首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For socially hibernating mammals, the effectiveness of huddling as a means of energy conservation should increase with group size. However, group size has only been linked to increased survival in a few hibernating species, and the relative importance of social structure versus winter conditions during hibernation remains uncertain. We studied the influence of winter weather conditions, social group composition, age-structure, and other environmental factors and individual attributes on the overwinter survival of hoary marmots (Marmota caligata) in the Yukon Territory, Canada. Juvenile hoary marmot survival was negatively correlated with the mean winter (November to May) Pacific Decadal Oscillation (PDO) index. Survival in older age-classes was negatively correlated with PDO lagged by 1 year. Social group size and structure were weakly correlated with survival in comparison to PDO. The relationship between winter PDO and survival was most likely due to the importance of snowpack as insulation during hibernation. The apparent response of hoary marmots to changing winter conditions contrasted sharply with those of other marmot species and other mammalian alpine herbivores. In conclusion, the severity of winter weather may constrain the effectiveness of group thermoregulation in socially hibernating mammals.  相似文献   

2.
3.
Marmots are large ground squirrels, and 14 species have been reported in the world, including four species of marmots (Himalayan marmot, Tarbagan marmot, gray marmot and long-tailed marmot) living in China. Although these biological resources are abundant in China, information regarding their genetic features is lacking, hampering further study regarding them. The aims of this research were to evaluate genetic variations of four species of Chinese wild marmots, and analyzed kinship of these marmot populations. In the current study, we collected samples of four species of Chinese wild marmot and analyzed the effective allele number, gene diversity, the Shannon index, and polymorphism information to evaluate genetic variations using 13 microsatellite loci. Based on Nei’s genetic distance using the unweighted pair group method, we constructed a dendrogram to analyze the population kinship. We determined that all four Chinese marmot species had high genetic polymorphisms and departure from Hardy-Weinberg equilibrium. The Chinese marmots to be divided into two large groups: Himalayan marmot was independent group. Tarbagan marmot, gray marmot and long-tailed marmot were others; Tarbagan marmot and gray marmot showed a close kinship with each other, but long-tailed marmot did not have a close relationship with the other species. The high polymorphisms and the kinship of Chinese marmot populations were correlated with geographical terrain of their habitat. Himalayan marmot was characterized as living in unique alpine meadows in Qinghai-Tibet plateau and was affected by terrain; however, Tarbagan marmot, gray marmot and long-tailed marmot were characterized as living in grassland or alpine grassland and were not affected by terrain. Genetic features of Chinese wild marmots were investigated in this study. This may give using information regarding protection of Chinese wild marmot resource and further application of biomedical research.  相似文献   

4.
The Vancouver Island marmot is the most endangered mammal of Canada. Factors which have brought this population to the verge of extinction have not yet been fully elucidated, but the effects of deforestation and habitat fragmentation on survival rates, as well as those of variation in rainfall, temperature, snowpack depth and snowmelt strongly suggest that marmots on the island are struggling to keep pace with environmental changes. Genetic analyses, however, seem to indicate that the Vancouver Island marmot may merely represent a melanistic population of its parental species on the mainland. Were it not for its black pelage colour, it is unlikely that it would have attracted much attention as a conservation priority. Our study uses three-dimensional coordinates of cranial landmarks to further assess phenotypic differentiation of the Vancouver Island marmot. A pattern of strong interspecific divergence and low intraspecific variation was found which is consistent with aspects of drift-driven models of speciation. However, the magnitude of shape differences relative to the putatively neutral substitutions in synonymous sites of cytochrome b is too large for being compatible with a simple neutral model. A combination of bottlenecks and selective pressures due to natural and human-induced changes in the environment may offer a parsimonious explanation for the large phenotypic differentiation observed in the species. Our study exemplifies the usefulness of a multidisciplinary approach to the study of biological diversity for a better understanding of evolutionary models and to discover aspects of diversity that may be undetected by using only a few genetic markers to characterize population divergence and uniqueness.  相似文献   

5.
We examined habitat preferences of the Southern Altai subspecies of gray marmots (Marmota baibacina baibacina) both at the small and large scale. Considerable differences in habitat use among the gray marmot (sub)species complex have been described; Marmota kastschenkoi possibly represents the only forest-dwelling Palearctic marmot. Our results show that habitat use in Southern Altai marmots is determined mainly by vegetation type. The Altai marmots preferred grasslands and shrublands and their distribution was limited to the alpine zone above timberline. Marmots clearly avoided woodlands, even the forest edges and forest-steppe areas with a tree cover greater than 10 %. Gray marmots occur rarely in habitats occupied by alpine pikas, whereas presence of ground squirrels had no effect on marmot distribution. Altai marmots preferred mesic habitats with permeable subsoil layers. Livestock grazing and human disturbance did not affect marmot occurrence. Habitat requirements of examined Altai subspecies M. baibacina baibacina differ from the forest-steppe M. kastschenkoi; nevertheless, the ecological factors to which the forest-dwelling species responds remain to be analyzed. A recent speciation process in gray marmot complex was followed by the evolution of ecological requirements resulting in adaptation to forest dwelling.  相似文献   

6.
Recent snow droughts associated with unusually warm winters are predicted to increase in frequency and affect species dependent upon snowpack for winter survival. Changes in populations of some cold‐adapted species have been attributed to heat stress or indirect effects on habitat from unusually warm summers, but little is known about the importance of winter weather to population dynamics and how responses to snow drought vary among sympatric species. We evaluated changes in abundance of hoary marmots (Marmota caligata) over a period that included a year of record‐low snowpack to identify mechanisms associated with weather and snowpack. To consider interspecies comparisons, our analysis used the same a priori model set as a concurrent study that evaluated responses of American pikas (Ochotona princeps) to weather and snowpack in the same study area of North Cascades National Park, Washington, USA. We hypothesized that marmot abundance reflected mechanisms related to heat stress, cold stress, cold exposure without an insulating snowpack, snowpack duration, atmospheric moisture, growing‐season precipitation, or select combinations of these mechanisms. Changes in marmot abundances included a 74% decline from 2007 to 2016 and were best explained by an interaction of chronic dryness with exposure to acute cold without snowpack in winter. Physiological stress during hibernation from exposure to cold, dry air appeared to be the most likely mechanism of change in marmot abundance. Alternative mechanisms associated with changes to winter weather, including early emergence from hibernation or altered vegetation dynamics, had less support. A post hoc assessment of vegetative phenology and productivity did not support vegetation dynamics as a primary driver of marmot abundance across years. Although marmot and pika abundances were explained by strikingly similar models over periods of many years, details of the mechanisms involved likely differ between species because pika abundances increased in areas where marmots declined. Such differences may lead to diverging geographic distributions of these species as global change continues.  相似文献   

7.
Parasites arc often considered an unavoidable cost of livingin groups. We examined this hypothesis by investigating theectoparasite fauna of a free-living alpine marmot population,a highly social sciurid species. Only a single important ectoparasitewas found, the mite Echinonyssus blanchardi. Heavy infestationwith this mite correlated with reproductive success of marmotsin two ways. Infant winter mortality increased with ectoparasiteload, probably because ectoparasites reduced the ability ofparents and alloparents to warm infants during hibernation.Litters produced by females exposed to a high number of mitesduring the preceding winter were weaned later. Late weanershad a lower chance of surviving hibernation. However, we foundno relationship between ectoparasite load and group size ormarmot density. Instead, the number of E. blanchardi per animalwas lower in areas where marmot groups were clumped, i.e., infavorable habitats. Although ectoparasites most likely decreasethe fitess of alpine marmots to some extent, they should notbe considered a cost of social life in this species.  相似文献   

8.
Closely related species often have remarkably different vocalizations. Some of the variation in acoustic structure may result from species adapting their calls to maximize transmission through their acoustic environments. We document the relative magnitude of inter- and intraspecific variation in acoustic transmission properties of the habitats of three closely related marmot species to study the relative importance that the acoustic environment may have played in selecting for species-specific marmot alarm calls. We used spectrogram correlation to quantify the degree to which pure tones and alarm calls changed as they were broadcast through marmot home ranges to describe the acoustic habitats of golden (M. candata aurea), yellow-bellied (M. flaviventris), and alpine (M. marmota L.) marmots. Species lived in quantifiably different acoustic habitats. One analysis partitioned variation between species and between marmot social groups (nested within species). We found significant interspecific variation in the acoustic transmission fidelity of the three species' habitats and insignificant intraspecific variation between social groups. Further analysis of a larger sample of alarm calls broadcast through golden marmot social groups found significant intraspecific variation. Interspecific variation greater than intraspecific variation suggests that variable acoustic habitats may be responsible for at least some of the interspecific variation in alarm call structure. This is the first study to use spectrogram correlation to describe habitat acoustics. We discuss aspects of the method that may be useful for others seeking to quantify habitat acoustics.  相似文献   

9.
Biennial breeding is a rare life-history trait observed in animal species living in harsh, unproductive environments. This reproductive pattern is thought to occur in 10 of 14 species in the genus Marmota, making marmots useful model organisms for studying its ecological and evolutionary implications. Biennial breeding in marmots has been described as an obligate pattern which evolved as a mechanism to mitigate the energetic costs of reproduction (Evolved Constraint hypothesis). However, recent anecdotal evidence suggests that it is a facultative pattern controlled by annual variation in climate and food availability (Environmental Constraint hypothesis). Finally, in social animals like marmots, biennial breeding could result from reproductive competition between females within social groups (Social Constraint hypothesis). We evaluated these three hypotheses using mark-recapture data from an 8-year study of hoary marmot (Marmota caligata) population dynamics in the Yukon. Annual variation in breeding probability was modeled using multi-state mark-recapture models, while other reproductive life-history traits were modeled with generalized linear mixed models. Hoary marmots were neither obligate nor facultative biennial breeders, and breeding probability was insensitive to evolved, environmental, or social factors. However, newly mature females were significantly less likely to breed than older individuals. Annual breeding did not result in increased mortality. Female survival and, to a lesser extent, average fecundity were correlated with winter climate, as indexed by the Pacific Decadal Oscillation. Hoary marmots are less conservative breeders than previously believed, and the evidence for biennial breeding throughout Marmota, and in other arctic/alpine/antarctic animals, should be re-examined. Prediction of future population dynamics requires an accurate understanding of life history strategies, and of how life history traits allow animals to cope with changes in weather and other demographic influences.  相似文献   

10.
Mate-choice theory predicts different optimal mating systems depending on resource availability and habitat stability. Regions with limited resources are thought to promote monogamy. We tested predictions of monogamy in a social rodent, the hoary marmot (Marmota caligata), at the northern climatic extreme of its distribution. Mating systems, social structure and genetic relationships were investigated within and among neighbouring colonies of marmots within a 4 km(2) valley near Kluane National Park, Yukon, Canada, using 21 microsatellite loci. While both monogamous and polygynous populations of hoary marmots have been observed in the southern reaches of this species' range; northern populations of this species are thought to be predominantly monogamous. Contrary to previous studies, we did not find northern hoary marmot social groups to be predominantly monogamous; rather, the mating system seemed to be facultative, varying between monogamy and polygyny within, as well as among, social groups. These findings reveal that the mating systems within colonies of this species are more flexible than previously thought, potentially reflecting local variation in resource availability.  相似文献   

11.
The Alpine marmot (Marmota marmota) is a social mammal living in mountainous grassland areas and has the particularity to hibernate in winter. Recent studies on a population in the French Alps found that climate change is affecting Alpine marmot population dynamics and might impact their overall distribution in the future. Using Species Distribution Models (SDMs), the effect of climate change on Alpine marmot's future distribution was investigated at a local scale, in the western part of the Pyrenean massif (New-Aquitaine region, France). This scale was chosen as an appropriate action scale for the conservation strategy for the species. Three climatic scenarios were used (RCP 2.6, RCP 4.5, and RCP 8.5) over three future 30-year periods (2021–2050, 2040–2070, 2071–2100) to predict the short- to long-term potential distribution of the target species. The results are consistent with naturalistic knowledge of the species´ ecological needs in terms of variable importance and response type. Mean maximum temperature in winter, standard-deviation of daily temperature in winter, along with the median rainfall amount in summer were the three most important climatic variables. Predictions under the two most pessimistic climate scenarios showed potential large habitat loss. In the long term, for RCP 4.5, an estimated habitat loss of 18% was predicted. In the case of RCP 8.5, a higher impact was predicted, with a 54% habitat loss. Our results show that high impact due to climate change can be expected at a long term. In addition, if winter climatic conditions are important for marmot survival through hibernation, drought in summer might be one of the drivers of future population dynamic and distribution. Our findings can be applied for other species living in grassland mountainous environments and for which access to food resources in summer is essential, facilitating the conservation of target areas.  相似文献   

12.
Age-specific survival trajectories can vary significantly among wild populations. Identifying the environmental conditions associated with such variability is of primary importance to understand the dynamics of free-ranging populations. In this study, we investigated survival variations among alpine marmot (Marmota marmota) families living in areas with opposite environmental characteristics: the typical habitat of the species (alpine meadow) and a marginal area bordering the forest. We used data collected during an 11-year study in the Gran Paradiso National Park (Italy) and performed a Bayesian survival trajectory analysis on marked individuals. Furthermore, we investigated, at a territorial level, the relationships among demographic parameters and habitat variables by using a path analysis approach. Contrary to our expectations, for most of the marmot's lifespan, survival rate was higher in the marginal site closer to the forest and with lower visibility than in the alpine meadow site. Path analysis indicated that the number of families living close to each other negatively affected the stability of the dominant couple, which in turn affected both juvenile survival and reproduction. Given the lower number of neighboring families which inhabited the marginal site and the potentially different predation pressure by the most effective predator in the area (Aquila chrysaetos), our results suggest that species adapted to live in open habitats may benefit from living in a marginal habitat. This study highlights the importance of habitats bordering the forest in the conservation of alpine marmots.  相似文献   

13.
The role of local habitat geometry (habitat area and isolation) in predicting species distribution has become an increasingly more important issue, because habitat loss and fragmentation cause species range contraction and extinction. However, it has also become clear that other factors, in particular regional factors (environmental stochasticity and regional population dynamics), should be taken into account when predicting colonisation and extinction. In a live trapping study of a mainland-island metapopulation of the root vole (Microtus oeconomus) we found extensive occupancy dynamics across 15 riparian islands, but yet an overall balance between colonisation and extinction over 4 years. The 54 live trapping surveys conducted over 13 seasons revealed imperfect detection and proxies of population density had to be included in robust design, multi-season occupancy models to achieve unbiased rate estimates. Island colonisation probability was parsimoniously predicted by the multi-annual density fluctuations of the regional mainland population and local island habitat quality, while extinction probability was predicted by island population density and the level of the recent flooding events (the latter being the main regionalized disturbance regime in the study system). Island size and isolation had no additional predictive power and thus such local geometric habitat characteristics may be overrated as predictors of vole habitat occupancy relative to measures of local habitat quality. Our results suggest also that dynamic features of the larger region and/or the metapopulation as a whole, owing to spatially correlated environmental stochasticity and/or biotic interactions, may rule the colonisation – extinction dynamics of boreal vole metapopulations. Due to high capacities for dispersal and habitat tracking voles originating from large source populations can rapidly colonise remote and small high quality habitat patches and re-establish populations that have gone extinct due to demographic (small population size) and environmental stochasticity (e.g. extreme climate events).  相似文献   

14.
Alpine marmots were introduced into the northern Pyrenees between 1948 and 1988 from individuals captured in the French Alps, in order to bolster food sources for the golden eagle and brown bear. The marmot’s subsequent occupation of the southern Pyrenees has been extremely fast. From an initial population of ~400 individuals, the present population in the southern Pyrenees is estimated to be of more than 10,000 individuals. The objective of this study was to assess what were the mechanisms that have enabled such a fast occupation of the territory. We studied habitat preferences and habitat selection of the alpine marmot in the southern Pyrenees both at the micro- and meso-scale, and compared our results with similar data in the bibliography on their native region. We also compared climatic data from both the native and introduction sites. Our results indicate relatively low climate (precipitation and temperature) matching between the two sites but a relatively high habitat matching. Marmots negatively select high woody cover and the presence of conifers in their home range, while they choose alpine and sub-alpine meadows close to rivers with boulders. Furthermore, the marmot population is independent of snow cover duration. We conclude that the successful establishment in the Pyrenees by the alpine marmot is explained both by the habitat- and climate-matching mechanisms. In both aspects, marmots show a generalist response. Meso-scale GIS-derived variables were non significant when analyzed together with local, micro-scale variables from field measurements.  相似文献   

15.
Behavioral comparisons between endangered species and their congeners may provide valuable data with which to test ideas about declining populations or the future direction of recovery efforts. We considered the case of the highly endangered Vancouver Island marmot ( Marmota vancouverensis ). Predation is a current source of mortality, and inadequate anti-predator behavior could have profound ramifications for the future success of re-introductions. We tested whether M. vancouverensis anti-predator behavior was unusual or 'deficient' by quantifying it and comparing it to 13 other marmot species. We found no evidence that Vancouver Island marmots were unwary. If anything, the converse was true. Vancouver Island marmots were responsive and vigilant towards real and simulated predatory threats. They dug numerous escape burrows that reduced the likelihood of predation. Our results have several implications for future recovery efforts, one of which was to establish 'baseline' flight-response targets that captive-bred Vancouver Island marmots will have to meet or exceed prior to release into predator-rich environments.  相似文献   

16.
Golden‐headed lion tamarins (GHLTs; Leontopithecus chrysomelas) are endangered primates endemic to the Brazilian Atlantic Forest, where loss of forest and its connectivity threaten species survival. Understanding the role of habitat availability and configuration on population declines is critical for guiding proactive conservation for this, and other, endangered species. We conducted population viability analysis to assess vulnerability of ten GHLT metapopulations to habitat loss and small population size. Seven metapopulations had a low risk of extirpation (or local extinction) over the next 100 years assuming no further forest loss, and even small populations could persist with immediate protection. Three metapopulations had a moderate/high risk of extirpation, suggesting extinction debt may be evident in parts of the species’ range. When deforestation was assumed to continue at current rates, extirpation risk significantly increased while abundance and genetic diversity decreased for all metapopulations. Extirpation risk was significantly negatively correlated with the size of the largest patch available to metapopulations, underscoring the importance of large habitat patches for species persistence. Finally, we conducted sensitivity analysis using logistic regression, and our results showed that local extinction risk was sensitive to percentage of females breeding, adult female mortality, and dispersal rate and survival; conservation or research programs that target these aspects of the species’ biology/ecology could have a disproportionately important impact on species survival. We stress that efforts to protect populations and tracts of habitat of sufficient size throughout the species’ distribution will be important in the near‐term to protect the species from continuing decline and extinction.  相似文献   

17.
Although the aim of conservation planning is the persistence of biodiversity, current methods trade-off ecological realism at a species level in favour of including multiple species and landscape features. For conservation planning to be relevant, the impact of landscape configuration on population processes and the viability of species needs to be considered. We present a novel method for selecting reserve systems that maximize persistence across multiple species, subject to a conservation budget. We use a spatially explicit metapopulation model to estimate extinction risk, a function of the ecology of the species and the amount, quality and configuration of habitat. We compare our new method with more traditional, area-based reserve selection methods, using a ten-species case study, and find that the expected loss of species is reduced 20-fold. Unlike previous methods, we avoid designating arbitrary weightings between reserve size and configuration; rather, our method is based on population processes and is grounded in ecological theory.  相似文献   

18.
We studied the effects of food resources on weaning success, overwinter survival, and social group density in golden marmots ( Marmota caudata aurea ), an Old World sciurid rodent. End-of-season standing crop, a measure of seasonal productivity, varied between marmot groups but seemed repeatable between years. We adjusted some of our measurements of potential food availability by marmot preferences because faecal analysis suggested that marmots foraged selectively. Some, but not all, measured fitness parameters were associated with variation in food availability. The probability of weaning young was associated with overall food availability the previous year, and there was a significant positive relationship between the early-season food resources and the proportion of years in which a group reproduced. Weaning date, a correlate of subsequent juvenile overwinter survival, was associated with overall food availability in the same year. Non-juvenile overwinter survival was weakly associated with food availability. Finally, marmot density was not associated with the availability of food resources. We suggest that obligate social behaviour may limit the degree to which demographic factors can track environmental variation.  相似文献   

19.
Few studies have examined the succession of plant communities in the alpine zone. Studying the succession of plant communities is helpful to understand how species diversity is formed and maintained. In this study, we used species inventories, a molecular phylogeny, and trait data to detect patterns of phylogenetic and functional community structure in successional plant communities growing on the mounds of Himalayan marmots (Marmota himalayana) on the southeast edge of the Qinghai-Tibet Plateau. We found that phylogenetic and functional diversities of plant communities on marmot mounds tended to cluster during the early to medium stages of succession, then trended toward overdispersion from medium to late stages. Alpine species in early and late stages of succession were phylogenetically and functionally overdispersed, suggesting that such communities were assembled mainly through species interactions, especially competition. At the medium and late stages of succession, alpine communities growing on marmot mounds were phylogenetically and functionally clustered, implying that the communities were primarily structured by environmental filtering. During the medium and late stages of succession the phylogenetic and functional structures of plant communities on marmot mounds differed significantly from those on neighboring sites. Our results indicate that environmental filtering and species interactions can change plant community composition at different successional stages. Assembly of plant communities on marmot mounds was promoted by a combination of traits that may provide advantages for survival and adaptation during periods of environmental change.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号