首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two chitinases were purified from Rhizopus oligosporus, a filamentous fungus belonging to the class Zygomycetes, and designated chitinase I and chitinase II. Their N-terminal amino acid sequences were determined, and two synthetic oligonucleotide probes corresponding to these amino acid sequences were synthesized. Southern blot analyses of the total genomic DNA from R. oligosporus with these oligonucleotides as probes indicated that one of the two genes encoding these two chitinases was contained in a 2.9-kb EcoRI fragment and in a 3.6-kb HindIII fragment and that the other one was contained in a 2.9-kb EcoRI fragment and in a 11.5-kb HindIII fragment. Two DNA fragments were isolated from the phage bank of R. oligosporus genomic DNA with the synthetic oligonucleotides as probes. The restriction enzyme analyses of these fragments coincided with the Southern blot analyses described above and the amino acid sequences deduced from their nucleotide sequences contained those identical to the determined N-terminal amino acid sequences of the purified chitinases, indicating that each of these fragments contained a gene encoding chitinase (designated chi 1 and chi 2, encoding chitinase I and II, respectively). The deduced amino acid sequences of these two genes had domain structures similar to that of the published sequence of chitinase of Saccharomyces cerevisiae, except that they had an additional C-terminal domain. Furthermore, there were significant differences between the molecular weights experimentally determined with the two purified enzymes and those deduced from the nucleotide sequences for both genes. Analysis of the N- and C-terminal amino acid sequences of both chitinases and comparison of them with the amino acid sequences deduced from the nucleotide sequences revealed posttranslational processing not only at the N-terminal signal sequences but also at the C-terminal domains. It is concluded that these chitinases are synthesized with pre- and prosequences in addition to the mature enzyme sequences and that the prosequences are located at the C terminal.  相似文献   

2.
3.
We have previously found apparent differences in Gpdh allele frequences between borrelia infected and uninfected Ixodes ricinus as revealed by native gel electrophoresis of allozyme polymorphisms. The present study deals with the genetic basis of the observed allozyme polymorphism. Multiple sequence alignment of 36 Gpdh open reading frames identified a total of 40 polymorphic nucleotide sites. Of the 40 polymorphic nucleotide sites, 34 were silent (did not result in amino acid residue change), while six were active causing a change in the amino acid chain. All polymorphic amino acid sites were situated within the N-terminal NAD-binding domain, whereas the C-terminal substrate-binding domain was highly conserved. Analysis of the obtained Gpdh sequences and GPDH allozyme polymorphisms for individual ticks pointed to amino acid changes at positions 61 (glycine-to-glutamic acid), 64 (serine-to-cysteine) and 102 (glycine-to-arginine) as a key for differential mobility of GPDH allozymes in an electric field. Our findings are discussed in the context of the molecular basis of I. ricinus host finding behavior.  相似文献   

4.
5.
J Nathans  D S Hogness 《Cell》1983,34(3):807-814
We have isolated cDNA clones generated from the mRNA encoding the opsin apoprotein of bovine rhodopsin and used these cDNAs to isolate genomic DNA clones containing the complete opsin gene. Nucleotide sequence analysis of the cloned DNAs has yielded a complete amino acid sequence for bovine rhodopsin and provided an intron-exon map of its gene. The mRNA homologous sequences in the 6.4 kb gene consist of a 96 bp 5' untranslated region, a 1044 bp coding region, and a surprisingly long approximately 1400 bp 3' untranslated region, and are divided into five exons by four introns that interrupt the coding region. Secondary structure analysis predicts that the bovine rhodopsin chain, like that of bacteriorhodopsin, contains seven transmembrane segments. Interestingly, three of the four introns are immediately distal to the codons for three of these segments, and one of these introns marks the boundary between the C-terminal domain and a transmembrane domain.  相似文献   

6.
A full-length cDNA clone encoding osteocalcin from the bullfrog, Rana catesbeiana (bone Gla-protein, BGP) has been isolated, and the complete coding sequence for the 100-amino-acid pre-pro-osteocalcin protein was determined. The amino acid sequence of Rana catesbeiana osteocalcin, especially the mature 49-amino acid sequence, is closer to the mammalian than to the fish, Sparus osteocalcin. Rana mature osteocalcin has a similarity of 67% with human or 59% with rat osteocalcin, and only 42% with fish mature osteocalcin. The 51-amino-acid pre-pro-peptide contains the expected hydrophobic leader sequence and the dibasic Arg-Arg sequence preceding the NH2-terminal Ser of the mature 49-amino-acid Rana osteocalcin. The pro-peptide sequence also contains the expected motif of polar and hydrophobic residues, which targets vitamin K-dependent gamma-carboxylation of three specific Glu residues at positions 17, 21, and 24 in the mature protein. At the native protein expression levels, extraction from Rana cortical bone in the presence of protease inhibitor cocktail resulted in the isolation of two distinct forms of osteocalcin, P-1 and P-2, with a 3:2 distribution. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and amino acid sequence analysis of the N-terminal domain, we confirmed that P-1 is the intact 49-residue osteocalcin with N-terminal SNLRNAVFG., and that P-2 lacks four amino acids from the N-terminus, (NAVFG.). These results demonstrate the existence of a form of osteocalcin lacking four N-terminal amino acids in Rana bone, and that mature Rana osteocalcins remained highly conserved in their molecular evolution, especially with respect to the conservation of the C-terminal domain (residues 14-49).  相似文献   

7.
8.
9.
A rat homologue of hck tyrosine kinase cDNA from a rat megakaryocyte library contains 1911 nucleotides with an open reading frame encoding 503 amino acids. The rat hck had distinct amino acid residues from the mouse homologue exhibiting 97.6% identity. The sequence contains the SH2 and SH3 regions that interact with cytoplasmic signaling proteins, the kinase domain including the nucleotide binding site and the autophosphorylation site, and the C-terminal Tyr-499 known as a negative regulator.  相似文献   

10.
UDPgalactose: N-acetyl-D-glucosamine 4-beta-D-galactosyltransferase (EC 2.4.1.38) (GalT) is a Golgi-membrane-bound enzyme that participates in the biosynthesis of the oligosaccharide structures of glycoproteins and glycolipids. Synthetic DNA oligomers representing segments of the published partial cDNA sequence for bovine GalT were used as molecular probes to isolate from bovine-liver cDNA libraries overlapping cDNA clones that span 1728 nucleotides and potentially code for the entire polypeptide chain of bovine galactosyltransferase. The cDNA sequence for bovine GalT reveals a 1206-base-pair open reading frame that codes for 402 amino acids, including a presumptive N-terminal membrane anchoring domain of 20 hydrophobic amino acids. The colinearity between the cDNA sequence and 29 non-overlapping amino acid residues which were positively identified by N-terminal sequencing of two polypeptides isolated from the soluble form of the enzyme was consistent with the translation frame and confirmed the authenticity of the cDNA clones. The finding of an N-terminal hydrophobic segment which serves as the membrane anchor and signal sequence suggests that the C-terminal region of the GalT polypeptide is oriented within the lumen of the Golgi membranes. This conclusion is in agreement with previous biochemical studies which indicated that the 51-kDa and 42-kDa soluble forms of the enzyme which encompass the C-terminal 324 and 297 amino acid residues of the entire GalT polypeptide, respectively, include the catalytic site.  相似文献   

11.
Abstract The complete nucleotide sequence of the gene encoding the Corynebacterium glutamicum mannose enzyme II (EIIMan) was determined. The gene consisted of 2052 base pairs encoding a protein of 683 amino acid residues; the molecular mass of the protein subunit was calculated to be 72570 Da. The N-terminal hydrophilic domain of EIIMan showed 39.7% homology with a C-terminal hydrophilic domain of Escherichia coli glucose-specific enzyme II (EIIGlc). Similar homology was shown between the C-terminal sequence of EIIMan and the E. coli glucose-specific enzyme III (EIIIGlc), or the EIII-like domain of Streptococcus mutans sucrose-specific enzyme II. Sequence comparison with other EIIs showed that EIIMan contained residues His-602 and Cys-28 which were homologous to the potential phosphorylation sites of EIIIGlc, or EIII-like domains, and hydrophilic domains (IIB) of several EIIs, respectively.  相似文献   

12.
13.
Gite S  Li Y  Ramesh V  RajBhandary UL 《Biochemistry》2000,39(9):2218-2226
The formylation of initiator methionyl-tRNA by methionyl-tRNA formyltransferase (MTF) is important for the initiation of protein synthesis in eubacteria. We are studying the molecular mechanisms of recognition of the initiator tRNA by Escherichia coli MTF. MTF from eubacteria contains an approximately 100-amino acid C-terminal extension that is not found in the E. coli glycinamide ribonucleotide formyltransferase, which, like MTF, use N(10)-formyltetrahydrofolate as a formyl group donor. This C-terminal extension, which forms a distinct structural domain, is attached to the N-terminal domain through a linker region. Here, we describe the effect of (i) substitution mutations on some nineteen basic, aromatic and other conserved amino acids in the linker region and in the C-terminal domain of MTF and (ii) deletion mutations from the C-terminus on enzyme activity. We show that the positive charge on two of the lysine residues in the linker region leading to the C-terminal domain are important for enzyme activity. Mutation of some of the basic amino acids in the C-terminal domain to alanine has mostly small effects on the kinetic parameters, whereas mutation to glutamic acid has large effects. However, the deletion of 18, 20, or 80 amino acids from the C-terminus has very large effects on enzyme activity. Overall, our results support the notion that the basic amino acid residues in the C-terminal domain provide a positively charged channel that is used for the nonspecific binding of tRNA, whereas some of the amino acids in the linker region play an important role in activity of MTF.  相似文献   

14.
Integrases (INs) of retroviruses and long terminal repeat retrotransposons possess a C-terminal domain with DNA binding activity. Other than this binding activity, little is known about how the C-terminal domain contributes to integration. A stretch of conserved amino acids called the GP(Y/F) domain has been identified within the C-terminal IN domains of two distantly related families, the gamma-retroviruses and the metavirus retrotransposons. To enhance understanding of the C-terminal domain, we examined the function of the GP(Y/F) domain in the IN of Tf1, a long terminal repeat retrotransposon of Schizosaccharomyces pombe. The activities of recombinant IN were measured with an assay that modeled the reverse of integration called disintegration. Although deletion of the entire C-terminal domain disrupted disintegration activity, an alanine substitution (P365A) in a conserved amino acid of the GP(Y/F) domain did not significantly reduce disintegration. When assayed for the ability to join two molecules of DNA in a reaction that modeled forward integration, the P365A substitution disrupted activity. UV cross-linking experiments detected DNA binding activity in the C-terminal domain and found that this activity was not reduced by substitutions in two conserved amino acids of the GP(Y/F) domain, G364A and P365A. Gel filtration and cross-linking of a 71-amino acid fragment containing the GP(Y/F) domain revealed a surprising ability to form dimers, trimers, and tetramers that was disrupted by the G364A and P365A substitutions. These results suggest that the GP(Y/F) residues may play roles in promoting multimerization and intermolecular strand joining.  相似文献   

15.
Isolation of human cDNA clones of myb-related genes, A-myb and B-myb.   总被引:27,自引:5,他引:22       下载免费PDF全文
cDNA clones of the myb-related genes A-myb and B-myb were obtained by screening human cDNA libraries. The predicted open reading frame of B-myb could encode a protein of 700 amino acid residues. Although the C-terminal end has not been cloned yet, an almost entire coding region of A-myb, which is 745 amino acid long, was determined. The A-myb and B-myb proteins are highly homologous with the myb protein in three regions. Domain I, which is 161 amino acid long, is well conserved in the myb gene family. The homology between human-myb and A-myb in domain I is 90% at the amino acid level. Domain II, which is about 85 amino acid long, is less well conserved. Although it is a short stretch, domain III is found in the C-terminal region. The mRNAs of A-myb and B-myb were 5.0 and 2.6 kb, respectively. The mRNA expression pattern of the myb gene family in various tumors is presented.  相似文献   

16.
Flavocytochrome c from the Gram-negative, food-spoiling bacterium Shewanella putrefaciens is a soluble, periplasmic fumarate reductase. We have isolated the gene encoding flavocytochrome c and determined the complete DNA sequence. The predicted amino acid sequence indicates that flavocytochrome c is synthesized with an N-terminal secretory signal sequence of 25 amino acid residues. The mature protein contains 571 amino acid residues and consists of an N-terminal cytochrome domain, of about 117 residues, with four heme attachment sites typical of c-type cytochromes and a C-terminal flavoprotein domain of about 454 residues that is clearly related to the flavoprotein subunits of fumarate reductases and succinate dehydrogenases from bacterial and other sources. A second reading frame that may be cotranscribed with the flavocytochrome c gene exhibits some similarity with the 13-kDa membrane anchor subunit of Escherichia coli fumarate reductase. The sequence of the flavoprotein domain demonstrates an even closer relationship with the product of the yeast OSM1 gene, mutations in which result in sensitivity to high osmolarity. These findings are discussed in relation to the function of flavocytochrome c.  相似文献   

17.
18.
The gltX gene, coding for the glutamyl-tRNA synthetase of Rhizobium meliloti A2, was cloned by using as probe a synthetic oligonucleotide corresponding to the amino acid sequence of a segment of the glutamyl-tRNA synthetase. The codons chosen for this 42-mer were those most frequently used in a set of R. meliloti genes. DNA sequence analysis revealed an open reading frame of 484 codons, encoding a polypeptide of Mr 54,166 containing the amino acid sequences of an NH2-terminal and various internal fragments of the enzyme. Compared with the amino acid sequence of the glutamyl-tRNA synthetase of Escherichia coli, the N-terminal third of the R. meliloti enzyme was strongly conserved (52% identity); the second third was moderately conserved (38% identity) and included a few highly conserved segments, whereas no significant similarity was found in the C-terminal third. These results suggest that the C-terminal part of the protein is probably not involved in the recognition of substrates, a feature shared with other aminoacyl-tRNA synthetases.  相似文献   

19.
The gene encoding NADH dehydrogenase from an alkalophile, Bacillus sp., was cloned and sequenced. The cloned DNA fragment contained an open reading frame of 1,557 nucleotides which encodes a polypeptide composed of 519 amino acid residues (Mr 55,830). The predicted amino acid sequence was consistent with the partial amino acid sequences including the N-terminal and C-terminal sequences determined in a previous study. Sequence comparison with other flavoenzymes revealed high homology between the present dehydrogenase and Escherichia coli thioredoxin reductase.  相似文献   

20.
A cDNA clone encoding a precursor of a peptide C-terminal alpha-amidating enzyme (AE-I) from Xenopus laevis skin was recently isolated and sequenced in our laboratory. In this study, by using the restriction fragment of this clone as a hybridization probe, we have identified the cDNA encoding another new peptide C-terminal alpha-amidating enzyme (tentatively named AE-II) distinct from AE-I. The cDNA encodes a polypeptide of 875 amino acid residues, which contains a region extensively homologous to AE-I precursor at N-terminus. The encoded protein characteristically has a putative membrane-spanning domain near C-terminus. Our results indicate that C-terminal alpha-amide formation of peptides in Xenopus skin is regulated by at least two distinct alpha-amidating enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号