首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Human angiotensin-converting enzyme (ACE) has two homologous domains, the N and C domains, with differing substrate preferences. X-ray crystal structures of the C and N domains complexed with various inhibitors have allowed identification of active site residues that might be important for the molecular basis of this selectivity. However, it is unclear to what extent the different residues contribute to substrate domain selectivity. Here, cocrystal structures of human testis ACE, equivalent to the C domain, have been determined with two novel C domain-selective ketomethylene inhibitors, (5 S)-5-[( N-benzoyl)amino]-4-oxo-6-phenylhexanoyl- l-tryptophan (kAW) and (5 S)-5-[( N-benzoyl)amino]-4-oxo-6-phenylhexanoyl- l-phenylalanine (kAF). The ketone groups of both inhibitors bind to the zinc ion as a hydrated geminal diolate, demonstrating the ability of the active site to catalyze the formation of the transition state. Moreover, active site residues involved in inhibitor binding have been mutated to their N domain counterparts, and the effect of the mutations on inhibitor binding has been determined. The C domain selectivity of these inhibitors was found to result from interactions between bulky hydrophobic side chain moieties and C domain-specific residues F391, V518, E376, and V380 (numbering of testis ACE). Mutation of these residues decreased the affinity for the inhibitors 4-20-fold. T282, V379, E403, D453, and S516 did not contribute individually to C domain-selective inhibitor binding. Further domain-selective inhibitor design should focus on increasing both the affinity and selectivity of the side chain moieties.  相似文献   

2.
RXPA380 (Cbz-PhePsi[PO(2)CH]Pro-Trp-OH) was reported recently as the first highly selective inhibitor of the C-domain of somatic angiotensin-converting enzyme (ACE), able to differentiate the two active sites of somatic ACE by a selectivity factor of more than 3 orders of magnitude. The contribution of each RXPA380 residue toward this remarkable selectivity was evaluated by studying several analogues of RXPA380. This analysis revealed that both pseudo-proline and tryptophan residues in the P(1)' and P(2)' positions of RXPA380 play a critical role in the selectivity of this inhibitor for the C-domain. This selectivity is not due to a preference of the C-domain for inhibitors bearing pseudo-proline and tryptophan residues, but rather reflects the poor accommodation of these inhibitor residues by the N-domain. A model of RXPA380 in complex with the ACE C-domain, based on the crystal structure of germinal ACE, highlights residues that may contribute to RXPA380 selectivity. From this model, striking differences between the N- and C-domains of ACE are observed for residues defining the S(2)' pocket. Of the twelve residues that surround the tryptophan side chain of RXPA380 in the C-domain, five are different in the N-domain. These differences in the S(2)' composition between the N- and C-domains are suggested to contribute to RXPA380 selectivity. The structural insights provided by this study should enhance understanding of the factors controlling the selectivity of the two domains of somatic ACE and allow the design of new selective ACE inhibitors.  相似文献   

3.
Angiotensin I-converting enzyme (ACE), one of the central components of the renin-angiotensin system, is a key therapeutic target for the treatment of hypertension and cardiovascular disorders. Human somatic ACE (sACE) has two homologous domains (N and C). The N- and C-domain catalytic sites have different activities toward various substrates. Moreover, some of the undesirable side effects of the currently available and widely used ACE inhibitors may arise from their targeting both domains leading to defects in other pathways. In addition, structural studies have shown that although both these domains have much in common at the inhibitor binding site, there are significant differences and these are greater at the peptide binding sites than regions distal to the active site. As a model system, we have used an ACE homologue from Drosophila melanogaster (AnCE, a single domain protein with ACE activity) to study ACE inhibitor binding. In an extensive study, we present high-resolution structures for native AnCE and in complex with six known antihypertensive drugs, a novel C-domain sACE specific inhibitor, lisW-S, and two sACE domain-specific phosphinic peptidyl inhibitors, RXPA380 and RXP407 (i.e., nine structures). These structures show detailed binding features of the inhibitors and highlight subtle changes in the orientation of side chains at different binding pockets in the active site in comparison with the active site of N- and C-domains of sACE. This study provides information about the structure-activity relationships that could be utilized for designing new inhibitors with improved domain selectivity for sACE.  相似文献   

4.
Human somatic angiotensin I-converting enzyme (sACE) is a key regulator of blood pressure and an important drug target for combating cardiovascular and renal disease. sACE comprises two homologous metallopeptidase domains, N and C, joined by an inter-domain linker. Both domains are capable of cleaving the two hemoregulatory peptides angiotensin I and bradykinin, but differ in their affinities for a range of other substrates and inhibitors. Previously we determined the structure of testis ACE (C domain); here we present the crystal structure of the N domain of sACE (both in the presence and absence of the antihypertensive drug lisinopril) in order to aid the understanding of how these two domains differ in specificity and function. In addition, the structure of most of the inter-domain linker allows us to propose relative domain positions for sACE that may contribute to the domain cooperativity. The structure now provides a platform for the design of "domain-specific" second-generation ACE inhibitors.  相似文献   

5.
M R Ehlers  J F Riordan 《Biochemistry》1991,30(29):7118-7126
The blood pressure regulating somatic isozyme of angiotensin-converting enzyme (ACE) consists of two homologous, tandem domains each containing a putative metal-binding motif (HEXXH), while the testis isozyme consists of just a single domain that is identical with the C-terminal half of somatic ACE. Previous metal analyses of somatic ACE have indicated a zinc stoichiometry of 1 mol of Zn2+/mol of ACE and inhibitor-binding studies have found 1 mol of inhibitor bound/mol of enzyme. These and other data have indicated that only one of the two domains of somatic ACE is catalytically active. We have repeated the metal and inhibitor-binding analyses of ACE from various sources and have determined protein concentration by quantitative amino acid analysis on the basis of accurate polypeptide molecular weights that are now available. We find that the somatic isozyme in fact contains 2 mol of Zn2+ and binds 2 mol of lisinopril (an ACE inhibitor) per mol of enzyme, whereas the testis isozyme contains 1 mol of Zn2+ and binds 1 mol of lisinopril. In the case of somatic ACE, the second equivalent of inhibitor binds to a second zinc-containing site as evidenced by the ability of a moderate excess of inhibitor to protect both zinc ions against dissociation. However, active site titration with lisinopril assayed by hydrolysis of furanacryloyl-Phe-Gly-Gly revealed that 1 mol of inhibitor/mol of enzyme abolished the activity of either isozyme, indicating that the principal angiotensin-converting site likely resides in the C-terminal (testicular) domain of somatic ACE and that binding of inhibitor to this site is stronger than to the second site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Human ACE (angiotensin-I-converting enzyme) has long been regarded as an excellent target for the treatment of hypertension and related cardiovascular diseases. Highly potent inhibitors have been developed and are extensively used in the clinic. To develop inhibitors with higher therapeutic efficacy and reduced side effects, recent efforts have been directed towards the discovery of compounds able to simultaneously block more than one zinc metallopeptidase (apart from ACE) involved in blood pressure regulation in humans, such as neprilysin and ECE-1 (endothelin-converting enzyme-1). In the present paper, we show the first structures of testis ACE [C-ACE, which is identical with the C-domain of somatic ACE and the dominant domain responsible for blood pressure regulation, at 1.97? (1 ?=0.1 nm)] and the N-domain of somatic ACE (N-ACE, at 2.15?) in complex with a highly potent and selective dual ACE/ECE-1 inhibitor. The structural determinants revealed unique features of the binding of two molecules of the dual inhibitor in the active site of C-ACE. In both structures, the first molecule is positioned in the obligatory binding site and has a bulky bicyclic P(1)' residue with the unusual R configuration which, surprisingly, is accommodated by the large S(2)' pocket. In the C-ACE complex, the isoxazole phenyl group of the second molecule makes strong pi-pi stacking interactions with the amino benzoyl group of the first molecule locking them in a 'hand-shake' conformation. These features, for the first time, highlight the unusual architecture and flexibility of the active site of C-ACE, which could be further utilized for structure-based design of new C-ACE or vasopeptidase inhibitors.  相似文献   

7.
Human angiotensin-I converting enzyme (ACE) is a central component of the renin-angiotensin system and a major target for cardiovascular therapies. The somatic form of the enzyme (sACE) comprises two homologous metallopeptidase domains (N and C), each bearing a zinc active site with similar but distinct substrate and inhibitor specificities. On the basis of the recently determined crystal structures of both ACE domains, we have studied their complexes with gonadotropin-releasing hormone (GnRH), which is cleaved releasing both the protected NH2- and COOH-terminal tripeptides. This is the first molecular modeling study of an ACE-peptide substrate complex that examines the structural basis of ACE's endopeptidase activity and offers novel insights into subsites that are distant from the obligatory binding site and were not identified in the crystal structures. Our data indicate that a bridging interaction between Arg500 of the N-domain and Arg8 of GnRH that involves a buried chloride ion may account for its role in the specificity of the N-domain for endoproteolytic cleavage of the substrate at the NH2-terminus in vitro. In support of this, the protected NH2-terminal dipeptide of GnRH exhibits stronger interactions than the protected COOH-terminal dipeptide with the N-domain of ACE. Further comparison of the models of ACE-substrate complexes promotes our understanding of how the two domains differ in their function and specificity and provides an extension of the pharmacophore model used for structure-based drug design up to the S7 subsite of the enzyme.  相似文献   

8.
Angiotensin-converting enzyme (ACE) exists as two isoforms: somatic ACE (sACE), comprised of two homologous N and C domains, and testis ACE (tACE), comprised of the C domain only. The N and C domains are both active, but show differences in substrate and inhibitor specificity. While both isoforms are shed from the cell surface via a sheddase-mediated cleavage, tACE is shed much more efficiently than sACE. To delineate the regions of tACE that are important in catalytic activity, intracellular processing, and regulated ectodomain shedding, regions of the tACE sequence were replaced with the corresponding N-domain sequence. The resultant chimeras C1-163Ndom-ACE, C417-579Ndom-ACE, and C583-623Ndom-ACE were processed to the cell surface of transfected Chinese hamster ovary (CHO) cells, and were cleaved at the identical site as that of tACE. They also showed acquisition of N-domain-like catalytic properties. Homology modelling of the chimeric proteins revealed structural changes in regions required for tACE-specific catalytic activity. In contrast, C164-416Ndom-ACE and C191-214Ndom-ACE demonstrated defective intracellular processing and were neither enzymatically active nor shed. Therefore, critical elements within region D164-V416 and more specifically I191-T214 are required for the processing, cell-surface targeting, and enzyme activity of tACE, and cannot be substituted for by the homologous N-domain sequence.  相似文献   

9.
Numerous cytokines, receptors, and ectoenzymes, including angiotensin I-converting enzyme (ACE), are shed from the cell surface by limited proteolysis at the juxtamembrane stalk region. The membrane-proximal C domain of ACE has been implicated in sheddase-substrate recognition. We mapped the functional boundaries of the testis ACE ectodomain (identical to the C domain of somatic ACE) by progressive deletions from the N- and C-termini and analysing the effects on catalytic activity, stability, and shedding in transfected cells. We found that deletions extending beyond Leu37 at the N-terminus and Trp616 at the C-terminus abolished catalytic activity and shedding, either by disturbing the ectodomain conformation or by inhibiting maturation and surface expression. Based on these data and on sequence alignments, we propose that the boundaries of the ACE ectodomain are Asp40 at the N-terminus and Gly615 at the C-terminus.  相似文献   

10.
Human ACE is a central component of the renin–angiotensin system and a major therapeutic target for cardiovascular diseases. The somatic form of the enzyme (sACE) comprises two homologous metallopeptidase domains (N and C), each bearing a zinc active site with similar but distinct substrate and inhibitor specificities. In this study, we present the biological activity of silacaptopril, a silylated analogue of captopril, and its binding affinity towards ACE. Based on the recently determined crystal structures of both the ACE domains, a series of docking calculations were carried out in order to study the structural characteristics and the binding properties of silacaptopril and its analogues with ACE. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
The endothelial angiotensin I-converting enzyme (ACE; EC 3.4.15.1) has recently been shown to contain two large homologous domains (called here the N and C domains), each being a zinc-dependent dipeptidyl carboxypeptidase. To further characterize the two active sites of ACE, we have investigated their interaction with four competitive ACE inhibitors, which are all potent antihypertensive drugs. The binding of [3H] trandolaprilat to the two active sites was examined using the wild-type ACE and four ACE mutants each containing only one intact domain, the other domain being either deleted or inactivated by point mutation of the zinc-coordinating histidines. In contrast with all the previous studies, which suggested the presence of a single high affinity inhibitor binding site in ACE, the present study shows that both the N and C domains of ACE contain a high affinity inhibitor binding site (KD = 3 and 1 X 10(-10) M, respectively, at pH 7.5, 4 degrees C, and 100 mM NaCl). Chloride stabilizes the enzyme-inhibitor complex for each domain primarily by slowing its dissociation rate, as the k-1 values of the N and C domains are markedly decreased (about 30- and 1100-fold, respectively) by 300 mM NaCl. At high chloride concentrations, the chloride effect is much greater for the C domain than for the N domain resulting in a higher affinity of this inhibitor for the C domain. In addition, the inhibitory potency of captopril (C), enalaprilat (E), and lisinopril (L) for each domain was assayed by hydrolysis of Hip-His-Leu. Their Ki values for the two domains are all within the nanomolar range, indicating that they are all highly potent inhibitors for both domains. However, their relative potencies are different for the C domain (L greater than E greater than C) and the N domain (C greater than E greater than L). The different inhibitor binding properties of the two domains observed in the present study provide strong evidence for the presence of structural differences between the two active sites of ACE.  相似文献   

12.
The C-terminal fragment, Bb, of factor B combines with C3b to form the pivotal C3-convertase, C3bBb, of alternative complement pathway. Bb consists of a von Willebrand factor type A (vWFA) domain that is structurally similar to the I domains of integrins and a serine protease (SP) domain that is in inactive conformation. The structure of the C3bBb complex would be important in deciphering the activation mechanism of the SP domain. However, C3bBb is labile and not amenable to X-ray diffraction studies. We engineered a disulfide bond in the vWFA domain of Bb homologous to that shown to lock I domains in active conformation. The crystal structures of Bb(C428-C435) and its inhibitor complexes reveal that the adoption of the "active" conformation by the vWFA domain is not sufficient to activate the C3-convertase catalytic apparatus and also provide insights into the possible mode of C3-convertase activation.  相似文献   

13.
Angiotensin I‐converting enzyme (ACE, CD143) plays a crucial role in blood pressure regulation, vascular remodeling, and immunity. A wide spectrum of mAbs to different epitopes on the N and C domains of human ACE have been generated and used to study different aspects of ACE biology, including establishing a novel approach–conformational fingerprinting. Here we characterized a novel set of 14 mAbs, developed against human seminal fluid ACE. The epitopes for these novel mAbs were defined using recombinant ACE constructs with truncated N and C domains, species cross‐reactivity, ACE mutagenesis, and competition with the previously mapped anti‐ACE mAbs. Nine mAbs recognized regions on the N domain, and 5 mAbs–on the C domain of ACE. The epitopes for most of these novel mAbs partially overlap with epitopes mapped onto ACE by the previously generated mAbs, whereas mAb 8H1 recognized yet unmapped region on the C domain where three ACE mutations associated with Alzheimer''s disease are localized and is a marker for ACE mutation T877M. mAb 2H4 could be considered as a specific marker for ACE in dendritic cells. This novel set of mAbs can identify even subtle changes in human ACE conformation caused by tissue‐specific glycosylation of ACE or mutations, and can detect human somatic and testicular ACE in biological fluids and tissues. Furthermore, the high reactivity of these novel mAbs provides an opportunity to study changes in the pattern of ACE expression or glycosylation in different tissues, cells, and diseases, such as sarcoidosis and Alzheimer''s disease.  相似文献   

14.
Angiotensin converting enzyme (ACE) plays a critical role in the circulating or endocrine renin-angiotensin system (RAS) as well as the local regulation that exists in tissues such as the myocardium and skeletal muscle. Here we report the high-resolution crystal structures of testis ACE (tACE) in complex with the first successfully designed ACE inhibitor captopril and enalaprilat, the Phe-Ala-Pro analogue. We have compared these structures with the recently reported structure of a tACE-lisinopril complex [Natesh et al. (2003) Nature 421, 551-554]. The analyses reveal that all three inhibitors make direct interactions with the catalytic Zn(2+) ion at the active site of the enzyme: the thiol group of captopril and the carboxylate group of enalaprilat and lisinopril. Subtle differences are also observed at other regions of the binding pocket. These are compared with N-domain models and discussed with reference to published biochemical data. The chloride coordination geometries of the three structures are discussed and compared with other ACE analogues. It is anticipated that the molecular details provided by these structures will be used to improve the binding and/or the design of new, more potent domain-specific inhibitors of ACE that could serve as new generation antihypertensive drugs.  相似文献   

15.
The testis-specific isozyme of angiotensin-converting enzyme (ACE) is identical, from residue 68 to the C terminus, to the second half or C-terminal domain of somatic ACE. However, the first 67 residues, comprising the signal peptide and a Ser-/Thr-rich 36-residue sequence that constitutes the N terminus of mature testis ACE, are unique. We have expressed a mutant human testis ACE lacking this 36-residue N-terminal sequence and find that compared to the wild-type protein the mutant is 15 kDa smaller due to the loss of greater than 90% of all O-linked sugars, but that it retains full enzymatic activity and is stable in culture. Heavy O-glycosylation is a property of testis ACE that is not shared by the somatic enzyme and is attributable to this unique sequence.  相似文献   

16.
A method for preparation of a catalytically active fragment of bovine lung angiotensin-converting enzyme (ACE) has been developed. It includes limited proteolysis of the full-length somatic form of the enzyme by trypsin. The resulting fragment corresponds to the N-terminal domain of angiotensin-converting enzyme. The influence of chloride and sulfate anions on the enzymatic activity of this fragment has been investigated, and kinetic parameters for hydrolysis of synthetic tripeptide substrates catalyzed by the N-domain of ACE have been determined. Comparison of these parameters with those obtained for full-length somatic bovine ACE suggests that in the bovine somatic ACE molecule active centers located in various domains may function interdependently.  相似文献   

17.
Human somatic angiotensin I-converting enzyme (ACE), a zinc-dependent dipeptidyl carboxypeptidase, is central to the regulation of the renin-angiotensin aldosterone system. It is a well-known target for combating hypertension and related cardiovascular diseases. In a recent study by Bhuyan and Mugesh [Org. Biomol. Chem. (2011) 9, 1356-1365], it was shown that the selenium analogues of captopril (a well-known clinical inhibitor of ACE) not only inhibit ACE, but also protect against peroxynitrite-mediated nitration of peptides and proteins. Here, we report the crystal structures of human testis ACE (tACE) and a homologue of ACE, known as AnCE, from Drosophila melanogaster in complex with the most promising selenium analogue of captopril (SeCap) determined at 2.4 and 2.35 ? resolution, respectively. The inhibitor binds at the active site of tACE and AnCE in an analogous fashion to that observed for captopril and provide the first examples of a protein-selenolate interaction. These new structures of tACE-SeCap and AnCE-SeCap inhibitor complexes presented here provide important information for further exploration of zinc coordinating selenium-based ACE inhibitor pharmacophores with significant antioxidant activity.  相似文献   

18.
The somatic isoform of angiotensin-converting enzyme (ACE) consists of two homologous domains (N- and C-domains), each bearing a catalytic site. We have used the two-domain ACE form and its individual domains to compare characteristics of different domains and to probe mutual functioning of the two active sites within a bovine ACE molecule. The substrate Cbz-Phe-His-Leu (N-carbobenzoxy-L-phenylalanyl-L-histidyl-L-leucine; from the panel of seven) was hydrolyzed faster by the N-domain, the substrates FA-Phe-Gly-Gly (N-(3-[2-furyl]acryloyl)-L-phenylalanyl-glycyl-glycine) and Hip-His-Leu (N-benzoyl-glycyl-L-histidyl-L-leucine) were hydrolyzed by both domains with equal rates, while other substrates were preferentially hydrolyzed by the C-domain. The inhibitor captopril ((2S)-1-(3-mercapto-2-methylpropionyl)-L-proline) bound to the N-domain more effectively than to the C-domain, whereas lisinopril ((S)-N(alpha)-(1-carboxy-3-phenylpropyl)-L-lysyl-L-proline) bound to equal extent with all ACE forms. However, active site titration with lisinopril assayed by hydrolysis of FA-Phe-Gly-Gly revealed that 1 mol of inhibitor/mol of enzyme abolished the activity of either two-domain or single-domain ACE forms, indicating that a single active site functions in bovine somatic ACE. Neither of the k(cat) values obtained for somatic enzyme was the sum of k(cat) values for individual domains, but in every case the value of the catalytic constant of the hydrolysis of the substrate by the two-domain ACE represented the mean quantity of the values of the corresponding catalytic constants obtained for single-domain forms. The results indicate that the two active sites within bovine somatic ACE exhibit strong negative cooperativity.  相似文献   

19.
Angiotensin-I converting enzyme (ACE, a zinc dependent dipeptidyl carboxypeptidase) is a major target of drugs due to its role in the modulation of blood pressure and cardiovascular disorders. Here we present a crystal structure of AnCE (an ACE homologue from Drosophila melanogaster with a single enzymatic domain) in complex with a natural product-phosphonotripeptide, K-26 at 1.96 Å resolution. The inhibitor binds exclusively in the S1 and S2 binding pockets of AnCE (coordinating the zinc ion) through ionic and hydrogen bond interactions. A detailed structural comparison of AnCE·K-26 complex with individual domains of human somatic ACE provides useful information for further exploration of ACE inhibitor pharmacophores involving phosphonic acids.  相似文献   

20.
Matrix metalloproteinases are a family of zinc endopeptidases involved in tissue remodelling. They have been implicated in various disease processes including tumour invasion and joint destruction. These enzymes consist of several domains, which are responsible for latency, catalysis and substrate recognition. Human neutrophil collagenase (PMNL-CL, MMP-8) represents one of the two 'interstitial' collagenases that cleave triple helical collagens types I, II and III. Its 163 residue catalytic domain (Met80 to Gly242) has been expressed in Escherichia coli and crystallized as a non-covalent complex with the inhibitor Pro-Leu-Gly-hydroxylamine. The 2.0 A crystal structure reveals a spherical molecule with a shallow active-site cleft separating a smaller C-terminal subdomain from a bigger N-terminal domain, composed of a five-stranded beta-sheet, two alpha-helices, and bridging loops. The inhibitor mimics the unprimed (P1-P3) residues of a substrate; primed (P1'-P3') peptide substrate residues should bind in an extended conformation, with the bulky P1' side-chain fitting into the deep hydrophobic S1' subsite. Modelling experiments with collagen show that the scissile strand of triple-helical collagen must be freed to fit the subsites. The catalytic zinc ion is situated at the bottom of the active-site cleft and is penta-coordinated by three histidines and by both hydroxamic acid oxygens of the inhibitor. In addition to the catalytic zinc, the catalytic domain harbours a second, non-exchangeable zinc ion and two calcium ions, which are packed against the top of the beta-sheet and presumably function to stabilize the catalytic domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号