowpea shoots were ?0.496±0.04 for Jirapa, ?0.083±0.06 for Nadowli, 0.368±0.08 for Lawra, J.333±0.29 for Wa and 0.365±0.09 for Sissala district. Estimates of the legume’s N derived from fixation were 66.3% for Wa district, 89.9% for Nadowli, 79.4% for Lawra, 78.9% for Sissala and 80.9% for Jirapa district. The amount of N-fixed ranged from 402.3 mg.plant?1 for Nadowli, 176.5 mg.plant?1 for Wa, 235.4 mg.plant?1 for Sissala, 179.0 mg.plant?1 for Lawra to 249.2 mg.plane?1 for the Jirapa district. Expressed on per-hectare basis using cowpea density per m2, the total amount of N-fixed was around 16.6 kg ha?1 in the Nadowli district, 19.1 kg ha?1 in Wa, 23.0 kg ha?1 in Sissala, 2J.1 kg ha?1 in Lawra and 17.6 kg ha?1 in the Jirapa district. Averaged across all 5 districts, N-fixed by cowpea was about 19.5 kg ha?1 in the Upper West Region of Ghana. These data suggest that, increasing N2 fixation in fanners’ fields in Ghana would require optimization of cowpea plant density rather than biological manipulation of the symbiotic process (as %Ndfa values were generally very high).  相似文献   

11.
Nitrogen fixation in groundnut and soyabean and the residual benefits of incoporated legume stover to subsequent rice crops were estimated in farmers' fields using15N-isotope methods. Three field experiments were conducted, two which examined N2-fixation in groundnut by15N-isotope dilution using a non-nodulating groundnut as a reference crop and one in which N2-fixation in two soyabean genotypes was compared using maize as the non-fixing reference crop. Groundnut fixed 72–77% of its N amounting to 150–200 kg N ha-1 in 106–119 days and soyabean derived 66–68% of its N from N2-fixation which amounted to 108–152 kg N ha-1 under similar conditions. When legume stover was returned to the soil, there was a net contribution of N from N2-fixing varieties of groundnut in all cases ranging from 13–100 kg N ha-1, whilst due to the high % N harvest index in soyabean (87–88%) there was a net removal of N of 37–46 kg N ha-1. In all cases if the legume stover was removed there was a net removal of N in the legume crop which ranged between 54 and 74 kg N ha-1 in N2-fixing varieties of groundnut and from 58 to 73 kg N ha-1 in soyabean, whilst maize removed 66 kg N ha-1 if its stover was returned and 101 kg N ha-1 when the stover was removed. Growth of rice was improved in all cases where groundnut stover was returned resulting in increases in grain yield of 12–26% and increases in total dry matter production of 26–31%. Soyabean residues gave no increases in rice grain yield but increased total dry matter production by 12–20%. Rice accumulated more N in all cases where legume stover was returned to the soil, and N yields were larger in all cases after the N2-fixing legumes than after the non-fixing reference crops. N difference estimates of the total residual N benefits from the N2-fixing legumes ranged from 11–19 kg N ha-1 after groundnut and 15–16 kg N ha-1 after soyabean. The amounts of N estimated directly by application of15N-labelled stover amounted to 7.2–20.5 kg N ha-1 with groundnut which represented recovery of 8–22% of the N added in the stover. In soyabean only 3.0–5.8 kg N ha-1 was estimated to be recovered by15N-labelling which was 15–23% of the added N, whilst only 1.3 kg N ha-1 (4% of the N added) was recovered by rice from the maize stover. An indirect15N-method based on addition of unlabelled stover to microplots where the soil had previously been labelled with15N gave extremely variable and often negative estimates of residual N benefits. Estimates of residual N from the added stover made by N difference calculations did not correspond with the estimates by direct15N-labelling in all cases and possible reasons for this are discussed.  相似文献   

12.
Comparative growth and N2-fixation of cyanobacteria, namely Aphanothece sp. (unicellular) and Gloeotrichia sp. (heterocystous, filamentous), were studied after their inoculation to rice crop in the absence and presence of urea nitrogen fertilizer. In the absence of N-fertilizer application (control), inoculation of both cyanobacterial species showed significant increase in growth and acetylene reduction activity (ARA), but gradual reduction in these parameters was observed at 30 and 60 kg N ha?1 of urea application. In inoculation of Gloeotrichia sp. at control, 30 and 60 kg N ha?1 increased grain yield significantly over uninoculated control in both wet and dry seasons, but grain yield with Aphanothece sp. inoculation was statistically similar to the control at N levels during both seasons. The inoculation study showed that heterocystous cyanobacteria contributed better than unicellular ones, and application of N-fertilizer adversely affected both growth and N2-fixation of native as well of inoculated cyanobacteria.  相似文献   

13.

Background and Aims

Understanding the impact of soil rhizobial populations and inoculant rhizobia in supplying sufficient nodulation is crucial to optimising N2 fixation by legume crops. This study explored the impact of different rates of inoculant rhizobia and contrasting soil rhizobia on nodulation and N2 fixation in faba bean (Vicia faba L.).

Methods

Faba beans were inoculated with one of seven rates of rhizobial inoculation, from no inoculant to 100 times the normal rate of inoculation, sown at two field sites, with or without soil rhizobia present, and their nodulation and N2 fixation assessed.

Results

At the site without soil rhizobia, inoculation increased nodule number and increased N2 fixation from 21 to 129 kg shoot N ha?1, while N2 fixation increased from 132 to 218 kg shoot N ha?1 at the site with high background soil rhizobia. At the site without soil rhizobia, inoculation increased concentrations of shoot N from 14 to 24 mg g?1, grain N from 32 to 45 mg g?1, and grain yields by 1.0 Mg (metric tonne) ha?1. Differences in nodulation influenced the contributions of fixed N to the system, which varied from the net removal of 20 kg N ha?1 from the system in the absence of rhizobia, to a net maximum input of 199 kg N ha?1 from legume shoot and root residues, after accounting for removal of N in grain harvest.

Conclusions

The impact of inoculation and soil rhizobia strongly influenced grain yield, grain N concentration and the potential contributions of legume cropping to soil N fertility. In soil with resident rhizobia, N2 fixation was improved only with the highest inoculation rate.  相似文献   

14.
The two non-CO2 greenhouse gases (GHGs) nitrous oxide (N2O) and methane (CH4) comprise 54.8% of total New Zealand emissions. Nitrous oxide is mainly generated from mineral N originating from animal dung and urine, applied fertiliser N, biologically fixed N2, and mineralisation of soil organic N. Even though about 96% of the anthropogenic CH4 emitted in New Zealand is from ruminant animals (methanogenesis), methane uptake by aerobic soils (methanotrophy) can significantly contribute to the removal of CH4 from the atmpsphere, as the global estimates confirm. Both the net uptake of CH4 by soils and N2O emissions from soils are strongly influenced by changes in land use and land management. Quantitative information on the fluxes of these two non-CO2 GHGs is required for a range of land-use and land-management ecosystems to determine their contribution to the national emissions inventory, and for assessing the potential of mitigation options. Here we report soil N2O fluxes and CH4 uptake for a range of land-use and land-management systems collated from published and unpublished New Zealand studies. Nitrous oxide emissions are highest in dairy-grazed pastures (10–12 kg N2O–N ha?1 year? 1), intermediate in sheep-grazed pastures, (4–6 kg N2O–N ha?1 year?1), and lowest in forest, shrubland and ungrazed pasture soils (1–2 kg N2O–N ha?1 year?1). N deposited in the form of animal urine and dung, and N applied as fertiliser, are the principal sources of N2O production. Generally, N2O emissions from grazed pasture soils are high when the soil water-filled pore-space is above field capacity, and net CH4 uptake is low or absent. Although nitrification inhibitors have shown some promise in reducing N2O emissions from grazed pasture systems, their efficacy as an integral part of farm management has yet to be tested. Methane uptake was highest for a New Zealand Beech forest soil (10–11 kg CH4 ha?1 year?1), intermediate in some pine forest soils (4–6 kg CH4 ha?1 year?1), and lowest in most pasture (<1 kg CH4 ha?1 year?1) and cropped soils (1.5 kg CH4 ha?1 year?1). Afforestation /reforestation of pastures results in increases in soil CH4 uptake, largely as a result of increases in soil aeration status and changes in the population and activities of methanotrophs. Soil CH4 uptake is also seasonally dependent, being about two to three times higher in a dry summer and autumn than in a wet winter. There are no practical ways yet available to reduce CH4 emissions from agricultural systems. The mitigation options to reduce gaseous emissions are discussed and future research needs identified.  相似文献   

15.
We modeled the expected range of seasonal and annual N2O flux from temperate, grain agroecosystems using Monte Carlo sampling of N2O flux field observations. This analysis is complimentary to mechanistic biogeochemical model outcomes and provides an alternative method of estimating N2O flux. Our analysis produced a range of annual N2O gas flux estimates with mean values overlapping with results from an intermodel comparison of mechanistic models. Mean seasonal N2O flux was 1–4% of available N, while median seasonal N2O flux was less than 2% of available N across corn, soybean, wheat, ryegrass, legume, and bare fallow systems. The 25th–75th percentile values for simulated average annualized N2O flux rates ranged from 1 to 12.2 kg N ha?1 in the conventional system, from 1.3 to 8.8 kg N ha?1 in the cover crop rotation, and from 0.8 to 9.3 kg N ha?1 in the legume rotation. Although these modeling techniques lack the seasonal resolution of mechanistic models, model outcomes are based on measured field observations. Given the large variation in seasonal N gas flux predictions resulting from the application of mechanistic simulation models, this data-derived approach is a complimentary benchmark for assessing the impact of agricultural policy on greenhouse gas emissions.  相似文献   

16.
Acacia mearnsii is an introduced Australian acacia in South Africa and has invaded more than 2.5 million ha, primarily establishing in rangeland and riparian areas. Because acacias have the capability to fix N, A. mearnsii invasions may fundamentally change N dynamics in invaded systems. This study compares biological N2-fixation in the alien invasive A. mearnsii and the native A. caffra growing in a grassland riparian zone in the Komati Gorge Reserve, Mpumalanga, South Africa. A 15N natural abundance field survey suggested that both mature alien and native acacias fix N under current conditions in the riparian zone. Significantly depleted δ15N was observed in both acacias relative to reference species, although variation in δ15N was not correlated with N concentrations. Calculated contributions of N2-fixation (%Ndfa) suggest that alien acacias fix significantly more of their N than native acacias (~75 ± 5% SE and 53 ± 9% SE, respectively). There was a larger variation in δ15N and %Ndfa in the native acacia, suggesting relatively high plasticity in its N2-fixation contributions. This plasticity was interpreted as a facultative N2-fixation strategy for the native acacia, while the N2-fixation strategy of the alien acacia remained unclear. Our results emphasize the importance of potentially elevated N inputs through N2-fixation by invasive legumes in invaded landscapes. Furthermore, they suggest that N2-fixation by invasive acacias may not respond to fine-scale patchiness in soil N in the same manner as native acacias, making them potential contributors to N excess in Southern Africa.  相似文献   

17.

Aims

A 3-year field experiment (October 2004–October 2007) was conducted to quantify N2O fluxes and determine the regulating factors from rain-fed, N fertilized wheat-maize rotation in the Sichuan Basin, China.

Methods

Static chamber-GC techniques were used to measure soil N2O fluxes in three treatments (three replicates per treatment): CK (no fertilizer); N150 (300 kg N fertilizer ha?1 yr?1 or 150 kg N?ha?1 per crop); N250 (500 kg N fertilizer ha?1 yr?1 kg or 250 kg N?ha?1 per crop). Nitrate (NO 3 ? ) leaching losses were measured at nearby sites using free-drained lysimeters.

Results

The annual N2O fluxes from the N fertilized treatments were in the range of 1.9 to 6.7 kg N?ha?1 yr?1 corresponding to an N2O emission factor ranging from 0.12 % to 1.06 % (mean value: 0.61 %). The relationship between monthly soil N2O fluxes and NO 3 - leaching losses can be described by a significant exponential decaying function.

Conclusions

The N2O emission factor obtained in our study was somewhat lower than the current IPCC default emission factor (1 %). Nitrate leaching, through removal of topsoil NO 3 ? , is an underrated regulating factor of soil N2O fluxes from cropland, especially in the regions where high NO 3 - leaching losses occur.  相似文献   

18.
Summary Accurate estimates of N2 fixation by legumes are requisite to determine their net contribution of fixed N2 to the soil N pool. However, estimates of N2 fixation derived with the traditional15N methods of isotope dilution and AN value are costly.Field experiments utilizing15N-enriched (NH4)2SO4 were conducted to evaluate a modified difference method for determining N2 fixation by fababean, lentil, Alaska pea, Austrian winter pea, blue lupin and chickpea, and to quantify their net contribution of fixed N2 to the soil N pool. Spring wheat and non-nodulated chickpea, each fertilized with two N rates, were utilized as non-fixing controls.Estimates of N2 fixation based on the two control crops were similar. Increasing the N rate to the controls reduced AN values 32, 18 and 43% respectively in 1981, 1982 and 1983 resulting in greater N2 fixation estimates. Mean seasonal N2 fixation by fababean, lentil and Austrian winter pea was near 80 kg N ha–1, pea and blue lupin near 60 kg N ha–1, and chickpea less than 10 kg N ha–1. The net effects of the legume crops on the soil N pool ranged from a 70 kg N ha–1 input by lentil in 1982, to a removal of 48 kg N ha–1 by chickpea in 1983.Estimates of N2 fixation obtained by the proposed modified difference method approximate those derived by the isotope dilution technique, are determined with less cost, and are more reliable than the total plant N procedure.Scientific paper No. 6605. College of Agriculture and Home Economics Research Center, Washington State University, Pullman, WA 99164, U.S.A.  相似文献   

19.
Peoples  M.B.  Bowman  A.M.  Gault  R.R.  Herridge  D.F.  McCallum  M.H.  McCormick  K.M.  Norton  R.M.  Rochester  I.J.  Scammell  G.J.  Schwenke  G.D. 《Plant and Soil》2001,228(1):29-41
On-farm and experimental measures of the proportion (%Ndfa) and amounts of N2 fixed were undertaken for 158 pastures either based on annual legume species (annual medics, clovers or vetch), or lucerne (alfalfa), and 170 winter pulse crops (chickpea, faba bean, field pea, lentil, lupin) over a 1200 km north-south transect of eastern Australia. The average annual amounts of N2 fixed ranged from 30 to 160 kg shoot N fixed ha–1 yr–1 for annual pasture species, 37–128 kg N ha–1 yr–1 for lucerne, and 14 to 160 kg N ha–1 yr–1 by pulses. These data have provided new insights into differences in factors controlling N2 fixation in the main agricultural systems. Mean levels of %Ndfa were uniformly high (65–94%) for legumes growing at different locations under dryland (rainfed) conditions in the winter-dominant rainfall areas of the cereal-livestock belt of Victoria and southern New South Wales, and under irrigation in the main cotton-growing areas of northern New South Wales. Consequently N2 fixation was primarily regulated by biomass production in these areas and both pasture and crop legumes fixed between 20 and 25 kg shoot N for every tonne of shoot dry matter (DM) produced. Nitrogen fixation by legumes in the dryland systems of the summer-dominant rainfall regions of central and northern New South Wales on the other hand was greatly influenced by large variations in %Ndfa (0–81%) caused by yearly fluctuations in growing season (April–October) rainfall and common farmer practice which resulted in a build up of soil mineral-N prior to sowing. The net result was a lower average reliance of legumes upon N2 fixation for growth (19–74%) and more variable relationships between N2 fixation and DM accumulation (9–16 kg shoot N fixed/t legume DM). Although pulses often fixed more N than pastures, legume-dominant pastures provided greater net inputs of fixed N, since a much larger fraction of the total plant N was removed when pulses were harvested for grain than was estimated to be removed or lost from grazed pastures. Conclusions about the relative size of the contributions of fixed N to the N-economies of the different farming systems depended upon the inclusion or omission of an estimate of fixed N associated with the nodulated roots. The net amounts of fixed N remaining after each year of either legume-based pasture or pulse crop were calculated to be sufficient to balance the N removed by at least one subsequent non-legume crop only when below-ground N components were included. This has important implications for the interpretation of the results of previous N2 fixation studies undertaken in Australia and elsewhere in the world, which have either ignored or underestimated the N present in the nodulated root when evaluating the contributions of fixed N to rotations.  相似文献   

20.
Summary The total amount of nitrogen derived from symbiotic nitrogen fixation in two pea and one field bean cultivar, supplied with 50 kg N ha−1 at sowing (‘starter’-N), was estimated to 165, 136, and 186 kg N ha−1, respectively (three-year means). However, estimates varied considerably between the three years. At the full bloom/flat pod growth stage from 30 to 59 per cent of total N2 fixation had taken place. The proportion of total N derived from N2 fixation at maturity was higher in seeds than in vegetative plant parts and amounted to 59.5, 51.3 and 66.3 per cent of total above-ground plant N in the two pea cultivars and field bean, respectively (three-year means). The recovery of fertilizer N was 62.2, 70.2, 52.1, and 69.5 per cent in the two pea cultivars, field bean and barley, respectively. Growth analysis indicated that barley did not meet the claims for an ideal reference crop in the15N fertilizer dilution technique for estimating N2 fixation in pea and field bean. ‘Starter’-N neither increased the seed yield nor the N content of the grain legumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号