首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclin-dependent kinase 5 (cdk5) is believed to be involved in the phosphorylation of tau protein. We studied the expression of the protein levels of cdk5 and the neuron-specific cdk5 activator p35 as well as cdk5 activity and tau phosphorylation during apoptosis in rat hippocampal neuronal cultures. We observed that in cells treated with etoposide, cyclosporin A, 4-hydroxynonenal (HNE), or okadaic acid, there was an early reduction in the protein levels of p35, and later also in cdk5 with all treatments except etoposide. The level of p25, a calpain cleavage product of p35 suggested to have increased ability to activate cdk5, was reduced paralleling the amount of p35. The changes in the p35 and p25 protein levels coincided with decreases in cdk5 activity and tau phosphorylation after treatment with HNE and etoposide. However, the relationship between the p35 and p25 levels and cdk5 activity was complex. We conclude that neuronal apoptosis is accompanied with a decrease in the levels of p35, p25, and cdk5, and tau phosphorylation. These changes may reinforce the neuronal damage.  相似文献   

2.
The intermediate filament protein nestin is characterized by its specific expression during the development of neuronal and myogenic tissues. We identify nestin as a novel in vivo target for cdk5 and p35 kinase, a critical signaling determinant in development. Two cdk5-specific phosphorylation sites on nestin, Thr-1495 and Thr-316, were established, the latter of which was used as a marker for cdk5-specific phosphorylation in vivo. Ectopic expression of cdk5 and p35 in central nervous system progenitor cells and in myogenic precursor cells induced elevated phosphorylation and reorganization of nestin. The kinetics of nestin expression corresponded to elevated expression and activation of cdk5 during differentiation of myoblast cell cultures and during regeneration of skeletal muscle. In the myoblasts, a disassembly-linked phosphorylation of Thr-316 indicated active phosphorylation of nestin by cdk5. Moreover, cdk5 occurred in physical association with nestin. Inhibition of cdk5 activity-either by transfection with dominant-negative cdk5 or by using a specific cdk5 inhibitor-blocked myoblast differentiation and phosphorylation of nestin at Thr-316, and this inhibition markedly disturbed the organization of nestin. Interestingly, the interaction between p35, the cdk5 activator, and nestin appeared to be regulated by cdk5. In differentiating myoblasts, p35 was not complexed with nestin phosphorylated at Thr-316, and inhibition of cdk5 activity during differentiation induced a marked association of p35 with nestin. These results demonstrate that there is a continuous turnover of cdk5 and p35 activity on a scaffold formed by nestin. This association is likely to affect the organization and operation of both cdk5 and nestin during development.  相似文献   

3.
Hyperphosphorylated tau protein is the primary component of neurofibrillary tangles observed in several neurodegenerative disorders. It has been hypothesized that in certain pathological conditions, the calcium activated protease, calpain, would cleave the cyclin-dependent kinase 5 (cdk5) activator p35 to a p25 fragment, which would lead to augmented cdk5 activity, and cdk5-mediated tau hyperphosphorylation. To test this hypothesis, we induced calpain-mediated p35 cleavage in rat hippocampal neuronal cultures and studied the relationship between p25 production, cdk5 activity, and tau phosphorylation. In glutamate-treated cells p35 was cleaved to p25 and this was associated with elevated cdk5 activity. However, tau phosphorylation was concomitantly decreased at multiple sites. The calpain inhibitor MDL28170 prevented the cleavage of p35 but had no effect on tau phosphorylation, suggesting that calpain-mediated processes, i.e., the cleavage of p35 to p25 and cdk5 activation, do not contribute to tau phosphorylation in these conditions. Treatment of the neuronal cultures with N-methyl-D-aspartic acid or with calcium ionophores resulted in an outcome highly similar to that of glutamate. We conclude that, in neuronal cells, the cleavage of p35 to p25 is associated with increased activity of cdk5 but not with tau hyperphosphorylation.  相似文献   

4.
Cyclin-dependent protein kinase 5 (cdk5), a member of the cdk family, is active mainly in postmitotic cells and plays important roles in neuronal development and migration, neurite outgrowth, and synaptic transmission. In this study we investigated the relationship between cdk5 activity and regulation of the mitogen-activated protein (MAP) kinase pathway. We report that cdk5 phosphorylates the MAP kinase kinase-1 (MEK1) in vivo as well as the Ras-activated MEK1 in vitro. The phosphorylation of MEK1 by cdk5 resulted in inhibition of MEK1 catalytic activity and the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. In p35 (cdk5 activator) -/- mice, which lack appreciable cdk5 activity, we observed an increase in the phosphorylation of NF-M subunit of neurofilament proteins that correlated with an up-regulation of MEK1 and ERK1/2 activity. The activity of a constitutively active MEK1 with threonine 286 mutated to alanine (within a TPXK cdk5 phosphorylation motif in the proline-rich domain) was not affected by cdk5 phosphorylation, suggesting that Thr286 might be the cdk5/p35 phosphorylation-dependent regulatory site. These findings support the hypothesis that cdk5 and the MAP kinase pathway cross-talk in the regulation of neuronal functions. Moreover, these data and the recent studies of Harada et al. (Harada, T., Morooka, T., Ogawa, S., and Nishida, E. (2001) Nat. Cell Biol. 3, 453-459) have prompted us to propose a model for feedback down-regulation of the MAP kinase signal cascade by cdk5 inactivation of MEK1.  相似文献   

5.
p40MO15, a cdc2-related protein, is the catalytic subunit of the kinase (CAK, cdk-activating kinase) responsible for Thr161/Thr160 phosphorylation and activation of cdk1/cdk2. We have found that strong overexpression of p40MO15 only moderately increases CAK activity in Xenopus oocytes, indicating that a regulatory CAK subunit (possibly a cyclin-like protein) limits the ability to generate CAK activity in p40MO15 overexpressing oocytes. This 36 kDa subunit was microsequenced after extensive purification of CAK activity. Production of Xenopus CAK activity was strongly reduced in enucleated oocytes overexpressing p40MO15 and p40MO15 shown to contain a nuclear localization signal required for nuclear translocation and generation of CAK activity. p40MO15 was found to be phosphorylated on Ser170 and Thr176 by proteolytic degradation, radiosequencing of tryptic peptides and mutagenesis. Thr176 phosphorylation is required and Ser170 phosphorylation is dispensable for p40MO15 to generate CAK activity upon association with the 36 kDa regulatory subunit. Finally, Thr176 and Ser170 phosphorylations are not intramolecular autophosphorylation reactions. Taken together, the above results identify protein-protein interactions, nuclear translocation and phosphorylation (by an unidentified kinase) as features of p40MO15 that are required for the generation of active CAK.  相似文献   

6.
Cyclin-dependent kinase 5 (cdk5) is a serine/threonine kinase activated by associating with its neuron-specific activators p35 and p39. Analysis of cdk5(-/-) and p35(-/-) mice has demonstrated that both cdk5 and p35 are essential for neuronal migration, axon pathfinding and the laminar configuration of the cerebral cortex, suggesting that the cdk5-p35 complex may play a role in neuron survival. However, the targets of cdk5 that regulate neuron survival are unknown. Here, we show that cdk5 directly phosphorylates c-Jun N-terminal kinase 3 (JNK3) on Thr131 and inhibits its kinase activity, leading to reduced c-Jun phosphorylation. Expression of cdk5 and p35 in HEK293T cells inhibits c-Jun phosphorylation induced by UV irradiation. These effects can be restored by expression of a catalytically inactive mutant form of cdk5. Moreover, cdk5-deficient cultured cortical neurons exhibit increased sensitivity to apoptotic stimuli, as well as elevated JNK3 activity and c-Jun phosphorylation. Taken together, these findings show that cdk5 may exert its role as a key element by negatively regulating the c-Jun N-terminal kinase/stress-activated protein kinase signaling pathway during neuronal apoptosis.  相似文献   

7.
Amphiphysin 1 is a phosphoprotein expressed at high levels in neurons, where it participates in synaptic vesicle endocytosis and neurite outgrowth. It is a substrate for cyclin-dependent kinase (cdk) 5, a member of the cyclin-dependent protein kinase family, which has been functionally linked to neuronal migration and neurite outgrowth via its action on the actin cytoskeleton. The yeast homologue of amphiphysin, Rvs167, functions in endocytosis and actin dynamics, is phosphorylated by the cdk5 homologue Pho85, and binds the Pho85 regulatory subunit Pcl2. We show here that amphiphysin 1 interacts with the cdk5-activating subunit p35 and that this interaction is mediated by the conserved NH2-terminal region of amphiphysin. Amphiphysin 1 colocalizes with p35 in the growth cones of neurons and at actin-rich peripheral lamellipodia in transfected fibroblasts. Amphiphysin is phosphorylated by cdk5 in a region including serines 272, 276, and 285. Amphiphysin 1 is also phosphorylated by the cdc2/cyclin B kinase complex in the same region and undergoes mitotic phosphorylation in dividing cells. These data indicate that phosphorylation by members of the cyclin-dependent kinase family is a conserved property of amphiphysin and suggest that this phosphorylation may play an important physiological role both in mitosis and in differentiated cells.  相似文献   

8.
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis, and its activity is regulated by phosphorylation in the N-terminal regulatory domain. The proline-directed serine/threonine kinase cyclin-dependent kinase 5 (cdk5) plays an important role in diverse neuronal processes. In the present study, we identify TH as a novel substrate of cdk5. We show that cdk5 phosphorylates TH at serine 31 and that this phosphorylation is associated with an increase in total TH activity. In transgenic mice with increased cdk5 activity, the immunoreactivity for phosphorylated TH at Ser-31 is enhanced in neurons of the substantia nigra, a brain region enriched with TH-positive neurons. In addition, we demonstrate that co-expression of cdk5 and its regulatory activator p35 with TH increases the stability of TH. Consistent with these findings, TH protein levels are reduced in cdk5 knock-out mice. Importantly, the TH activity and protein turnover of the phosphorylation-defective mutant TH S31A was not altered by cdk5 activity. Taken together, these data suggest that cdk5 phosphorylation of TH is an important regulator of TH activity through stabilization of TH protein levels.  相似文献   

9.
Changes in the extent of phosphorylation of the 25 kDa subunit of eIF-4F occur during several major biological events including mitosis and heat shock in mammalian cells and shortly after fertilization of sea urchin (Lytechinus pictus) eggs. In vitro phosphorylation studies using highly purified protein kinases demonstrated that the 220 kDa subunit of eIF-4F was phosphorylated by cAMP dependent protein kinase, protein kinase C and probably to a lesser extent by cGMP dependent protein kinase. In addition, eIF-4A was readily phosphorylated by cAMP and cGMP dependent protein kinases whereas p48 of eIF-4F was not. The effect of these phosphorylation events on eIF-4F function, its assembly or disassembly, susceptibility to viral initiated proteolysis or the ability of p25 to be phosphorylated at serine-53 remain to be investigated.  相似文献   

10.
The cdk5 and its activator p35 constitute one of the main tau-phosphorylating systems in neuronal cells. Under normal conditions for neurons, its activity is required for modulating tau involvement in neuronal polarity and in development of the mammalian central nervous system. Recently, we reported that the treatment of rat hippocampal cells in culture with fibrillary β-amyloid (Aβ) results in deregulation of the protein kinase cdk5. The neurotoxic effects of Aβ fibrils were prevented by inhibition of cdk5 activity by butyrolactone I or by using antisense oligonucleotides that control the expression of this kinase. Here, we show that the Aβ-promoted increase of cdk5 activity is associated with changes in tau phosphorylation patterns and in the intraneuronal distribution of tau. In addition to hippocampal cells, deregulation of cdk5 was observed in other cell types. However, butyrolactone I prevented Aβ-induced cell death only in neuronal cells in which cdk5 activation was sensitive to Aβ fibrils. This lost of cdk5 regulation in hippocampal cells exposed to Aβ fibrils appears to be associated with an increase in the cdk5–p35 complex stability. Complex stabilization was sensitive to phosphorylation of cdk5. However, no changes in cdk5 and p35 mRNAs were observed, suggesting that the main effects on cdk5 occur at the posttranslational level. These studies indicate that cdk5 phosphorylation and the formation of an abnormally active cdk5–p35 complex are directly involved in the molecular paths leading to the neurodegenerative process of rat hippocampal neurons triggered by Aβ fibrils.  相似文献   

11.
The mitotic inducer p34cdc2 requires association with a cyclin and phosphorylation on Thr161 for its activity as a protein kinase. CAK, the p34cdc2 activating kinase, was previously identified as an enzyme necessary for this activating phosphorylation. We confirm here that CAK is a protein kinase and describe its purification over 13,000-fold from Xenopus egg extracts. We further show that CAK contains a protein identical or closely related to the previously identified Xenopus MO15 gene: p40MO15 copurifies with CAK, and an antiserum to p40MO15 specifically depletes cAK activity. CAK appears to be the only protein in Xenopus egg extracts that can activate complexes of either p34cdc2 or the closely related protein kinase, p33cdk2, with either cyclin A or cyclin B. The sequence similarity between p40MO15 and p34cdc2, and the approximately 200 kDa size of CAK, suggest that p40MO15 may itself be regulated by subunit association and by protein phosphorylations.  相似文献   

12.
13.
The cdk5 and its activator p35 constitute one of the main tau-phosphorylating systems in neuronal cells. Under normal conditions for neurons, its activity is required for modulating tau involvement in neuronal polarity and in development of the mammalian central nervous system. Recently, we reported that the treatment of rat hippocampal cells in culture with fibrillary beta-amyloid (Abeta) results in deregulation of the protein kinase cdk5. The neurotoxic effects of Abeta fibrils were prevented by inhibition of cdk5 activity by butyrolactone I or by using antisense oligonucleotides that control the expression of this kinase. Here, we show that the Abeta-promoted increase of cdk5 activity is associated with changes in tau phosphorylation patterns and in the intraneuronal distribution of tau. In addition to hippocampal cells, deregulation of cdk5 was observed in other cell types. However, butyrolactone I prevented Abeta-induced cell death only in neuronal cells in which cdk5 activation was sensitive to Abeta fibrils. This lost of cdk5 regulation in hippocampal cells exposed to Abeta fibrils appears to be associated with an increase in the cdk5-p35 complex stability. Complex stabilization was sensitive to phosphorylation of cdk5. However, no changes in cdk5 and p35 mRNAs were observed, suggesting that the main effects on cdk5 occur at the posttranslational level. These studies indicate that cdk5 phosphorylation and the formation of an abnormally active cdk5-p35 complex are directly involved in the molecular paths leading to the neurodegenerative process of rat hippocampal neurons triggered by Abeta fibrils.  相似文献   

14.
The growth factor neuregulin 1 (NRG) selectively induces an increase in the gamma-aminobutyric acid (GABA)(A) receptor beta2 subunit protein in rat cerebellar granule neurons in culture. We previously demonstrated that NRG acts by triggering ErbB4 receptor phosphorylation and subsequent signaling through the mitogen-activated kinase (MAPK), phosphatidyl inositol-3 kinase (PI-3K) and cyclin-dependent kinase 5 (cdk5) pathways. In this report we show that the scaffolding protein, PSD-95, plays a key role in mediating the effects of NRG and that reducing its level attenuates the NRG-induced increase in beta2 subunit expression. PSD-95 appears to facilitate the effects of NRG through its association with ErbB4, an interaction that is augmented by NRG-activated cdk signaling. Inhibition of cdk activity with roscovitine attenuates the association of PSD-95 with ErbB4. The effects of cdk5 are not blocked by U0126, an inhibitor of MAPK signaling, indicating that cdk5 functions independently of cross-talk with this pathway. These findings raise the possibility that NRG-induced activation of cdk5 works in part by recruiting PSD-95, a protein involved in regulating synaptic plasticity, to associate with ErbB4. This interaction may be a positive feedback loop that augments NRG signaling and its downstream effects on GABA(A) receptor beta2 subunit expression.  相似文献   

15.
We describe a reliable and efficient method for the purification of catalytically active and mutant inactive full-length forms of the human dual specificity phosphatase cdc25C from bacteria. The protocol involves isolating insoluble cdc25C protein in inclusion bodies, solubilization in guanidine HCL, and renaturation through rapid dilution into low salt buffer. After binding renatured proteins to an ion exchange resin, cdc25C elutes in two peaks at 350 and 450 mM NaCl. Analysis by gel exclusion chromatography and enzymatic assays reveals the highest phosphatase activity is associated with the 350 mM NaCl with little or no activity present in the 450 mM peak. Furthermore, active cdc25C has a native molecular mass of 220 kDa consistent with a potential tetrameric complex of the 55-kDa cdc25C protein. Assaying phosphatase activity against artificial substrates pNPP and 3-OMFP reveals a 220 kDa form of the phosphatase is active in a non-phosphorylated state. The protein effectively activates cdk1/cyclin B prokinase complexes in vitro in the absence of cdk1 kinase activity in an orthovanadate sensitive manner but is inactivated by A-kinase phosphorylation. In vitro phosphorylation of purified cdc25C by cdk1/cyclin B1, cdk2/cyclin A2 and cdk2/cyclin E shows that distinct TP/SP mitotic phosphorylation sites on cdc25C are differentially phosphorylated by these 3 cdk/cyclin complexes associated with different levels of cdc25C activation. Finally, we show that endogenous native cdc25C from human cells is present in high molecular weight complexes with other proteins and resolves mostly above 200-kDa. These data show that untagged cdc25C can be purified with a simple protocol as an active dual specificity phosphatase with a native molecular mass consistent with a homo-tetrameric configuration.  相似文献   

16.
Phosphatidylinositol 3-kinase (PI 3-kinase) has a regulatory 85 kDa adaptor subunit whose SH2 domains bind phosphotyrosine in specific recognition motifs, and a catalytic 110 kDa subunit. Mutagenesis of the p110 subunit, within a sequence motif common to both protein and lipid kinases, demonstrates a novel intrinsic protein kinase activity which phosphorylates the p85 subunit on serine at a stoichiometry of approximately 1 mol of phosphate per mol of p85. This protein-serine kinase activity is detectable only upon high affinity binding of the p110 subunit with its unique substrate, the p85 subunit. Tryptic phosphopeptide mapping revealed that the same major peptide was phosphorylated in p85 alpha both in vivo in cultured cells and in the purified recombinant enzyme. N-terminal sequence and mass analyses were used to identify Ser608 as the major phosphorylation site on p85 alpha. Phosphorylation of the p85 subunit at this serine causes an 80% decrease in PI 3-kinase activity, which can subsequently be reversed upon treatment with protein phosphatase 2A. These results have implications for the role of inter-subunit serine phosphorylation in the regulation of the PI 3-kinase in vivo.  相似文献   

17.
18.
Cloning of three novel neuronal Cdk5 activator binding proteins   总被引:5,自引:0,他引:5  
Ching YP  Qi Z  Wang JH 《Gene》2000,242(1-2):285-294
Neuronal Cdc2-like kinase (Nclk) is involved in the regulation of neuronal differentiation and neuro-cytoskeleton dynamics. The active kinase consists of a catalytic subunit, Cdk5, and a 25 kDa activator protein (p25nck5a) derived from a 35 kDa neuronal-specific protein (p35nck5a). As an extension of our previous study (Qi, Z., Tang, D., Zhu, X., Fujita, D.J., Wang, J.H., 1998. Association of neurofilament proteins with neuronal Cdk5 activator. J. Biol. Chem. 270, 2329-2335), which showed that neurofilament is one of the p35nck5a-associated proteins, we now report the isolation of three other novel p35nck5a-associated proteins using the yeast two-hybrid screen. The full-length forms of these three novel proteins, designated C42, C48 and C53, have a molecular mass of 66, 24, and 57 kDa, respectively. Northern analysis indicates that these novel proteins are widely expressed in human tissues, including the heart, brain, skeletal muscle, placenta, lung, liver, kidney and pancreas. The bacterially expressed glutathione S-transferase (GST)-fusion forms of these three proteins were able to co-precipitate p35nck5a complexed with Cdk5 from insect cell lysate. Among these three proteins, only C48 and C53 can be phosphorylated by Nclk, suggesting that they may be the substrates of Nclk. Sequence homology searches have suggested that the C48 protein is marginally related to restin protein, whereas the C42 protein has homologues of unknown function in Caenorhabditis elegans and Arabidopsis thaliana.  相似文献   

19.
Cdk5, a member of the cyclin-dependent kinase (cdk) family, is predominantly active in neurons, where its activity is tightly regulated by the binding of its neuronal activators p35 and p39. Cdk5 is implicated in regulating the proper neuronal function; a deregulation of cdk5 has been found associated with Alzheimer's disease and amyotrophic lateral sclerosis. As oxidative stress products have been seen co-localized with pathological hallmarks of neurodegenerative diseases, we studied the effect of oxidative stress on the cdk5 enzyme in human neuroblastoma IMR-32 cells. We evaluated the effects of 4-hydroxynonenal and Ascorbate plus FeSO(4) on cdk5 activity and on the expression of cdk5 and p35 proteins. We report here that oxidative stress stimulates cdk5 activity and induces an upregulation of its regulatory and catalytic subunit expression in IMR-32 vital cells, showing that the cdk5 enzyme is involved in the signaling pathway activated by oxidative stress.  相似文献   

20.
Recently, it was shown that conversion of cdk5 activator protein p35 to a C-terminal fragment p25 promotes a deregulation of cdk5 activity, which may contribute to neurodegeneration in Alzheimer's disease. In this study, we present evidence that calpain is a protease involved in the conversion of p35 to p25. To activate calpain, rat cerebellar granule neurons were treated with maitotoxin (MTX). A C-terminus-directed anti-p35 antibody detected that p35 conversion to p25 paralleled the formation of calpain-generated alpha-spectrin (alpha-fodrin) breakdown products (SBDP's) in a maitotoxin-dose-dependent manner. Two calpain inhibitors (MDl28170 and SJA6017) reduced p35 processing but were unchanged when exposed to the caspase inhibitor carbobenzoxy-Asp-CH(2)OC(=O)-2, 6-dichlorobenzene or the proteasome inhibitors (lactacystin and Z-Ile-Glu(OtBu)Ala-Leu-CHO). p35 protein was also degraded to p25 when rat brain lysate was subjected to in vitro digestion with purified mu- and m-calpains. Additionally, in a rat temporary middle cerebral artery occlusion model, p35 processing to p25 again paralleled SBDP formation in the ischemic core. Lastly, in malonate-injured rat brains, the ipsilateral side showed a striking correlation of SBDP formation with p35 to p25 conversion and tau phosphorylation (at Ser202 and Thr205) increase. These data suggest that calpain is a major neuronal protease capable of converting p35 to p25 and might play a pathological role of activating cdk5 and its phosphorylation of tau in Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号