首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
A hemodynamic model representation of the dog lung   总被引:2,自引:0,他引:2  
The published morphometric data from human, cat, and dog lungs suggest that the power-law relationships between the numbers (Na and Nv) and diameters (Da and Dv) of arteries and veins and between the lengths (La and Lv) and diameters of the arteries and veins could be used as scaling rules for assigning dimensions and numbers to the intrapulmonary vessels of the arterial and venous trees of the dog lung. These rules, along with the dimensions of the extrapulmonary arteries and capillary sheet and the distensibility coefficients of the vessels obtained from the literature, were used to construct a steady-state hemodynamic model of the dog lung vascular bed. The model can be characterized approximately by 15 orders of arteries with Na approximately 2.07 Da-2.58 and 13 orders of veins with Nv approximately 2.53 Dv-2.61. For the intrapulmonary vessels (orders 1-12), La approximately 4.85 Da1.01, and Lv approximately 6.02 Da1.07. The average ratio of the numbers of vessels in consecutive orders is approximately 3.2 for the arteries and veins. These arterial and venous trees are connected by the capillary sheet with an undistended thickness of approximately 3.5 microns and an area of 33 m2. The average distensibility (% increase in diameter over the undistended diameter/Torr increase in transmural pressure) for the model arteries and veins is approximately 2.4%/Torr, and the distensibility of the capillary sheet (% increase in thickness over the undistended thickness/Torr increase in transmural pressure) is approximately 3.6%/Torr. The calculated arterial-capillary-venous volumes and compliances of the model agree well with experimental estimates of these variables in dogs. In addition, the model appears consistent with certain aspects of the pressure-flow relationships measured in dog lungs. The model appears to be a useful summary of some of the available data on pulmonary morphometry and vessel properties. It is anticipated that the model will provide the basis for dynamic modeling of the dog lung in the future.  相似文献   

3.
Previous attempts to determine developmental changes in the vascular myogenic response have been confounded by the presence of competing vasoactive stimuli or the use of isolated vessels with markedly different baseline diameters. To circumvent these issues, small mesenteric arteries (diameter approximately 150 microm) from 1- and 10-day-old piglets were studied in vitro under no-flow conditions. In situ studies demonstrated that the intravascular pressure and diameter of these vessels were similar in both age groups, allowing an effective comparison of the myogenic response not obscured by differences in basal diameter. The pressure-diameter relationship was age specific. Thus, although small mesenteric arteries from both age groups demonstrated myogenic constriction in response to stepwise increases in pressure (0 to 100 mmHg, in 20-mmHg increments), the intensity of contraction was significantly greater in vessels from 1-day-old piglets particularly within the pressure range normally experienced by these vessels in situ. Attenuation or activation of PKC with calphostin C or indolactam, respectively, substantially altered the pressure-diameter relationship in 1-, but not 10-day-old arteries; thus calphostin C essentially eliminated the contractile response to pressure elevation in younger subjects, whereas indolactam significantly increased the intensity of the myogenic response and shifted its activation point to a lower pressure range. Immunoblots carried out on protein recovered from these arteries revealed the presence of alpha, beta, epsilon, iota, and lambda; notably, expression of the alpha- and epsilon-isoforms substantially decreased between postnatal days 1 and 10.  相似文献   

4.
The mechanisms of flow-induced vascular remodeling are poorly understood, especially in the coronary microcirculation. We hypothesized that application of flow in small coronary arteries in organoid culture would cause a nitric oxide (NO)-mediated dilation and inhibit inward remodeling. We developed an organoid culture setup to drive a flow through cannulated arterioles at constant luminal pressure via a pressure gradient between the pipettes. Subepicardial porcine coronary arterioles with diameter at full dilation and 60 mmHg (D0) of 168 +/- 10 (SE) microm were cannulated. Vessels treated with Nomega-nitro-L-arginine (L-NNA) to block NO production and untreated vessels were pressurized at 60 mmHg for 3 days with and without flow. Endothelium-dependent dilation to 10(-7) M bradykinin was preserved in all groups. Tone was significantly less in vessels cultured under flow conditions in the last half of the culture period. Untreated and L-NNA-treated vessels regulated their diameter to yield shear stresses of 10.3 +/- 2.1 and 14.0 +/- 2.4 (SE) dyn/cm2, respectively (not significantly different). Without L-NNA, passive pressure-diameter curves at the end of the culture period revealed inward remodeling in the control group [to 92.3 +/- 1.3% of D0 (SE)] and no remodeling in the vessels cultured under flow conditions (100.2 +/- 1.3% of D0); with L-NNA, the group subjected to flow showed inward remodeling (92.1 +/- 2.5% of D0). We conclude that pressurized coronary resistance arteries could be maintained in culture for several days with flow. Vessels cultured under flow conditions remained more dilated when NO synthesis was blocked. Inward remodeling occurred in vessels cultured under no-flow conditions and was inhibited by flow-dependent NO synthesis.  相似文献   

5.
Blunted agonist-induced vasoconstriction after chronic hypoxia is associated with endothelium-dependent vascular smooth muscle (VSM) cell hyperpolarization and decreased vessel-wall Ca(2+) concentration ([Ca(2+)]). We hypothesized that myogenic vasoconstriction and pressure-induced Ca(2+) influx would also be attenuated in vessels from chronically hypoxic (CH) rats. Mesenteric resistance arteries isolated from CH [barometric pressure (BP), 380 Torr for 48 h] or normoxic control (BP, 630 Torr) rats were cannulated and pressurized. VSM cell resting membrane potential was recorded at intraluminal pressures of 40-120 Torr under normoxic conditions. VSM cells in vessels from CH rats were hyperpolarized compared with control rats at all pressures. Inner diameter was maintained for vessels from control rats, whereas vessels from CH rats developed less tone as pressure was increased. Pressure-induced increases in vessel-wall [Ca(2+)] were also attenuated for arteries from CH rats. Endothelium removal restored myogenic constriction to vessels from CH rats and normalized VSM cell resting membrane potential and pressure-induced Ca(2+) responses to control levels. Myogenic constriction and pressure-induced vessel-wall [Ca(2+)] increases remained blunted in the presence of nitric oxide (NO) synthase inhibition for arteries from CH rats. We conclude that blunted myogenic reactivity after chronic hypoxia results from a non-NO, endothelium-dependent VSM cell hyperpolarizing influence.  相似文献   

6.
Communication between vascular smooth muscle (VSM) cells via low-resistance gap junctions may facilitate vascular function by synchronizing the contractile state of individual cells within the vessel wall. We hypothesized that inhibition of gap junctional communication would impair constrictor responses of mesenteric resistance arteries. Immunohistochemical experiments revealed positive staining for connexin 37 (Cx37) in both endothelium and smooth muscle of rat mesenteric arterioles, whereas connexin 43 (Cx43) immunoreactivity was not detected in the mesenteric vasculature. Administration of the gap junction inhibitory peptide Gap27, which targets Cx37 and Cx43, significantly diminished myogenic vasoconstriction (8.6 +/- 3.8% of passive diameter at 100 Torr) and changes in vessel wall intracellular [Ca2+] of mesenteric resistance arteries compared with vessels treated with either vehicle (physiological saline solution) (33.5 +/- 6.1%) or a control peptide (32.1 +/- 6.5%). Administration of 18alpha-glycyrrhetinic acid, structurally distinct from Gap27, also significantly attenuated myogenic constriction compared with its vehicle control (DMSO) (9.6 +/- 3.2% vs. 23.8 +/- 4.6%). In contrast, phenylephrine-induced vasoconstriction was not altered by gap junction blockers. Attenuated myogenic vasoconstriction resulting from inhibition of gap junctions persisted after disruption of the endothelium. In additional experiments, VSM cell membrane potential was recorded in mesenteric resistance arteries pressurized to 20 or 100 Torr. VSM membrane potential was depolarized at 100 Torr compared with 20 Torr. However, VSM cells in arteries treated with Gap27 were significantly hyperpolarized (-48.6 +/- 1.4 mV) at the higher pressure compared with vehicle (-41.4 +/- 1.5 mV) and Gap20-treated (-38.4 +/- 0.7 mV) vessels. Our findings suggest that inhibition of smooth muscle gap junctions attenuates pressure-induced VSM cell depolarization and myogenic vasoconstriction.  相似文献   

7.
The objective of this study was to develop an X-ray computed tomographic method for measuring pulmonary arterial dimensions and locations within the intact rat lung. Lungs were removed from rats and their pulmonary arterial trees were filled with perfluorooctyl bromide to enhance X-ray absorbance. The lungs were rotated within the cone of the X-ray beam projected from a microfocal X-ray source onto an image intensifier, and 360 images were obtained at 1 degrees increments. The three-dimensional image volumes were reconstructed with isotropic resolution using a cone beam reconstruction algorithm. The vessel diameters were obtained by fitting a functional form to the image of the vessel circular cross section. The functional form was chosen to take into account the point spread function of the image acquisition and reconstruction system. The diameter measurements obtained over a range of vascular pressures were used to characterize the distensibility of the rat pulmonary arteries. The distensibility coefficient alpha [defined by D(P) = D(0)(1 + alphaP), where D(P) is the diameter at intravascular pressure (P)] was approximately 2.8% mmHg and independent of vessel diameter in the diameter range (about 100 to 2,000 mm) studied.  相似文献   

8.
The elasticity and branching order of noncapillary microscopic blood vessels less than 100 microns diam were studied in human lungs obtained 7-30 h postmortem, using a silicone elastomer method that selectively filled pulmonary arterioles or venules. The lungs were inflated to 10 cmH2O pressure and a gradient of transmural vascular pressure of 0-17 cm H2O, from lobe base to apex, was established in the silicone-filled vascular system. Histological materials were obtained after airway fixation by formaldehyde solution and analyzed for vessel diameter in the branching order of 1, 2, and 3, with the smallest noncapillary vessel designated as order 1, in accord with the Strahler system. The change in vessel diameter within a branching order at different levels of transmural pressure is a derived measure of vascular elasticity expressed as compliance coefficient alpha, alpha Values are 0.128, 0.164, and 0.210 micron/cmH2O or 0.682, 0.472, and 0.354%/cmH2O, respectively, of orders 1-3 for arterioles and 0.187, 0.215, and 0.250 micron/cmH2O or 0.992, 0.612, and 0.424%/cmH2O, respectively, of orders 1-3 for venules. The percent is normalized with D0, which is the value of diameter (D) when the transmural pressure is zero. These data are compared with those for the cat where alpha = 0.274 for similar juxta-alveolar vessels.  相似文献   

9.
To determine whether hypoxic pulmonary vasoconstriction (HPV) occurs mainly in alveolar or extra-alveolar vessels in ferrets, we used two groups of isolated lungs perfused with autologous blood and a constant left atrial pressure (-5 Torr). In the first group, flow (Q) was held constant at 50, 100, and 150 ml.kg-1 X min-1, and changes in pulmonary arterial pressure (Ppa) were recorded as alveolar pressure (Palv) was lowered from 25 to 0 Torr during control [inspired partial pressure of O2 (PIO2) = 200 Torr] and hypoxic (PIO2 = 25 Torr) conditions. From these data, pressure-flow relationships were constructed at several levels of Palv. In the control state, lung inflation did not affect the slope of the pressure-flow relationships (delta Ppa/delta Q), but caused the extrapolated pressure-axis intercept (Ppa0), representing the mean backpressure to flow, to increase when Palv was greater than or equal to 5 Torr. Hypoxia increased delta Ppa/delta Q and Ppa0 at all levels of Palv. In contrast to its effects under control condition, lung inflation during hypoxia caused a progressive decrease in delta Ppa/delta Q, and did not alter Ppa0 until Palv was greater than or equal to 10 Torr. In the second group of experiments flow was maintained at 100 ml.kg-1 X min-1, and changes in lung blood volume (LBV) were recorded as Palv was varied between 20 and 0 Torr. In the control state, inflation increased LBV over the entire range of Palv. In the hypoxic state inflation decreased LBV until Palv reached 8 Torr; at Palv 8-20 Torr, inflation increased LBV.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Obesity, insulin resistance, dyslipidemia, and hypertension are components of the pathophysiological state known as metabolic syndrome. Adrenergic vasoconstriction is mediated through increases in cytosolic Ca2+ and the myofilaments' sensitivity to Ca2+. In many pathophysiological states, there is an enhanced role for Rho kinase (ROK)-mediated increases in Ca2+ sensitivity of the contractile apparatus. Thus we hypothesized that there is a greater role for ROK-mediated increases in Ca2+ sensitivity in alpha1-adrenergic vasoconstriction in arteries from obese Zucker (OZ) rats. Therefore, small gracilis muscle arteries from 11- to 12-wk-old and 16- to 18-wk-old lean and OZ rats were isolated, cannulated, and pressurized to 75 mmHg. For some experiments, vessels were loaded with fura 2-AM. Changes in luminal diameter and vessel wall Ca2+ concentration ([Ca2+]) were measured in response to phenylephrine (PE), the thromboxane mimetic U-46619, and KCl. alpha1-Adrenergic vasoconstriction was similar between 11- to 12-wk-old lean and obese animals and greater in older obese animals compared with controls. PE-induced increases in vascular smooth muscle cell [Ca2+] were blunted in OZ animals compared with lean controls in both age groups of animals. KCl and U-46619 elicited similar vasoconstriction and vascular smooth muscle cell [Ca2+] in both groups. ROK inhibition attenuated PE vasoconstriction to a greater degree in arteries from 11- to 12-wk-old OZ rats compared with lean animals; ROK inhibition in arteries from older rats right shifted both concentration-response curves to the same point. Total RhoA and ROKalpha protein expressions were similar between groups. These results suggest an enhanced role for the ROK pathway in alpha1-adrenergic vasoconstriction in metabolic syndrome.  相似文献   

11.
12.
Energy state and vasomotor tone in hypoxic pig lungs   总被引:3,自引:0,他引:3  
To evaluate the role of energy state in pulmonary vascular responses to hypoxia, we exposed isolated pig lungs to decreases in inspired PO2 or increases in perfusate NaCN concentration. Lung energy state was assessed by 31P nuclear magnetic resonance spectroscopy or measurement of adenine nucleotides by high-pressure liquid chromatography in freeze-clamped biopsies. In ventilated lungs, inspired PO2 of 200 (normoxia), 50 (hypoxia), and 0 Torr (anoxia) did not change adenine nucleotides but resulted in steady-state pulmonary arterial pressure (Ppa) values of 15.5 +/- 1.4, 30.3 +/- 1.8, and 17.2 +/- 1.9 mmHg, respectively, indicating vasoconstriction during hypoxia and reversal of vasoconstriction during anoxia. In degassed lungs, similar changes in Ppa were observed; however, energy state deteriorated during anoxia. An increase in perfusate NaCN concentration from 0 to 0.1 mM progressively increased Ppa and did not alter adenine nucleotides, whereas 1 mM reversed this vasoconstriction and caused deterioration of energy state. These results suggest that 1) pulmonary vasoconstrictor responses to hypoxia or cyanide occurred independently of whole lung energy state, 2) the inability of the pulmonary vasculature to sustain hypoxic vasoconstriction during anoxia might be associated with decreased energy state in some lung compartment, and 3) atelectasis was detrimental to whole lung energy state.  相似文献   

13.
Airway distensibility appears to be unaffected by airway smooth muscle (ASM) tone, despite the influence of ASM tone on the airway diameter-pressure relationship. This discrepancy may be because the greatest effect of ASM tone on airway diameter-pressure behavior occurs at low transpulmonary pressures, i.e., low lung volumes, which has not been investigated. Our study aimed to determine the contribution of ASM tone to airway distensibility, as assessed via the forced oscillation technique (FOT), across all lung volumes with a specific focus on low lung volumes. We also investigated the accompanying influence of ASM tone on peripheral airway closure and heterogeneity inferred from the reactance versus lung volume relationship. Respiratory system conductance and reactance were measured using FOT across the entire lung volume range in 22 asthma subjects and 19 healthy controls before and after bronchodilator. Airway distensibility (slope of conductance vs. lung volume) was calculated at residual volume (RV), functional residual capacity (FRC), and total lung capacity. At baseline, airway distensibility was significantly lower in subjects with asthma at all lung volumes. After bronchodilator, distensibility significantly increased at RV (64.8%, P < 0.001) and at FRC (61.8%, P < 0.01) in subjects with asthma but not in control subjects. The increased distensibility at RV and FRC in asthma were not associated with the accompanying changes in the reactance versus lung volume relationship. Our findings demonstrate that, at low lung volumes, ASM tone reduces airway distensibility in adults with asthma, independent of changes in airway closure and heterogeneity.  相似文献   

14.
A simple distensible vessel model was developed for the purpose of interpreting the vascular pressure-flow curve in the zone 3 lung. The model-governing equation has two parameters: R0, representing the hemodynamic resistance of the undistended pulmonary vascular bed, and alpha, representing the distensibility of the resistance vessels. To evaluate the model, the governing equation was used in a nonlinear regression analysis of the pressure-flow data from isolated dog lung lobes. The dependency of the estimates of the model parameters in response to changes in perfusate viscosity (hematocrit) was determined. The distensible vessel model provided reasonable fits to the data, and, as predicted, R0, but not alpha, was hematocrit dependent. On the other hand, the traditional linear ohmic-Starling resistor model fit to the same pressure-flow data generally provided fits approaching those of the distensibility model only if the pressure intercept (the mean "critical closing pressure") was allowed to increase with hematocrit. Because the ohmic-Starling resistor concept does not predict a hematocrit dependence of the critical closing pressure, this latter observation is evidence that the distensible vessel model offers an alternative conceptualization of the pulmonary circulation worthy of additional study with respect to the interpretation of experimental pressure-flow data.  相似文献   

15.
Using an in situ isolated salt-perfused rat lung preparation, we investigated the pulmonary vascular response to fenoldopam (a highly selective dopamine (DA1) agonist) infused at six different doses ranging from 0.1 to 10,000 micrograms/kg, during prostaglandin F2 alpha- (PGF2 alpha) induced pulmonary vasoconstriction. These experiments were repeated after selective DA1-blockade with SCH 23390. Twelve experiments were performed to evaluate the effect of fenoldopam on base-line hemodynamics. Sixty experiments were performed after PGF2 alpha vasoconstriction. Thirty lung preparations were pretreated with SCH 23390. PGF2 alpha was infused into the pulmonary inflow catheter at 2.5 micrograms.kg-1.min-1 to give a sustained rise in mean pulmonary arterial pressure (5.0 +/- 1.0 mmHg). Fenoldopam, at doses of 0.1, 1, 10, 100, 1,000, or 10,000 micrograms/kg, was injected into the pulmonary artery (n = 5 blocked and n = 5 unblocked at each dose). Fenoldopam had no effect on hemodynamics in the absence of PGF2 alpha. In the unblocked group, after PGF2 alpha vasoconstriction, fenoldopam infusion resulted in a dose-dependent decrease in the mean pulmonary arterial pressure with a dose-response curve characteristic for a drug-receptor interaction [Response = -1.0 (log Dose) -1.6]. In the DA1-blocked group after PGE2 alpha vasoconstriction, the dose-response curve was shifted to the right but parallel to the unblocked group, indicating competitive receptor blockade [Response -0.8 (log Dose) -0.05]. We conclude that vasodilatory DA1-receptors are responsible for the observed results.  相似文献   

16.
The mechanism of hypoxia-induced pulmonary vasoconstriction remains unknown. To explore the possible dependence of the hypoxic response on voltage-activated calcium (Ca2+) channels, the effects of BAY K 8644 (BAY), a voltage-dependent Ca2+ channel potentiator, were observed on the pulmonary vascular response to hypoxia of both the intact anesthetized dog and the perfused isolated rat lung. In six rat lungs given BAY (1 X 10(-6)M), hypoxia increased mean pulmonary arterial pressure (Ppa) to 30.5 +/- 1.7 (SEM) Torr compared with 14.8 +/- 1.2 Torr for six untreated rat lungs (P less than 0.01). After nifedipine, the maximum Ppa during hypoxia fell 14.1 +/- 2.4 Torr from the previous hypoxic challenge in the BAY-stimulated rats (P less than 0.01). BAY (1.2 X 10(-7) mol/kg) given during normoxia in seven dogs increased pulmonary vascular resistance 2.5 +/- 0.3 to 5.0 +/- 1.2 Torr X 1(-1) X min (P less than 0.05), and systemic vascular resistance 55 +/- 4.9 to 126 +/- 20.7 Torr X 1(-1) X min (P less than 0.05). Systemic mean arterial pressure rose 68 Torr, whereas Ppa remained unchanged. Administration of BAY during hypoxia produced an increase in Ppa: 28 +/- 1.5 to 33 +/- 1.9 Torr (P less than 0.05). Thus BAY, a Ca2+ channel potentiator, enhances the hypoxic pulmonary response in vitro and in vivo. This, together with the effect of nifedipine on BAY potentiation, suggests that increased Ca2+ channel activity may be important in the mechanism of hypoxic pulmonary vasoconstriction.  相似文献   

17.
In isolated resistance arterioles with spontaneous tone, ligation of alpha4beta1- and alpha5beta1-integrins induces vasoconstriction whereas ligation of alphavbeta3-integrin induces vasodilation. However, whether integrins directly participate in myogenic constriction to pressure elevation is not known. To answer this question, isolated rat skeletal muscle arterioles were exposed to step increments in pressure in the absence or presence of peptides and function-blocking antibodies known to bind alpha4beta1-, alpha5beta1-, or alphavbeta3-integrins while vessel diameter was continually monitored. Myogenic constriction, as assessed by the ability of isolated arterioles to reduce their diameter in response to two consecutive increments in intraluminal pressure (90-110 and 110-130 cmH2O), was not affected by treatment with any of the control peptides (RAD, LEV), a control antibody (anti-rat major histocompatibility complex), an alpha4beta1-integrin-binding peptide (LDV), or an anti-alpha4-integrin antibody. In contrast, alpha5beta1-integrin blockade with either anti-alpha5- or anti-beta1-integrin antibody caused a significant inhibition of myogenic constriction. Also, both RGD peptide and anti-beta3-integrin antibody inhibited myogenic constriction. These results indicate that alpha5beta1- and alphavbeta3-integrins are necessary for myogenic constriction and further suggest that integrins are part of the mechanosensory apparatus responsible for the ability of vascular smooth muscle cells to detect and/or respond to changes in intraluminal pressure.  相似文献   

18.
To determine whether cyclooxygenase products mediated the attenuation of hypoxic pulmonary vasoconstriction induced by estradiol, we measured pulmonary arterial pressure at a flow of 50 ml X min-1 X kg-1 (Ppa50) during steady-state exposures to inspired O2 tensions (PIO2) between 0 and 200 Torr in isolated lungs of juvenile ewes. Intramuscular estradiol (10 mg) 44-60 h before study significantly decreased perfusate concentrations of 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha), the stable metabolite of the pulmonary vasodilator, prostacyclin, but did not significantly affect the stimulus-response relationship between PIO2 and Ppa50. Estradiol (20 mg) 3-5 days before study increased 6-keto-PGF1 alpha concentrations and decreased Ppa50 at PIO2 of 10, 30, and 50 Torr. Indomethacin added to the perfusate of these lungs reduced 6-keto-PGF1 alpha to undetectable levels and altered the estradiol-induced attenuation, increasing Ppa50 at PIO2 of 10 and 30 Torr, but decreasing Ppa50 at PIO2 of 200 Torr. Despite these effects, Ppa50 remained lower than the values measured in lungs not treated with estradiol. These results suggest that the estradiol-induced attenuation of the hypoxic stimulus-response relationship was mediated only in part by cyclooxygenase products, the net effects of which were vasodilation at PIO2 of 10 and 30 Torr, but vasoconstriction at PIO2 of 200 Torr.  相似文献   

19.
The aim of the present study was to determine the role of endothelium and superoxide in the responses of isolated mouse coronary arteries to hypoxia-reoxygenation. Isolated mouse coronary artery was cannulated, pressurized at 60 mmHg, and constantly superfused with recirculating Krebs-Ringer bicarbonate solution for continuous measurement of intraluminal diameter (ID) by video microscopy. Under a no-flow condition, hypoxia (0% O(2), 30 min) caused vasoconstriction. Reoxygenation caused a further vasoconstriction (ID change from 111.4 +/- 11.1 to 91 +/- 16.5 microm) that was significantly reduced by removal of endothelium (ID change from 105.4 +/- 27 to 109.9 +/- 23.4 microm). Cu/Zn superoxide dismutase (150 U/ml) did not alter the hypoxic vasoconstriction but abolished the reoxygenation-caused endothelium-dependent vasoconstriction. Hypoxia-reoxygenation markedly enhanced the generation of superoxide that was significantly reduced by either removing the endothelium or treated these endothelium-intact vessels with superoxide dismutase. These results suggest that, in isolated mouse coronary arteries, hypoxia causes vasoconstriction that is independent of endothelium, whereas reoxygenation causes vasoconstriction that is mediated by enhanced generation of superoxide from endothelium.  相似文献   

20.
The effects of four F series prostaglandins on the pulmonary vascular bed were compared under conditions of controlled pulmonary blood flow in the intact spontaneously breathing dog. PGF1alpha and PGF2alpha increased lobar arterial pressure whereas PGF1beta and PGF2beta had little if any effect when infused into the lobar artery. The increase in lobar arterial pressure in response to PGF1alpha and PGF2alpha was associated with a significant increase in lobar venous pressure but no change in left atrial pressure. These data indicate that PGF1alpha and PGF2alpha increase pulmonary vascular resistance by constricting lobar veins and vessels upstream to small veins, presumed to be small arteries. It is concluded that in the pulmonary vascular bed the configuration of the hydroxyl group at carbon 9 is an important determinant of pressor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号