首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Summary Patients with abetalipoproteinemia have an inborn absence of the major apoprotein of low density plasma lipoproteins, an abnormal serum and red cell lipid profile, and spiny erythrocytes, called acanthocytes. We now show that these deformed cells are reversibly converted to a normal shape, that of a biconcave disk, by incubation with 3 to 10×10–5 m chlorpromazine. We suppose that chlorpromazine acts by expanding the cytoplasmic leaflet of the bilayer, thus promoting inward curvature. Ghosts isolated from the acanthocytes are themselves spiny but are also converted to normal, convave disks by chlorpromazine or merely by a brief incubation at 37°C in low inoic strength buffer. We attribute the latter to a redistribution of lipids between the two leaflets of the membrane bilayer. Similar observations were made with red cells and ghosts from apatient with benign echinocytosis. These observations suggest that the morphological abnormality in acanthocytes and echinocytes can be ascribed to the same mechanism as crenationin vitro; that is, a bilayer couple effect in which an excess of surface area in the outer leaflet over the inner leaflet of the membrane bilayer drives outward curvature. It is striking that cells which were chronicallyabnormal in shapein vivo contain the information to become biconcave disks immediately upon simple chemical treatmentin vitro.  相似文献   

2.
Summary We have sought to elucidate the spiculated shape of McLeod erythrocytes. Red cells from a normal donor and from a McLeod patient were incubated in phosphate-buffered saline containing 0, 0.05, or 0.1mm chlorpromazine at 0°C for 5 min. then glutaraldehyde-fixed, and examined by scanning electron microscopy. The normal red cells were biconcave disks in which chlorpromazine induced inward (negative) curvature: deep cupping (stomatocytosis) and multiple invaginations. The McLeod cells were mostly spiculated. Chlorpromazine at lower concentration converted them into biconcave disks and, at higher concentration, into stomatocytes. These results support the hypothesis that the spiculation of McLeod cells is the result of an imbalance of surface area between the two lipid leaflets of the membrane; that is, a bilayer couple effect.We determined the numerical density of intramembrane particles (IMP) in replicas of both fracture faces of red cells subjected to freeze fracture and rotary shadowing. These values were as follows (expressed per m2 of membrane ±sd): the normal protoplasmic fracture face had 2200±306 and the McLeod had 2300±250. The normal exoplasmic fracture face had 388±75 and the McLeod had 330±59. We conclude that there is no evidence for derangement of band 3, the principal protein in theIMP, in McLeod erythrocytes.  相似文献   

3.
Crenation can be thought of as a surface instability caused by intrinsic precurvature of the membrane. Mathematical modeling, on the presupposition that the red blood cell is a thin shell consisting of a connected (coupled) bilayer having uniformly distributed elastic properties shows that crenation can be initiated by negative precurvature, that is, intrinsic curvature having its concavity directed towards the outside of the cell. This is contrary to the currently accepted view which attributes the effect to positive precurvature of an unconnected bilayer. Crenation and the biconcave shape can coexist in the red cell. This suggests that the bilayer must be connected even when the cell is crenated because the biconcave shape could not otherwise be maintained. The progressive development of crenation to more advanced stages, such as the echinocyte type III and the spheroechinocyte can be accounted for if the outer layer of the membrane is stressed beyond the range where strain is proportional to stress. This is consistent with the extremely small radius of curvature at the tips of the crenations.Certain small variations in the uncrenated biconcave shape of the red cell can be interpreted mathematically as due either to negative intrinsic curvature or to shear resistance. Since, however, a small amount of negative precurvature has been shown to be capable of inducing crenation, it is unlikely to be the cause of the variations in the biconcave shape. These must therefore be due to shear resistance.In the light of this new approach, membrane molecular models based on the assumption that crenation is due to positive precurvature need reconsideration.  相似文献   

4.
In contrast to most mechanical properties of the red cell, experimental information on stress relaxation (SR) of the membrane skeleton is scarce. On the other hand, many postulates or assumptions as to the value of the characteristic time of SR \((\tau _{\mathrm{SR}})\) can be found in the literature. Here, an experiment is presented that allows measurement of \(\tau _{\mathrm{SR}}\) up to values of about 10 h. The membrane skeleton was deformed passively by changing the spontaneous curvature of the bilayer thus transforming the natively biconcave red cells into echinocytes. This shape and the concomitant deformation of the skeleton were kept up to 4 h by incubation at 37 ℃. During this period, no plastic deformation (creep) was observed. After the incubation, the spontaneous curvature was returned to normal. The resulting shape was smooth showing no remnants of the echinocytic shape. Both observations indicate \(\tau _{\mathrm{SR}}\gtrapprox \) 10 h. This result is in gross disagreement to postulates or assumptions existing in the literature.  相似文献   

5.
Human erthrocyte membranes in isotonic medium change shape from crenated spheres to biconcave disks and cup-forms when incubated at 37 degrees C in the presence of MgATP (M. P. Sheetz and S. J. Singer, 1977, J. Cell Biol. 73:638-646). The postulated relationship between spectrin phosphorylation and shape change (W. Birchmeier and S. J. Singer, 1977, J. Cell Biol. 73:647-659) is examined in this report. Salt extraction of white ghosts reduced spectrin phosphorylation during shape changes by 85-95%. Salt extraction did not alter crenation, rate of MgATP-dependent shape change, or the fraction (greater than 80%) ultimately converted to disks and cup-forms after 1 h. Spectrin was partially dephosphorylated in intact cells by subjection to metabolic depletion in vitro. Membranes from depleted cells exhibited normal shape-change behavior. Shape-change behavior was influenced by the hemolysis buffer and temperature and by the time required for membrane preparation. Tris and phosphate ghosts lost the capacity to change shape after standing for 1-2 h at 0 degrees C. Hemolysis in HEPES or N- tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid yielded ghosts that were converted rapidly to disks in the absence of ATP and did not undergo further conversion to cup-forms. These effects could not be attributed to differential dephsphorylation of spectrin, because dephosphorylation during ghost preparation and incubation was negligible. These results suggest that spectrin phosphorylation is not required for MgATP-dependent shape change. It is proposed that other biochemical events induce membrane curvature changes and that the role of spectrin is passive.  相似文献   

6.
Remodeling the shape of the skeleton in the intact red cell.   总被引:1,自引:0,他引:1       下载免费PDF全文
The role of the membrane skeleton in determining the shape of the human red cell was probed by weakening it in situ with urea, a membrane-permeable perturbant of spectrin. Urea by itself did not alter the biconcave disk shape of the red cell; however, above threshold conditions (1.5 M, 37 degrees C, 10 min), it caused an 18% reduction in the membrane elastic shear modulus. It also potentiated the spiculation of cells by lysophosphatidylcholine. These findings suggest that the contour of the resting cell is not normally dependent on the elasticity of or tension in the membrane skeleton. Rather, the elasticity of the skeleton stabilizes membranes against deformation. Urea treatment also caused the projections induced both by micropipette aspiration and by lysophosphatidylcholine to become irreversible. Furthermore, urea converted the axisymmetric conical spicules induced by lysophosphatidylcholine into irregular, curved and knobby spicules; i.e., echinocytosis became acanthocytosis. Unlike controls, the ghosts and membrane skeletons obtained from urea-generated acanthocytes were imprinted with spicules. These data suggest that perturbing interprotein associations with urea in situ allowed the skeleton to evolve plastically to accommodate the contours imposed upon it by the overlying membrane.  相似文献   

7.
Role of the bilayer in the shape of the isolated erythrocyte membrane   总被引:1,自引:0,他引:1  
Summary The determinants of cell shape were explored in a study of the crenation (spiculation) of the isolated erythrocyte membrane. Standard ghosts prepared in 5mm NaPi (pH 8) were plump, dimpled disks even when prepared from echinocytic (spiculated) red cells. These ghosts became crenated in the presence of isotonic saline, millimolar levels of divalent cations, 1mm 2,4-dinitrophenol or 0.1mm lysolecithin. Crenation was suppressed in ghosts generated under conditions of minimal osmotic stress, in ghosts from red cells partially depleted of cholesterol, and, paradoxically, in ghosts from red cells crenated by lysolecithin. The susceptibility of ghosts to crenation was lost with time; this process was potentiated by elevated temperature, low ionic strength, and traces of detergents or chlorpromazine.In that ghost shape was influenced by a variety of amphipaths, our results favor the premise that the bilayer and not the subjacent protein reticulum drives ghost crenation. The data also suggest that vigorous osmotic hemolysis induces a redistribution of lipids between the two leaflets of the bilayer which affects membrane contour through a bilayer couple mechanism. Subsequent relaxation of that metastable distribution could account for the observed loss of crenatability.  相似文献   

8.
R E Waugh 《Biophysical journal》1996,70(2):1027-1035
Model calculations were performed to explore quantitative aspects of the discocyte-echinocyte shape transformation in red blood cells. The shape transformation was assumed to be driven by changes in the preferred curvature of the membrane bilayer and opposed by the elastic shear rigidity of the membrane skeleton. The energy required for echinocyte bump formation was calculated for a range of bump shapes for different preferred curvatures. Energy minima corresponding to nonzero bump heights were found when the stress-free area difference between the membrane leaflets or the spontaneous curvature of the membrane became sufficiently large, but the calculations predict that the membrane can tolerate significant differences in the resting areas of the inner and outer leaflets or significant spontaneous curvature without visible changes in shape. Thus, if the cell is near the threshold for bump formation, the calculations predict that small changes in membrane properties would produce large changes in cellular geometry. These results provide a rational framework for interpreting observations of shape transformations in red cells and for understanding the mechanism by which small changes in membrane elastic properties might lead to significant changes in geometry.  相似文献   

9.
L Mircevová 《Blut》1977,35(4):323-327
Chemically different substances known to change the Mg++-ATPase activity in the red cell membrane, likewise alter the red cell shape. Normal human red cells retain their biconcave shape only when the activity of this enzyme remains unchanged. The present work deals with the possibility that Mg++-ATPase may cause certain tension in the membrane responsible for the biconcave shape of the erythrocyte.  相似文献   

10.
The human red cell can be deformed by external forces but returns to the biconcave resting shape after removal of the forces. If after such shape excursions the rim is always formed by the same part of the membrane, the cell is said to have a memory of its biconcave shape. If the rim can form anywhere on the membrane, the cell would have no shape memory. The shape memory was probed by an experiment called go-and-stop. Locations on the membrane were marked by spontaneously adhering latex spheres. Shape excursions were induced by shear flow. In virtually all red cells, a shape memory was found. After stop of flow and during the return of the latex spheres to the original location, the red cell shape was biconcave. The return occurred by a tank-tread motion of the membrane. The memory could not be eliminated by deforming the red cells in shear flow up to 4 h at room temperature as well as at 37 degrees C. It is suggested that 1). the characteristic time of stress relaxation is >80 min and 2). red cells in vivo also have a shape memory.  相似文献   

11.
L M Chi  W G Wu 《Biophysical journal》1990,57(6):1225-1232
When human erythrocytes are treated with exogenous monopalmitoyl phosphatidylcholine (MPPC), the normal biconcave disk shape red blood cells (RBC) become spiculate echinocytes. The present study examines the quantitative aspect of the relationship between effective bilayer expansion and erythrocyte shape change by a newly developed method. This method is based on the combination of direct surface area measurement of micropipette and relative bilayer expansion measurement of 13C crosspolarization/magic angle spinning nuclear magnetic resonance (NMR). Assuming that 13C NMR chemical shift of fatty acyl chain can be used as an indicator of lateral packing of membrane bilayers, it is possible for us to estimate the surface area expansion of red cell membrane induced by MPPC from that induced by ethanol. Partitions of lipid molecules into cell membrane were determined by studies of shape change potency as a function of MPPC and red cell concentration. It is found that 8(+/- 0.5) x 10(6) molecules of MPPC per cell will effectively induce stage three echinocytes and yield 3.2(+/- 0.2)% expansion of outer monolayer surface area. Surface area of normal cells determined by direct measurements from fixed geometry of red cells aspirated by micropipette was 118.7 +/- 8.5 microns2. The effective cross-sectional area of MPPC molecules in the cell membrane therefore was determined to be 48(+/- 4) A2, which is in agreement with those determined by x-ray from model membranes and crystals of lysophospholipids. We concluded that surface area expansion of RBC can be explained by a simple consideration of cross-sectional area of added molecules and that erythrocyte shape changes correspond quantitatively to the incorporated lipid molecules.  相似文献   

12.
Intact erythrocytes become immediately crenated upon addition of 2,4- dinitrophenol (DNP) or pyrenebutyric acid (PBA). However, when cells are incubated at 37 degrees C in the presence of the crenating agents with glucose, they gradually (4--8 h) recover the normal biconcave disc form. The recovery process does not reflect a gradual inactivation of DNP or PBA since fresh cells are equally crenated by the supernatant from the recovered cells. Further, after recovery and removal of the crenating agents, cells are found to be desensitized to the readdition of DNP as well as to the addition of PBA, but they are more sensitive to cupping by chlorpromazine. This alteration in the cell membrane responsiveness was reversible upon further incubation in the absence of DNP. Recovery is dependent upon cellular metabolic state since an energy source is needed and incubation with guanosine but not adenosine will accelerate conversion to the disc shape. It is suggested that the conversion of cells from crenated to disc shape in the presence of the crenators, represents an alteration or rearrangement of membrane components rather than a redistribution of the crenators within the membrane. This shape recovery process may be important for erythrocyte shape preservation as well as shape control in other cells.  相似文献   

13.
Changes in the membrane morphology and phospholipid content of human erythrocytes were determined after incubation of intact cells with each of various exogeneous phospholipases (PLases). PLase A2 from Naja naja or bee venom induced crenation of the cells in parallel with hydrolysis of the membrane phosphatidylcholine (PC). This crenated cell shape was reversed to a biconcave disc or cup-like form by a further treatment with lysophospholipase. In contrast, bacterial PLase C from Clostridium perfringens and Pseudomonas aureofaciens or fungal PLase D from Streptomyces chromofuscus induced invagination of the cells in parallel with hydrolysis of the PC. The action of the latter group of PLases on the membrane morphology was counteracted by PLase A2, and vice versa. Thus, participation of the membrane lipid bilayer in the induction of membrane conformational change and hence cell shape change was demonstrated.  相似文献   

14.
Summary The effects of various conditions in lysing and resealing the red cell membrane on the degree of ghost deformation and orientation in flow are investigated using the flow EPR and spin-label method. The relatively low deformability of the standard ghost, which is lysed and resealed, respectively, in hypotonic and isotonic NaCl-Tris buffer, is markedly enhanced by the presence of Mg-ATP, chlorpromazine, or Ca2+ ion during resealing. The effect is concentration dependent, and there is an optimal level for each treatment. Chlorpromazine and Ca2+ are also effective when added to the resealed ghosts. Mg2+ ion shows an opposite effect reducing the ghost deformability in flow at all concentrations. An isotonic lysis in NH4HCO3 solution with less osmotic stress substantially raises ghost deformability above that of the standard ghosts. These results are interpreted on the basis of a misalignment between the bilayer leaflets that is probably brought about during hypotonic lysis and its recovery to the nearly normal bilayer state by the agents used during or after resealing. The novel finding of deformability enhancing effect of calcium is assumed to be caused by the electrostatic expansion of the inner layer relative to the outer leaflet. The explanations are supported by the resealed ghost shapes observed before and after the treatments; shape recovery from the monoconcave spheroid toward biconcave discoid is observed in most cases concomitantly with improvements of flow characteristics.  相似文献   

15.
A possible physical explanation of the echinocyte-spheroechinocyte red blood cell (RBC) shape transformation induced by the intercalation of amphiphilic molecules into the outer layer of the RBC plasma membrane bilayer is given. The stable RBC shape is determined by the minimization of the membrane elastic energy, consisting of the bilayer bending energy, the bilayer relative stretching energy and the skeleton shear elastic energy. It is shown that for a given relative cell volume the calculated number of echinocyte spicula increases while their size decreases as the number of the intercalated amphiphilic molecules in the outer layer of the cell membrane bilayer is increased, which is in agreement with experimental observations. Further, it is shown that the equilibrium difference between the outer and the inner membrane leaflet areas of the stable RBC shapes increases if the amount of the intercalated amphiphiles is increased, thereby verifying theoretically the original bilayer couple hypothesis of Sheetz and Singer (1974) and Evans (1974). Received: 22 August 1997 / Revised version: 25 November 1997 / Accepted: 11 February 1998  相似文献   

16.
Studies with phospholipase C have indicated that two-thirds of the phosphatidylethanolamine of rat liver endoplasmic reticulum is located in the inner leaflet of the membrane bilayer. Phosphatidyl[14C]ethanolamine is synthesised in microsomes incubated with CDP[14C]ethanolamine. Using phospholipase C as a probe we have observed that the labelled phospholipid is initially (1–2 min) concentrated in the ‘outer leaflet’ of the membrane bilayer. The specific activity of this pool of phosphatidylethanolamine was 3.5 times that of the inner leaflet. If, however, the microsomes were opened with 0.4% taurocholate or the French pressure cell to make both sides of the bilayer available to phospholipase C, the phosphatidylethanolamine behaves as a single pool for hydrolysis. On longer incubation, up to 30 min, with CDP[14C]ethanolamine the specific activity of the outer leaflet phosphatidylethanolamine becomes close to that of the inner leaflet. In chase experiments, in which microsomal phosphatidylethanolamine was labelled by incubation with CDP[14C]ethanolamine for 1 min, the reaction stopped by addition of calcium, and the microsomes isolated by centrifugation and reincubated, labelled phosphatidylethanolamine was transferred from the ‘outer leaflet’ to the ‘inner leaflet’, so that both were equally labelled. These observations suggest that phosphatidylethanolamine is synthesised at the cytoplasmic leaflet of the endoplasmic reticulum and subsequently transferred across the membrane to the cisternal leaflet of the bilayer. Transmembrane movement is apparently temperature-dependent and independent of continued synthesis of phosphatidylethanolamine.  相似文献   

17.
The changes of volume distribution curves of erythrocytes during and after lysis by complement or nystatin or in hypotonic buffers were measured by flow cytometry. Biconcave and spheroidal ghosts were observed after complement lysis and spheroidal ghosts were seen only after nystatin and hypotonic lysis. The spheroidal ghosts derived from red cells lysed by complement or nystatin were permeable to sucrose; those from hypotonic lysis were sucrose-impermeable. Spheroidal ghosts after complement lysis remained permeable for sucrose whereas spheroidal ghosts after nystatin lysis resealed after removal of the drug by washing. Biconcave ghosts produced by complement lysis were almost impermeable to sucrose initially and therefore responded to osmotic changes, but they became sucrose-permeable upon prolonged incubation at 37 degrees C. The rate of sucrose equilibration increased as the stability of the biconcave shape diminished with increasing numbers of C5b-9 complexes. At 850 C5b-9 complexes/ghost, the biconcave shape and impermeability for sucrose were completely lost. The results support the hypothesis that complement C5b-9 complexes, in addition to the interaction with the lipid bilayer, may interact with the cytoskeleton of the erythrocyte membrane.  相似文献   

18.
Typical, axisymmetrical cup shaped cells have been carefully measured and the shapes analyzed mathematically. The results show that the strain energy of a cup shaped cell is always higher than that of a biconcave cell except when the two layers of the membrane involved in resistance to bending are free to slide over one another. This is true whether intrinsic curvature of the membrane is positive, negative or zero. If the two layers can slide over one another, the cup shape becomes the lower energy form. Shear resistance, if appreciable, must cause the cup cell to buckle. Photomicrographs of cup shaped cells show buckled configurations characteristic of those of a partly deflated thin-walled rubber ball, which is a similar object having a low ratio of bending/shear strength.In light of these findings, the cup shape of the red cell can no longer be considered as evidence of intrinsic membrane curvature of opposite sign to that of the crenated cell, but appears to indicate a phase change either in the hydrophobic interior of the bimolecular membrane or in some equivalent interface.  相似文献   

19.
We have investigated a female patient with autoerythrocyte sensitization syndrome (AES syndrome), having a positive skin response to her own red blood cells (RBC) and to phosphatidylserine (PS). Using 2,4,6-trinitrobenzenesulfonic acid (TNBS), bee venom phospholipase A2 and merocyanine 540 binding, we have demonstrated that in RBC of patient more than 50% of PS is redistributed into the outer leaflet of the plasma membrane. Using homologous RBC from a healthy donor we were able to induce transbilayer PS redistribution by incubation with the patient plasma. The presence of immunoglobulin E against cardiolipin and PS was proved in patient's plasma. We elaborated a method for cytoskeleton visualization using indirect immunofluorescence technique. We found disorders in cytoskeleton organization in RBC of the patient. We recommend in vitro testing for AES syndrome diagnosis. The positive effect of chlorpromazine treatment is described.  相似文献   

20.
A theoretical analysis is presented of the bending mechanics of a membrane consisting of two tightly-coupled leaflets, each of which shears and bends readily but strongly resists area changes. Structures of this type have been proposed to model biological membranes such as red blood cell membrane. It is shown that when such a membrane is bent, anisotropic components of resultant membrane tension (shear stresses) are induced, even when the tension in each leaflet is isotropic. The induced shear stresses increase as the square of the membrane curvature, and become significant for moderate curvatures (when the radius of curvature is much larger than the distance between the leaflets). This effect has implications for the analysis of shape and deformation of freely suspended and flowing red blood cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号