首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
During cortical development, neurons generated at the same time in the ventricular zone migrate out into the cortical plate and form a cortical layer (Berry and Eayrs, 1963, Nature 197:984-985; Berry and Rogers, 1965, J. Anat. 99:691-709). We have been studying both the formation and maintenance of cortical layers in slice cultures from rat cortex. The bromodeoxyuridine (BrdU) method was used to label cortical neurons on their birthday in vivo. When slice cultures were prepared from animals at different embryonic and postnatal ages, all cortical layers that have already been established in vivo remained preserved for several weeks in vitro. In slice cultures prepared during migration in the cortex, cells continued to migrate towards the pial side of the cortical slice, however, migration ceased after about 1 week in culture. Thus, cortical cells reached their final laminar position only in slice cultures from postnatal animals, whereas in embryonic slice, migrating cells became scattered throughout the cortex. Previous studies demonstrated that radial glia fibers are the major substrate for migrating neurons (Rakic, 1972, J. Comp. Neurol. 145:61-84; Hatten and Mason, 1990, Experientia 46:907-916). Using antibodies directed against the intermediate filament Vimentin, radial glial cells were detected in all slice cultures where cell migration did occur. Comparable to the glia development in vivo, radial glial fibers disappeared and astrocytes containing the glia fibrillary-associated protein (GFAP) differentiated in slice cultures from postnatal cortex, after the neurons have completed their migration. In contrast, radial glial cells were detected over the whole culture period, and very few astrocytes differentiated in embryonic slices, where cortical neurons failed to finish their migration. The results of this study indicate that the local environment is sufficient to sustain the layered organization of the cortex and support the migration of cortical neurons. In addition, our results reveal a close relationship between cell migration and the developmental status of glial cells.  相似文献   

3.
The mammalian suprachiasmatic nucleus (SCN) is the major endogenous pacemaker that coordinates various daily rhythms including locomotor activity and autonomous and endocrine responses, through a neuronal and humoral influence. In the present study we examined the behavior of dispersed individual SCN neurons obtained from 1- to 3-day-old rats cultured on multi-microelectrode arrays (MEAs). SCN neurons were identified by immunolabeling for the neuropeptides arginine-vasopressin (AVP) and vasoactive intestinal polypeptide (VIP). Single SCN neurons cultured at low density onto an MEA can express firing rate patterns with different circadian phases. In these cultures we observed rarely synchronized firing patterns on adjacent electrodes. This suggests that, in cultures of low cell densities, SCN neurons function as independent pacemakers. To investigate whether individual pacemakers can be influenced independently by phase-shifting stimuli, we applied melatonin (10 pM to 100 nM) for 30 min at different circadian phases and continuously monitored the firing rate rhythms. Melatonin could elicit phase-shifting responses in individual clock cells which had no measurable input from other neurons. In several neurons, phase-shifts occurred with a long delay in the second or third cycle after melatonin treatment, but not in the first cycle. Phase-shifts of isolated SCN neurons were also observed at times when the SCN showed no sensitivity to these phase-shifting stimuli in recordings from brain slices. This finding suggests that the neuronal network plays an essential role in the control of phase-shifts.  相似文献   

4.
Primary dissociated brain tissue from rodents is widely used in a variety of different scientific methods to investigate cellular processes in vitro. Often, for this purpose cell cultures need to be generated just on time, requiring extensive animal lab infrastructure. We show here that cryopreservation and thawing of dissociated tissue from rat cerebral cortex at embryonic day 18 is feasible without affecting its ability to form functional neuronal networks in vitro. Vitality of fresh and re-thawed cortical cells was comparable, assessed by CellTiter-Blue-assay, CytoTox-ONE assay, immunocytochemical characterization and in vitro neuronal network activity recordings on microelectrode arrays. These findings suggest that planning and execution of experiments might be considerably facilitated by using cryo-preserved neurons instead of acutely dissociated neural cultures due to fewer logistical issues with regard to animal breeding and pregnancy timed preparations.  相似文献   

5.
6.
The mammalian suprachiasmatic nucleus (SCN) is the major endogenous pacemaker that coordinates various daily rhythms including locomotor activity and autonomous and endocrine responses, through a neuronal and humoral influence. In the present study we examined the behavior of dispersed individual SCN neurons obtained from 1- to 3-day-old rats cultured on multi-microelectrode arrays (MEAs). SCN neurons were identified by immunolabeling for the neuropeptides arginine-vasopressin (AVP) and vasoactive intestinal polypeptide (VIP). Single SCN neurons cultured at low density onto an MEA can express firing rate patterns with different circadian phases. In these cultures we observed rarely synchronized firing patterns on adjacent electrodes. This suggests that, in cultures of low cell densities, SCN neurons function as independent pacemakers. To investigate whether individual pacemakers can be influenced independently by phase-shifting stimuli, we applied melatonin (10 pM to 100 nM) for 30 min at different circadian phases and continuously monitored the firing rate rhythms. Melatonin could elicit phase-shifting responses in individual clock cells which had no measurable input from other neurons. In several neurons, phase-shifts occurred with a long delay in the second or third cycle after melatonin treatment, but not in the first cycle. Phase-shifts of isolated SCN neurons were also observed at times when the SCN showed no sensitivity to these phase-shifting stimuli in recordings from brain slices. This finding suggests that the neuronal network plays an essential role in the control of phase-shifts.  相似文献   

7.
The mammalian suprachiasmatic nucleus (SCN) is the major endogenous pacemaker that coordinates various daily rhythms including locomotor activity and autonomous and endocrine responses, through a neuronal and humoral influence. In the present study we examined the behavior of dispersed individual SCN neurons obtained from 1‐ to 3‐day‐old rats cultured on multi‐microelectrode arrays (MEAs). SCN neurons were identified by immunolabeling for the neuropeptides arginine‐vasopressin (AVP) and vasoactive intestinal polypeptide (VIP). Single SCN neurons cultured at low density onto an MEA can express firing rate patterns with different circadian phases. In these cultures we observed rarely synchronized firing patterns on adjacent electrodes. This suggests that, in cultures of low cell densities, SCN neurons function as independent pacemakers. To investigate whether individual pacemakers can be influenced independently by phase‐shifting stimuli, we applied melatonin (10 pM to 100 nM) for 30 min at different circadian phases and continuously monitored the firing rate rhythms. Melatonin could elicit phase‐shifting responses in individual clock cells which had no measurable input from other neurons. In several neurons, phase‐shifts occurred with a long delay in the second or third cycle after melatonin treatment, but not in the first cycle. Phase‐shifts of isolated SCN neurons were also observed at times when the SCN showed no sensitivity to these phase‐shifting stimuli in recordings from brain slices. This finding suggests that the neuronal network plays an essential role in the control of phase‐shifts.  相似文献   

8.
Mechanical dissociation of neurons from the central nervous system has the advantage that presynaptic boutons remain attached to the isolated neuron of interest. This allows for examination of synaptic transmission under conditions where the extracellular and postsynaptic intracellular environments can be well controlled. A vibration-based technique without the use of proteases, known as vibrodissociation, is the most popular technique for mechanical isolation. A micropipette, with the tip fire-polished to the shape of a small ball, is placed into a brain slice made from a P1-P21 rodent. The micropipette is vibrated parallel to the slice surface and lowered through the slice thickness resulting in the liberation of isolated neurons. The isolated neurons are ready for study within a few minutes of vibrodissociation. This technique has advantages over the use of primary neuronal cultures, brain slices and enzymatically isolated neurons including: rapid production of viable, relatively mature neurons suitable for electrophysiological and imaging studies; superior control of the extracellular environment free from the influence of neighboring cells; suitability for well-controlled pharmacological experiments using rapid drug application and total cell superfusion; and improved space-clamp in whole-cell recordings relative to neurons in slice or cell culture preparations. This preparation can be used to examine synaptic physiology, pharmacology, modulation and plasticity. Real-time imaging of both pre- and postsynaptic elements in the living cells and boutons is also possible using vibrodissociated neurons. Characterization of the molecular constituents of pre- and postsynaptic elements can also be achieved with immunological and imaging-based approaches.  相似文献   

9.
The data about organization of the extracellular matrix (ECM) components and their interplay in the mammalian brain are rather limited. Hyaluronate (HA) is one of the main ECM glycosaminoglycans. Its location and function in the brain are believed to be mediated through its interaction with HA-binding proteins and proteoglycans. In this report, we describe distribution of the total HA-binding activity in the cells in the course of postnatal development of the rat brain and the effect of HA on cultured neurons. A high level of the HA-binding activity was found in the newborn cerebellum, but it quickly decreased after postnatal day 1. On postnatal day 5, strong HA-binding activity was demonstrated only in apical parts of growth cones of Purkinje cells. The data showed rapid down-regulation of HA-binding activity at the first stage of cerebellum maturation (migration of granule cells and beginning of differentiation of neurons). To obtain more information concerning a key role of HA in morphogenesis of neurons, low density cell cultures of the hippocampal neurons were used. The presence of HA in the substrate led to an increase in the cell adherence. However, a part of the cells got differentiated later. These data allow us to suggest that interactions between extracellular HA and cell-surface receptors can regulate motility and differentiation of the neurons.  相似文献   

10.

Background

Organotypic brain slice culturing techniques are extensively used in a wide range of experimental procedures and are particularly useful in providing mechanistic insights into neurological disorders or injury. The cellular and morphological alterations associated with hippocampal brain slice cultures has been well established, however, the neuronal response of mouse cortical neurons to culture is not well documented.

Methods

In the current study, we compared the cell viability, as well as phenotypic and protein expression changes in cortical neurons, in whole brain slice cultures from mouse neonates (P4–6), adolescent animals (P25–28) and mature adults (P50+). Cultures were prepared using the membrane interface method.

Results

Propidium iodide labeling of nuclei (due to compromised cell membrane) and AlamarBlue™ (cell respiration) analysis demonstrated that neonatal tissue was significantly less vulnerable to long-term culture in comparison to the more mature brain tissues. Cultures from P6 animals showed a significant increase in the expression of synaptic markers and a decrease in growth-associated proteins over the entire culture period. However, morphological analysis of organotypic brain slices cultured from neonatal tissue demonstrated that there were substantial changes to neuronal and glial organization within the neocortex, with a distinct loss of cytoarchitectural stratification and increased GFAP expression (p<0.05). Additionally, cultures from neonatal tissue had no glial limitans and, after 14 DIV, displayed substantial cellular protrusions from slice edges, including cells that expressed both glial and neuronal markers.

Conclusion

In summary, we present a substantial evaluation of the viability and morphological changes that occur in the neocortex of whole brain tissue cultures, from different ages, over an extended period of culture.  相似文献   

11.
The development of electrochemical recordings with small carbon-fiber electrodes has significantly advanced the understanding of the regulation of catecholamine transmission in various brain areas. Recordings in vivo or in slice preparations monitor diffusion of catecholamine following stimulated synaptic release into the surrounding tissue. This synaptic 'overflow' is defined by the amount of release, by the activity of reuptake, and by the diffusion parameters in brain tissue. Such studies have elucidated the complex regulation of catecholamine release and uptake, and how psychostimulants and anti-psychotic drugs interfere with it. Moreover, recordings with carbon-fiber electrodes from cultured neurons have provided analysis of catecholamine release and its plasticity at the quantal level.  相似文献   

12.
A number of studies have demonstrated that 17β-estradiol (E(2)) protects the brain from ischemia and yet the mechanism by which this hormone brings about its protective effect is unclear. Interestingly, like E(2), overexpression of the oxidative stress response protein Cu/Zn superoxide dismutase (SOD1), which plays a critical role in regulating reactive oxygen species, also protects the brain from ischemia. Because we previously showed that E(2) treatment of cultured mammary cells increases SOD1 expression, we hypothesized that E(2) might increase SOD1 expression in the brain and that this E(2)-mediated increase in SOD1 expression might help to protect the brain from ischemia. We now show that SOD1 is expressed in cortical neurons, that SOD1 expression is increased by exposure of brain slice cultures to E(2), and that the E(2)-mediated increase in SOD1 expression is further augmented by exposure of brain slice cultures to increased superoxide levels or oxygen and glucose deprivation. Importantly, when cortical neurons are exposed to increased superoxide levels and markers of protein and DNA damage, nitrotyrosine and 8-oxoguanine, respectively, are measured, both protein and DNA damage are reduced. In fact, E(2) reduces nitrotyrosine and 8-oxoguanine levels in brain slice cultures regardless of whether they have or have not been exposed to increased superoxide levels. Likewise, when brain slice cultures are treated with E(2) and deprived of oxygen and glucose, 8-oxoguanine levels are reduced. Taken together, these studies provide a critical link between E(2) treatment, SOD1 expression, and neuroprotection and help to define a mechanism through which E(2)-mediated neuroprotection may be conferred.  相似文献   

13.
Vinexin is an adaptor protein that is supposed to play pivotal roles in cell adhesion, cytoskeletal organization and signaling. At least three splice variants, vinexinalpha, beta and gamma, have so far been reported. In spite of the possible importance of vinexin, the properties and functions of vinexin in neuronal cells are almost unknown. Here we show that vinexin isoforms are expressed in rat brain in a developmental stage-dependent manner, and that vinexinalpha is relatively abundant in the telencephalon regions of the adult rat brain. An immunohistochemical study showed the localization of vinexinalpha in neurons and glia in the rat brain. In primary cultured rat hippocampal neurons, vinexin was found to be present at synapses and filopodia in growth cones by immunofluorescent analyses. Biochemical fractionation revealed the distribution of vinexin in synaptosomes. Nerve terminal localization of vinexin was confirmed by electron microscopy. Vinexinbeta is reported to be phosphorylated by extracellular signal-regulated kinase (ERK) at Ser189, which is equivalent to Ser593 of vinexinalpha. We thus constructed a site- and phosphorylation state-specific antibody to monitor the ERK-mediated phosphorylation of vinexin. In immunofluorescent analyses, the phosphorylation was observed at synapses formed among cultured rat hippocampal neurons and it was reduced by treatment of the cells with PD98059. In an immunoelectron microscopic examination, the phosphorylation signal was mainly detected on the postsynaptic side of synapses in the rat hippocampal neurons. As active ERK was co-localized with vinexin in synapses, the ERK signal is likely to be involved in the regulation of vinexin-dependent cellular processes in synapses. On the other hand, the phosphorylation was hardly detected in neurons cultured for 3 days, suggesting the presence of a yet unidentified regulatory mechanism of vinexin at the growth cone.  相似文献   

14.
Perineuronal nets (PNs) of the extracellular matrix have been shown to develop in organotypic slice cultures largely corresponding with regional patterns known from in vivo experiments. In the present study, we use vital labelling to investigate aspects of the cell type-dependent development of PNs associated with nonpyramidal neurons and pyramidal cells in the parietal cortex and hippocampus. Frontal sections were cut from brains of 3-5-day-old rats and were cultured for 3-5 weeks. PNs were sequentially labelled using biotinylated Wisteria floribunda agglutinin and chromogen-tagged streptavidin either in living slice cultures, examined by confocal microscopy in vitro, or in cultures examined by confocal and electron microscopy after fixation. Nonpyramidal and pyramidal cells were characterized by immunoreaction for parvalbumin and the ionotropic glutamate receptor subunits 2/3. Vital labelling and examination of fixed slices correspondingly revealed that large numbers of PNs developed around cortical and hippocampal interneurons under depolarizing conditions induced by elevated external potassium concentration. After culture in standard medium, PNs were mainly found in association with subpopulations of pyramidal cells in the parietal cortex. PNs showed ultrastructural characteristics resembling those known from perfusion-fixed brain. A zone of labelled extracellular matrix aggregates was found in close proximity to the neuronal cell surface, surrounding presynaptic boutons and preterminal axons. The results show that characteristic features of PNs are retained after vital labelling in slice cultures. Moreover, our findings suggest that the cell type-specific development of PNs is regulated by patterns of intrinsic activity mediated by intra-cortical and -hippocampal synaptic contacts on potentially net-associated neurons.  相似文献   

15.
The neurotropic Borna disease virus (BDV) is unusual in that it can persistently infect neurons of the central nervous system (CNS) without causing general cell death, reflecting its favourable adaptation to the brain. The activity-dependent enhancement of neuronal network activity is however disturbed after BDV infection, possibly by its effect on the protein kinase C signalling pathway. The best model for studying BDV, which has a non-cytolytic replication strategy in primary neurons, is the rat. Infection of adult rats results in a fatal immune-mediated disease, whereas BDV establishes persistent infection of the brain in newborn rats resulting in progressive neuronal cell loss in defined regions of the CNS. Our recently developed system of BDV-infected hippocampal slice cultures has clearly shown that the onset of granule cell loss begins after the formation of the mossy fibre projection. Quantitative analysis has revealed a significant increase in synaptic density on identified remaining granule cell dendrites at 6?weeks after infection, followed by a decline. Granule cells are the major target of entorhinal afferents. However, despite an almost complete loss of dentate granule cells during BDV infection, entorhinal axons persist in their correct layer, both in vivo and in slice cultures, possibly exploiting rewiring capabilities and thereby allowing new synapse formation with available targets. These morphological observations, together with electrophysiological and biochemical data, indicate that BDV is a suitable model virus for studying virus-induced morphological and functional changes of neurons and connectivity patterns.  相似文献   

16.
In an effort to identify cell type specific proteins from brain, we have compared proteins of the cell nucleus from two brain cell types. Using a bulk isolation procedure, we fractionated neurons and astrocytes from adult rat brain. In addition, primary cultures of astrocytes were prepared from one-day old rats. Nuclei from these cells and C-6 glioma cell cultures were isolated and the resulting proteins subjected to two-dimensional gel electrophoresis. Several proteins specific for each cell type were found. While many similarities between bulk brain astrocyte preparations and cultured astrocytes were found, less than pure bulk astrocytes from brain were found to be most similar to those of neurons and not to those from primary cell culture.

The nuclear protein profile of cultured astrocytes differed significantly from that of C-6 cells, indicating the utility of two-dimensional gel analysis for detecting major cell type differences in uniform populations of cells.  相似文献   


17.
NADP+-dependent isocitrate dehydrogenases (ICDHs) are enzymes that reduce NADP+ to NADPH using isocitrate as electron donor. Cytosolic and mitochondrial isoforms of ICDH have been described. Little is known on the expression of ICDHs in brain cells. We have cloned the rat mitochondrial ICDH (mICDH) in order to obtain the sequence information necessary to study the expression of ICDHs in brain cells by RT-PCR. The cDNA sequence of rat mICDH was highly homologous to that of mICDH cDNAs from other species. By RT-PCR the presence of mRNAs for both the cytosolic and the mitochondrial ICDHs was demonstrated for cultured rat neurons, astrocytes, oligodendrocytes and microglia. The expression of both ICDH isoenzymes was confirmed by western blot analysis using ICDH-isoenzyme specific antibodies as well as by determination of ICDH activities in cytosolic and mitochondrial fractions of the neural cell cultures. In astroglial and microglial cultures, the total ICDH activity was almost equally distributed between cytosolic and mitochondrial fractions. In contrast, in cultures of neurons and oligodendrocytes about 75% of total ICDH activity was present in the cytosolic fractions. Putative functions of ICDHs in cytosol and mitochondria of brain cells are discussed.  相似文献   

18.
Transgenic mice, expressing fluorescent proteins in neurons and glia, provide new opportunities for real-time microscopic monitoring of degenerative and regenerative structural changes. We have previously validated and compared a number of quantifiable markers for neuronal damage and cell death in organotypic brain slice cultures, such as cellular uptake of propidium iodide (PI), loss of microtubule-associated protein 2 (MAP2), Fluoro-Jade (FJ) cell staining, and the release of cytosolic lactate dehydrogenase (LDH). An important supplement to these markers would be data on corresponding morphological changes, as well as the opportunity to monitor reversible changes or long-term effects in the event of minor damage. As a first step, we present: a) the developmental expression in organotypic hippocampal brain slice cultures of transgenic fluorescent proteins, useful for the visualisation of neuronal subpopulations and astroglial cells; and b) examples of excitotoxic, glutamate receptor-induced degeneration of hippocampal CA1 pyramidal cells, with corresponding astroglial reactivity in such cultures. The slice cultures were set up according to standard techniques, by using one-week old pups from four transgenic mouse strains which express fluorescent proteins in their neurons and/or astroglial cells. From the time of explantation, and subsequently for up to nine weeks in culture, the transgenic neuronal fluorescence displayed the expected characteristics of a developmental, in vivo-like increase, including both the number and localisation of cells, as well as the intensity of fluorescence. At that stage and later, the transgenic fluorescence clearly permitted the visualisation of cell bodies, larger and smaller dendritic branches, spines and axons. In separate experiments, with a 24-hour exposure of matured sliced cultures to 100 microM of the glutamate agonist, N-methyl-D-aspartate (NMDA), we observed, by time-lapse recording, a gradual, but rapid loss of fluorescent CA1 pyramidal cells, accompanied by astrogliosis of transgene fluorescent astroglial cells. Based on these results, we consider that organotypic brain slice cultures from transgenic mice, with fluorescent neurons and glia, combined with detailed visualisation by time-lapse fluorescence microscopy, have great potential for investigating both major irreversible and minor reversible structural changes in neurons and glia, induced by neurotoxins and other neurodegenerative compounds and conditions.  相似文献   

19.
Organotypic slice cultures from embryonic rodent brains are widely used to study brain development. While there are often advantages to an in-vivo system, organotypic slice cultures allow one to perform a number of manipulations that are not presently feasible in-vivo. To date, organtotypic embryonic brain slice cultures have been used to follow individual cells using time-lapse microscopy, manipulate the expression of genes in the ganglionic emanances (a region that is hard to target by in-utero electroporation), as well as for pharmacological studies. In this video protocol we demonstrate how to make organotypic slice cultures from rat embryonic day 18 embryos. The protocol involves dissecting the embryos, embedding them on ice in low melt agarose, slicing the embedded brains on the vibratome, and finally plating the slices onto filters in culture dishes. This protocol is also applicable in its present form to making organotypic slice cultures from different embryonic ages for both rats and mice.  相似文献   

20.
S Wray  B H G?hwiler  H Gainer 《Peptides》1988,9(5):1151-1175
Luteinizing hormone releasing hormone (LHRH) neurons from the preoptic area (POA)/hypothalamus of the postnatal rat were cultured for up to 7 weeks using a slice explant roller culture technique. The slices thinned to quasi-monolayers, but maintained organotypic distributions of large numbers of immunocytochemically identifiable LHRH, neurotensin, tyrosine hydroxylase, neurophysin and corticotropin releasing hormone-containing neurons. The distribution, survival and morphology of LHRH cells in co-cultures with brainstem and anterior pituitary was quantitated, and found to be similar to that observed in single cultures. LHRH fibers grew into either pituitary or brainstem tissue, however when all three tissues were co-cultured, LHRH fibers preferentially invaded the pituitary. LH immunoreactive anterior pituitary gonadotropes were maintained only in co-cultures containing POA/hypothalamic slices, and addition of an LHRH antagonist in such cultures, inhibited LH immunoreactivity in the gonadotropes. This slice explant roller culture method effectively maintains the cyto- and chemoarchitecture and functional properties of the LHRH system for long periods in vitro and should provide excellent models for studying the interactive and molecular characteristics of postnatal LHRH neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号