首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 492 毫秒
1.
2.
《Nordic Journal of Botany》2008,25(1-2):113-118
Three species of Mallomonas ( M. crassisquama , M. elongata and M. tonsurata ) were isolated from Kachang dam in Daegu, Korea and the individual species were grown as batch cultures in the laboratory. The growth characteristics of these species were investigated at different temperatures and pH. Mallomonas crassisquama exhibited the highest growth rates (μmax) at 18°C, whereas the maximum growth rates of M. elongata and M. tonsurata were observed at 21°C. The maximum growth rates of M. crassisquama and M. elongata were observed at pH 6, and M. tonsurata exhibited maximum growth rate at pH 5. Mallomonas crassisquama and M. tonsurata showed high growth rate between pH 4 and 6, and M. elongata showed high growth rate below pH 7. The three species showed similar growth characteristics except that M. elongata proliferated at a narrower temperature range and at a wider pH range than other two species.  相似文献   

3.
Stationary phase cultures of a clonal line of rat astrocytes (C6) were maintained at pH values ranging from 6.0 to 8.4 using media buffered with various combinations of organic buffers or graded concentrations of bicarbonate ion at a constant CO2 tension. The accumulation of a soluble acidic protein unique to the nervous system (S-100) in media buffered with organic buffers was optimal in the pH range 6.4 to 6.8, significantly more acid than that optimal for cell growth (pH 7.0 to 7.8). Cells maintained in CO2-bicarbonate-buffered media exhibited a higher and less marked pH optimum for S-100 protein accumulation and a lower efficiency of accumulation of the protein. These data suggest that the organic buffer ions themselves, apart from their function as buffers, are influencing the accumulation of S-100. The specific activity (assayed at the enzymatic pH optimum) of a membrane-bound enzyme enriched in glial cells and myelin, 2',3'-cyclic nucleotide 3'-phosphohydrolase, was markedly pH-dependent. The optimal pH range was 6.4 to 6.7 in organic buffer controlled media. In CO2-bicarbonate controlled media the optimal pH range was only slightly higher (pH 6.6 to 7.0), but the specific activities were reduced relative to organic buffer-grown cells. The structural relationship of some of the aminoethanesulfonic acid buffers used in these experiments to certain compounds of neurochemical interest (such as taurine and alpha-flupenthixol) is noted.  相似文献   

4.
Two polycyclic aromatic hydrocarbon (PAH)-contaminated soils of pH 2 were successfully used as inoculum to enrich cultures growing on phenanthrene and pyrene at different pHs, including pH 3. Selected pyrene-utilizing cultures obtained at pH 3, pH 5, and pH 7 were further characterized. All showed rapid [14C]pyrene mineralization at pH 3 and pH 5 and grew on pyrene at pH values ranging from 2 to 6. Eubacterial and mycobacterial 16S rRNA gene denaturing gradient gel electrophoresis fingerprinting and sequencing indicated that the cultures were dominated by a single bacterium closely related to Mycobacterium montefiorense, belonging to the slow-growing Mycobacterium sp. In contrast, a culture enriched on pyrene at pH 7 from a slightly alkaline soil sampled at the same site was dominated by Pseudomonas putida and a fast-growing Mycobacterium sp. The M. montefiorense-related species dominating the pyrene-utilizing cultures enriched from the acidic soils was also the dominant Mycobacterium species in the acidic soils. Our data indicate that a slow-growing Mycobacterium species is involved in PAH degradation in that culture and show that bacteria able to degrade high-molecular-weight PAHs at low pH are present in acidic PAH-contaminated soil.  相似文献   

5.
The effect of pH on the structure of the communities of anoxygenic phototrophic bacteria (APB) was studied under laboratory conditions. Samples of natural APB communities were inoculated into media that differed in pH values, which were 7, 9.5, or 10.5. The structure of the APB communities in the obtained enrichment cultures at all pH values depended also on the mineralization levels of the media, which were the same as in the lakes from which samples were taken. The same dependence of the community structure on salinity was observed as in the case of the natural communities that had been described previously. APB were most diverse in the enrichment cultures grown at pH 9.5. The shift of the pH to either neutral or extremely alkaline values restricted the species diversity within the APB community, resulting in marked predominance of the most adapted forms. It was shown that the status of Ectothiorhodospira species within the community could serve not only as an indicator of salinity but also as an indicator of pH in soda lakes with a water mineralization of higher than 5 g/l. The statuses of various APB groups in the community as dependent on pH and salinity are discussed, as well as possible changes in these statuses due to changes in the water level and other environmental parameters in the studied lakes.  相似文献   

6.
Extensive denitrification resulted in a dramatic increase in pH (from 6.8 to 9.5) in nitrate-impacted, acetate-amended sediment microcosms containing sediment representative of the Sellafield nuclear facility, UK. Denitrification was followed by Fe(III) reduction, indicating the presence of alkali-tolerant, metal-reducing bacteria. A close relative (99% 16S rRNA gene sequence homology) to Serratia liquefaciens dominated progressive enrichment cultures containing Fe(III)-citrate as the sole electron acceptor at pH 9 and was isolated aerobically using solid media. The optimum growth conditions for this facultatively anaerobic Serratia species were investigated, and it was capable of metabolizing a wide range of electron acceptors including oxygen, nitrate, FeGel, Fe-NTA and Fe-citrate and electron donors including acetate, lactate, formate, ethanol, glucose, glycerol and yeast extract at an optimum pH of c. 6.5 at 20 °C. The alkali tolerance of this strain extends the pH range of highly adaptable Fe(III)-reducing Serratia species from mildly acidic pH values associated with acid mine drainage conditions to alkali conditions representative of subsurface sediments stimulated for extensive denitrification and metal reduction.  相似文献   

7.
Cultures of Entodinium caudatum, Entodinium exiguum, Epidinium caudatum, and Ophryoscolex purkynjei were grown and transferred in poorly buffered media prepared using different concentrations of sodium bicarbonate and a nitrogen gas phase. By transferring every 12 or 24 h, culture pH was gradually decreased until the protozoa disappeared. The cultures were transferred by placing half of the culture into an equal volume of fresh medium, resulting in pH fluctuations similar to those in the rumen, resulting from fermentation, eating, and saliva production. All four species appeared to maintain their concentrations around pH 5.8, but numbers decreased as pH values fell below 5.6. The four species were similar in that they all survived above pH 5.3. These results differ from previous reports in which Entodinium species appeared to be more tolerant to low pH than all other species of rumen ciliates. No adaptation to low pH was observed in Epidinium caudatum cultures after recovery from pH 5.4 medium containing only one or two viable cells.  相似文献   

8.
The spontaneous development of competence by cultures of Streptococcus pneumoniae in casein hydrolysate medium was strongly dependent on the initial pH of the culture medium. Cells growing in cultures beginning with a wide range of initial pH values (6.8 to 8.0) all developed competence, as measured by [3H]DNA uptake, [3H]DNA degradation and genetic transformation; but the initial pH of the medium affected both the timing of the occurrence of competence and the number of times the culture became competent. In cultures grown in media of lower initial pH, competence occurred only once, at high population densities, while in more alkaline media a succession of competence cycles occurred, beginning at lower cell densities. The critical population density required for the initiation of competence varied tenfold over the pH range studied. Successive competence cycles in an alkaline medium were not equivalent: while the percentage of competent cells in the first competence cycle was high (approximately 80%), that in the second competence cycle was lower (approximately 12%). Correspondingly, competence-specific proteins were less prominent in the labelled-protein pattern of the second competence cycle than in that of the first. These features of the physiology of competence control make it possible to adjust the expression of competence to suit various experimental requirements.  相似文献   

9.
The effect of pH on the structure of the communities of anoxygenic-phototrophic-bacteria (APB) was studied under laboratory conditions. Samples of natural APB communities were inoculated into media that differed in pH values, which were 7, 9.5, or 10.5. The structure of the APB communities in the obtained enrichment cultures depended on the pH values and on the mineralization levels of the media, which were the same as in the lakes from which samples were taken. The same dependence of the community structure on salinity was observed as in the case of the natural communities that had been described previously. APB were most diverse in the enrichment cultures grown at pH 9.5. The shift of the pH to either neutral or extremely alkaline values affected the species diversity within the APB community, resulting in marked predominance of the most adapted forms. It was shown that the status of Ectothiorhodospira within the community could serve as an indicator of both salinity and pH in soda lakes with a water mineralization of higher than 5 g/l. The statuses of various APB groups in the community as dependent on pH and salinity are discussed, as well as possible changes in these statuses due to changes in the water level and other environmental parameters in the studied lakes.  相似文献   

10.
Two polycyclic aromatic hydrocarbon (PAH)-contaminated soils of pH 2 were successfully used as inoculum to enrich cultures growing on phenanthrene and pyrene at different pHs, including pH 3. Selected pyrene-utilizing cultures obtained at pH 3, pH 5, and pH 7 were further characterized. All showed rapid [14C]pyrene mineralization at pH 3 and pH 5 and grew on pyrene at pH values ranging from 2 to 6. Eubacterial and mycobacterial 16S rRNA gene denaturing gradient gel electrophoresis fingerprinting and sequencing indicated that the cultures were dominated by a single bacterium closely related to Mycobacterium montefiorense, belonging to the slow-growing Mycobacterium sp. In contrast, a culture enriched on pyrene at pH 7 from a slightly alkaline soil sampled at the same site was dominated by Pseudomonas putida and a fast-growing Mycobacterium sp. The M. montefiorense-related species dominating the pyrene-utilizing cultures enriched from the acidic soils was also the dominant Mycobacterium species in the acidic soils. Our data indicate that a slow-growing Mycobacterium species is involved in PAH degradation in that culture and show that bacteria able to degrade high-molecular-weight PAHs at low pH are present in acidic PAH-contaminated soil.  相似文献   

11.
Alkaliphilic Bacillus species that grow at pH 10.5 must cope with a low protonmotive force (-50 mV) due to a reversed transmembrane pH gradient at least 2 pH units more acid inside. Here we demonstrate that strictly alkaliphilic B. firmus RAB and two strains of B. alcalophilus (ATCC 27467 and DSM 485) grow exponentially in batch cultures with a doubling time of less than 1 h in 100 mM buffered medium, while the actual medium pH remains above 10.2. The ATCC strain continued to grow rapidly for at least 7 h, but the growth rate of the DSM strain declined dramatically after 3 h. However, both the B. alcalophilus strains, B. firmus RAB and facultatively alkaliphilic B. firmus OF4 were readily maintained for at least 24 h between pH 10.4 and 10.6 in a chemostat where nutrients were constantly replenished. A critical nutrient may be limiting in batch cultures of the DSM strain of B. alcalophilus. The facultative alkaliphile grew equally well in batch cultures at an initial pH of 7.5 or 10.5. Its molar growth yield (23 mg dry wt mmol-1) on malate (Ymal) was the same at the two pH values and was comparable to Ymal for B. subtilis grown at neutral pH. B. firmus RAB and B. alcalophilus ATCC 27467 grown at pH 10.5 also showed Ymal values at least as high as the neutralphile, indicating efficient use of the energy source even at low protonmotive force. Moreover, the phosphorylation potential of B. firmus OF4 grown at pH 7.5 (45.2 kJ mol-1) or pH 10.5 (46 kJ mol-1) was in a conventional range for bacteria.  相似文献   

12.
The cellular autolytic reaction system in Streptococcus faecalis ATCC 9790 was analyzed for relative increases in reaction rates with increasing temperature by determination of Arrhenius activation energies (E). The systems examined were: (i) an isolated wall-enzyme complex in 0.01 M sodium phosphate, pH 6.9; (ii) exponential-phase cells suspended in 0.01 or o.3 M sodium phosphate pH 6.8, or in 0.04 M ammonium acetate, pH 6.8, (iii) growing cultures deprived of glucose or lysine; and (iv) cultures treated in growth media with the nonionic detergent, Triton X-100. For detergent-treated cells, E values were between 23.9 and 27.4 kcal/mol (ca. 100.1 to 174.7 kJ/mol) at concentrations of Triton X-100 between about 0.03 and 0.072 mg/ml. E values dropped sharply to 11.5 to 13.0 kcal/m-l (ca. 48.2 to 54.4 kJ/mol) at Triton X-100 concentrations of 0.12 mg/ml or higher. For the remaining systems, E values ranged from 16 to 20 kcal/mol (ca. 67.0 to 83.7 kJ/mol) (wall lysis, cellular autolysis in 0.01 M sodium phosphate or in 0.04 M ammonium acetate, and autolysis of glucose-starved cells) to 31 to 38 kcal/mol (ca 129.8 to 159.1 kJ/mol) (cellular autolysis in 0.3 M sodium phosphate or autolysis of lysine-starved cells). High concentrations of Triton X-100 appear to lower the E values below the 16 to 20 kcal/mol observed for the autolysis of isolated walls. This effect may be related to disruption by the detergent of a hydrophobic complex regulating cellular autolysis in vivo.  相似文献   

13.
Acute toxicity tests were conducted to establish the response of Selenastrum capricornutum Printz to sublethal concentrations of As, Cr, Cu, Ni and Zn at a broad range of pH levels. Cultures were incubated for a period of seven days at pH 4 in standard algal assay media containing sublethal concentrations of metals. At this low pH, growth was depressed for all metals tested. The adjustment of pH to higher levels resulted in increased growth when cultures were treated with As, Cu, or Ni and incubated for an additional 7 days. Toxicity was least at the optimum pH range for growth of the alga.The observation that the toxicity of As, Cu, and Ni to S. capricornutum decreases markedly at pH values above 4.0 may be of ecological importance in the control of acid mine pollution. If a high percentage of algae show a similar response to decreasing toxicity with increasing pH, it clearly would be of value to adopt measures which control pH as well as the levels of metals present. It was suggested that algae with a broad pH growth range, such as S. capricornutum, could benefit from the addition of highly alkaline materials to waters where certain metals are present.  相似文献   

14.
Cell-suspension cultures ofSpinacia andRosa accumulated a cell wall protein, extensin, in a form that was amenable to leaching from the surface of the living cells by a brief treatment with non-toxic salts. Cultures ofLycopersicon, Capsicum, Acer andFestuca did not accumulate this class of extensin. InSpinacia andRosa, optimum yields of leachable extensin were achieved from young cultures, in media at relatively low pH, by leaching with 0.1 M CaCl2. Older cultures, pH values >6.5, and LaCl3 or higher concentrations of CaCl2 were less effective.Abbreviation TCA trichloroacetic acid  相似文献   

15.
AIMS: Quantification of the effects of pH, temperature and nutrient limitations on the growth and leukotoxin (LKT) production parameters of Mannheimia haemolytica in batch and chemostat culture. METHODS AND RESULTS: Mannheimia haemolytica strains OVI-1 and PH12296 were grown aerobically in two semi-defined media. In amino acid-limited cultures, the LKT concentration and yield in terms of biomass (Y(LKT/x)) were up to eightfold greater than in carbon-limited cultures. Supplementing amino acid-limited chemostat cultures with cysteine, glutamine, ferric iron and manganese further enhanced the Y(LKT/x) values up to threefold. Supplementation of an amino acid-limited batch culture of M. haemolytica strain OVI-1 with these nutrients resulted in an LKT concentration of 1.77 g l(-1) that was 45-fold greater than that obtained in RPMI 1640 medium. Aerobiosis enhanced LKT production. High acetic acid concentrations were produced under carbon-sufficient conditions. The highest maximum specific growth rates were recorded in the range of pH 6.8 to 7.8 and 37 to 40 degrees C. CONCLUSIONS: An amino acid-limited culture medium greatly improved LKT production in aerobic batch culture, which could be further enhanced by supplementation with cysteine, glutamine, ferric iron and manganese. SIGNIFICANCE AND IMPACT OF THE STUDY: It was demonstrated that LKT production by M. haemolytica could be dramatically increased through manipulation of the culture medium composition, which could benefit the production of LKT-based vaccines against bovine shipping fever pneumonia.  相似文献   

16.
Summary A minimal medium was used to investigate the triggers regulating the initiation of solvent production and differentiation in Clostridium acetobutylicum P262. The accumulation of acid end-products caused the inhibition of cell division and the initiation of solvent production and cell differentiation. Initiation only occurred with a narrow pH range. Glucose or ammonium limited cultures failed to achieve the necessary threshold of acid end-products and solvent production and differentiation were not initiated. The addition of acid end-products or ammonium to cultures containing suboptimal levels of glucose or nitrogen respectively, enhanced solvent production. Resuspension of cells in media containing the threshold level of acid end-products and residual glucose induced endospore formation. Glucose or ammonium limitation did not induce sporulation and there was a requirement for glucose and ammonium during solventogenesis and endospore formation. Initiation of solvent production and clostridial stage formation were essential for sporulation. The induction of endospore formation in C. acetobutylicum P262 differs from that in the aerobic endospore forming bacteria where sporulation is initiated by nutrient starvation.  相似文献   

17.
The genus Coccomyxa comprises green microalgae, which can be found worldwide in remarkably versatile aquatic and terrestrial ecosystems including symbiotic associations with a number of different hosts. In this study, we describe a new species, Coccomyxa onubensis, based on 18S and ITS ribosomal DNA (rDNA) sequence data. Coccomyxa onubensis was isolated from acidic water, and its ability to adapt to a wide range of acidic and alkaline pH values and to high salinity was analyzed. The long-term adaptation capacity of the microalga to such extreme conditions was evaluated by performing continuous repeated batches at selected salt concentrations and pH values. Adapted cultures of C. onubensis were found to yield high biomass productivities from pH 2.5 to 9, with maximum yields at acidic pH between 2.5 and 4.5. Moreover, C. onubensis was also found to adapt to salinities as high as 0.5 M NaCl, reaching biomass productivities that were similar to those of control cultures. Ultrastructural analysis by transmission electron microscopy of C. onubensis cells adapted to high salinity showed a robust response to hyperosmotic shock. Thus, C. onubensis was found to be acidotolerant and halotolerant. High biomass productivity over a wide range of pH and salinities denotes C. onubensis as an interesting candidate for various biotechnological applications including outdoor biomass production.  相似文献   

18.
Strains of type 6 (S 43) and type 14 group A streptococci were grown with M-protein production in the presence of chemically defined synthetic media slightly modified from that previously employed for the growth of a nonproducer of M protein (type 4). The M protein, which is associated with virulence in group A streptococcus, was previously produced in growing cultures only with complex media. The bacterial growth with the biosynthesis of M protein in synthetic medium was obtained by successive adaptation in steady-state culture with decreasing amounts of Todd-Hewitt broth. The synthesis continued for at least 480 generations at pH 7.3 and with a generation time of 84 min. Glucose was the limiting nutrilite and the concentration of reducing agents in the medium was critical. The M protein was identified by gel diffusion against type-specific antisera from the Communicable Disease Center and from R. Lancefield. The yield of M protein obtained from organisms grown in the continuous-culture device was comparable to that from standard broth stationary cultures.  相似文献   

19.
Autoclaving is a standard procedure for sterilizing nutrient media for plant tissue cultures. Most tissue cultures are grown at pH 5.2 to 5.8 with pH adjustments being made prior to autoclaving. This paper reports that there are significant differences between initial pH levels and pH levels following autoclaving, particularly in the pH range of 5.7 to 8.5. This effect is noted with and without agar. In addition, we report that with time the pH of the medium drifts into the acid range. When Cucumis callus was added to the medium, the pH was changed significantly within 48 hours. The amount and direction (increase or decrease of pH) was significantly correlated with the original pH. This suggests that researchers should be wary of the true pH situation in their medium. In addition, in publications authors should specify whether their medium pH value was determined before or after autoclaving.  相似文献   

20.
The ability of phenylacetic acid (PAA), a naturally occurring auxin, to initiate and support growth of callus and suspension cultures of several species is reported. Callus tissue of tobacco (Nicotiana tabacum L. var. WI-38), initiated and maintained on a medium with 2,4-dichlorophenoxyacetic acid (2,4-D), was transferred to and maintained on media supplemented with 25–500 μM PAA as the only plant growth regulator (PGR). Optimal concentrations of PAA were determined for tobacco callus proliferation in the dark (250 μM PAA) and with a 16-h light/8-h dark photoperiod (500 μM PAA). Tobacco suspension cultures were maintained for over 28 transfers in media containing 20–40 μM PAA as the sole PGR. When tobacco callus tissue maintained on PAA-supplemented media for over 18 months was transferred to liquid media containing kinetin, plantlets were regenerated. Callus of sunflower (Helianthus annuus L. var. Russian Mammoth) proliferated on media containing PAA at 5–250 μM as the sole PGR. Similar PAA concentrations inhibited normal development and promoted callus formation in tobacco and pea (Pisum sativum L. vars. common, Frogel, and Frimas) epicotyl tissue. PAA as the sole PGR did not support the growth of soybean (Glycine max (L.) Merrill var. Fiskeby) callus or suspension cultures. Chickpea (Cicer arietinum L. var. UC-5) and lentil (Lens culinaris Medic. var. Laird) callus cultures proliferated on media containing 25–500 μM PAA, but habituation of the cultures was common. PAA was not toxic to tobacco, chickpea, and lentil tissues at levels as high as 500 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号