首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in the LKB1 protein kinase result in the inherited Peutz Jeghers cancer syndrome. LKB1 has been implicated in regulating cell proliferation and polarity although little is known about how this enzyme is regulated. We recently showed that LKB1 is activated through its interaction with STRADalpha, a catalytically deficient pseudokinase. Here we show that endogenous LKB1-STRADalpha complex is associated with a protein of unknown function, termed MO25alpha, through the interaction of MO25alpha with the last three residues of STRADalpha. MO25alpha and STRADalpha anchor LKB1 in the cytoplasm, excluding it from the nucleus. Moreover, MO25alpha enhances the formation of the LKB1-STRADalpha complex in vivo, stimulating the catalytic activity of LKB1 approximately 10-fold. We demonstrate that the related STRADbeta and MO25beta isoforms are also able to stabilize LKB1 in an active complex and that it is possible to isolate complexes of LKB1 bound to STRAD and MO25 isoforms, in which the subunits are present in equimolar amounts. Our results indicate that MO25 may function as a scaffolding component of the LKB1-STRAD complex and plays a crucial role in regulating LKB1 activity and cellular localization.  相似文献   

2.
AMP-activated protein kinase (AMPK) is a major metabolic regulator in the cardiac myocyte. Recently, LKB1 was identified as a kinase that regulates AMPK. Using immunoblot analysis, we confirmed high expression of LKB1 in isolated rat cardiac myocytes but show that, under basal conditions, LKB1 is primarily localized to the nucleus, where it is inactive. We examined the role of LKB1 in cardiac myocytes, using adenoviruses that express LKB1, and its binding partners Ste20-related adaptor protein (STRADalpha) and MO25alpha. Infection of neonatal rat cardiac myocytes with all three adenoviruses substantially increased LKB1/STRADalpha/MO25alpha expression, LKB1 activity, and AMPKalpha phosphorylation at its activating phosphorylation site (threonine-172). Since activation of AMPK can inhibit hypertrophic growth and since LKB1 is upstream of AMPK, we hypothesized that expression of an active LKB1 complex would also inhibit protein synthesis associated with hypertrophic growth. Expression of the LKB1/STRADalpha/MO25alpha complex in neonatal rat cardiac myocytes inhibited the increase in protein synthesis observed in cells treated with phenylephrine (measured via [(3)H]phenylalanine incorporation). This was associated with a decreased phosphorylation of p70S6 kinase and its substrate S6 ribosomal protein, key regulators of protein synthesis. In addition, we show that the pathological cardiac hypertrophy in transgenic mice with cardiac-specific expression of activated calcineurin is associated with a significant decrease in LKB1 expression. Together, our data show that increased LKB1 activity in the cardiac myocyte can decrease hypertrophy-induced protein synthesis and suggest that LKB1 activation may be a method for the prevention of pathological cardiac hypertrophy.  相似文献   

3.
The tumor suppressor protein kinase LKB1 exerts its effects by phosphorylating and activating AMP-activated protein kinase (AMPK) and members of the AMPK-related kinase family, such as the brain-specific kinases BRSK1/BRSK2 (SAD-B/SAD-A). LKB1 contains a conserved serine residue near the C terminus (Ser-431 in mouse LKB1) that is phosphorylated by cyclic AMP-dependent protein kinase and p90-RSK. Although some studies suggest that LKB1 is constitutively active and is not rate-limiting for activation of AMPK, others have suggested that phosphorylation of Ser-431 is necessary to allow LKB1 to phosphorylate and activate AMPK and other downstream kinases. Prompted by our discovery of an LKB1 splice variant (LKB1S) that lacks Ser-431, we have reinvestigated this question. In HeLa cells (which lack endogenous LKB1), co-expression with STRADalpha and MO25alpha of wild type LKB1, the S431A or S431E mutants of LKB1, or LKB1(S) gave equal levels of activation of endogenous AMPK. Similarly, recombinant STRADalpha.MO25alpha complexes containing these LKB1 variants were equally effective at phosphorylating and activating AMPK, BRSK1, and BRSK2 in cell-free assays. Finally, all four LKB1 variants and a truncated LKB1 lacking the C-terminal region altogether were equally effective at causing cell cycle arrest when co-expressed with STRADalpha and MO25alpha in the G361 melanoma cell line. Our results do not support the idea that phosphorylation of Ser-431 increases the ability of LKB1 to phosphorylate downstream targets.  相似文献   

4.
5.
6.
7.
The best studied nuclear export processes are mediated by classical leucine-rich nuclear export signals that specify recognition by the CRM1 export receptor. However, details concerning alternative nuclear export signals and pathways are beginning to emerge. Within the family of Herpesviridae, a set of homologous regulatory proteins that are exemplified by the ICP27 of herpes simplex virus were described recently as nucleocytoplasmic shuttling proteins. Here we report that pUL69 of the beta-herpesvirus human cytomegalovirus is a nuclear protein that is able to shuttle between the nucleus and the cytoplasm independently of virus-encoded cofactors. In contrast to proteins containing a leucine-rich export signal, the shuttling activity of pUL69 was not affected by leptomycin B, indicating that pUL69 trafficking is not mediated by the export receptor CRM1. Importantly, we identified and characterized a novel type of transferable, leptomycin B-insensitive export signal that is distinct from other export signals described previously and is required for pUL69-mediated activation of gene expression. These data suggest that pUL69 is exported via a novel nuclear export pathway, based on a so far unique nuclear export signal of 28 amino acids.  相似文献   

8.
9.
Control of nuclear export of hnRNP A1   总被引:1,自引:0,他引:1  
  相似文献   

10.
11.
The inhibitor of kappa B alpha (IkappaBalpha) protein is able to shuttle between the cytoplasm and the nucleus. We have utilized a combination of in vivo and in vitro approaches to provide mechanistic insight into nucleocytoplasmic shuttling by IkappaBalpha. IkappaBalpha contains multiple functional domains that contribute to shuttling of IkappaBalpha between the cytoplasm and the nucleus. Nuclear import of IkappaBalpha is mediated by the central ankyrin repeat domain. Similar to previously described nuclear import pathways, nuclear import of IkappaBalpha is temperature and ATP dependent and is blocked by a dominant-negative mutant of importin beta. However, in contrast to classical nuclear import pathways, nuclear import of IkappaBalpha is independent of soluble cytosolic factors and is not blocked by the dominant-negative RanQ69L protein. Nuclear export of IkappaBalpha is mediated by an N-terminal nuclear export sequence. Nuclear export of IkappaBalpha requires the CRM1 nuclear export receptor and is blocked by the dominant-negative RanQ69L protein. Our results are consistent with a model in which nuclear import of IkappaBalpha is mediated through direct interactions with components of the nuclear pore complex, while nuclear export of IkappaBalpha is mediated via a CRM1-dependent pathway.  相似文献   

12.
The mammalian target of rapamycin (mTOR) regulates nutrient-dependent cell growth and proliferation through cytoplasmic targets, such as S6 kinase 1 (S6K1). Consistent with its main function in the cytoplasm, mTOR is predominantly cytoplasmic. However, previously we have found that mTOR shuttles between the nucleus and cytoplasm, and we have proposed that the nucleocytoplasmic shuttling of mTOR is required for the maximal activation of S6K1. The intrinsic signals directing mTOR nuclear transport and the underlying mechanisms are unknown. In this study we initially set out to identify nuclear export signals in mTOR. A systematic scan of the mTOR sequence revealed 16 peptides conforming to the canonical leucine-rich nuclear export signal, of which 3 were found by reporter assays to contain leptomycin B-sensitive and leucine-dependent nuclear export activity. Unexpectedly, mTOR proteins with those conserved leucines mutated to alanines were unable to enter the nucleus. Further investigation revealed that the L982A/L984A and L1287A/L1289A mutations likely induced a global structural change in mTOR, whereas the L545A/L547A mutation directly impaired the nuclear import of the protein, potentially regulated by a nucleocytoplasmic shuttling signal. The loss of nuclear import was accompanied by the significantly reduced ability of the L545A/L547A mutant to activate S6K1 in cells. Most importantly, when nuclear import was restored in the L545A/L547A mutant by the addition of an exogenous nuclear import signal, signaling to S6K1 was rescued. Taken together, our observations suggest the existence of a nuclear shuttling signal in mTOR and provide definitive evidence for the requirement of mTOR nuclear import in its cytoplasmic signaling to S6K1.  相似文献   

13.
Gle1 is required for mRNA export in yeast and human cells. Here, we report that two human Gle1 (hGle1) isoforms are expressed in HeLa cells (hGle1A and B). The two encoded proteins are identical except for their COOH-terminal regions. hGle1A ends with a unique four-amino acid segment, whereas hGle1B has a COOH-terminal 43-amino acid span. Only hGle1B, the more abundant isoform, localizes to the nuclear envelope (NE) and pore complex. To test whether hGle1 is a dynamic shuttling transport factor, we microinjected HeLa cells with recombinant hGle1 and conducted photobleaching studies of live HeLa cells expressing EGFP-hGle1. Both strategies show that hGle1 shuttles between the nucleus and cytoplasm. An internal 39-amino acid domain is necessary and sufficient for mediating nucleocytoplasmic transport. Using a cell-permeable peptide strategy, we document a role for hGle1 shuttling in mRNA export. An hGle1 shuttling domain (SD) peptide impairs the export of both total poly(A)+ RNA and the specific dihydrofolate reductase mRNA. Coincidentally, SD peptide-treated cells show decreased endogenous hGle1 localization at the NE and reduced nucleocytoplasmic shuttling of microinjected, recombinant hGle1. These findings pinpoint the first functional motif in hGle1 and link hGle1 to the dynamic mRNA export mechanism.  相似文献   

14.
As a shuttling protein, p53 is constantly transported through the nuclear pore complex. p53 nucleocytoplasmic transport is carried out by a bipartite nuclear localization signal (NLS) located at its C-terminal domain and two nuclear export signals (NES) located in its N- and C-terminal regions, respectively. The role of nucleocytoplasmic shuttling in p53 ubiquitination and degradation has been a subject of debate. Here we show that the two basic amino acid groups in the p53 bipartite NLS function collaboratively to import p53. Mutations disrupting individual amino acids in the NLS, although causing accumulation of p53 in the cytoplasm to various degrees, reduce but do not eliminate the NLS activity, and these mutants remain sensitive to MDM2 degradation. However, disrupting both parts of the bipartite NLS completely blocks p53 from entering the nucleus and causes p53 to become resistant to MDM2-mediated degradation. Similarly, mutations disrupting four conserved hydrophobic amino acids in the p53 C-terminal NES block p53 export and prohibit it from MDM2 degradation. We also show that colocalization of a nonshuttling p53 with MDM2 either in the nucleus or in the cytoplasm is sufficient for MDM2-induced p53 polyubiquitination but not degradation. Our data provide new insight into the mechanism and regulation of p53 nucleocytoplasmic shuttling and degradation.  相似文献   

15.
The adapter protein tumor necrosis factor receptor (TNFR)1-associated death domain (TRADD) plays an essential role in recruiting signaling molecules to the TNFRI receptor complex at the cell membrane. Here we show that TRADD contains a nuclear export and import sequence that allow shuttling between the nucleus and the cytoplasm. In the absence of export, TRADD is found within nuclear structures that are associated with promyelocytic leukemia protein (PML) nuclear bodies. In these structures, the TRADD death domain (TRADD-DD) can activate an apoptosis pathway that is mechanistically distinct from its action at the membrane-bound TNFR1 complex. Apoptosis by nuclear TRADD-DD is promyelocytic leukemia protein dependent, involves p53, and is inhibited by Bcl-xL but not by caspase inhibitors or dominant negative FADD (FADD-DN). Conversely, apoptosis induced by TRADD in the cytoplasm is resistant to Bcl-xL, but sensitive to caspase inhibitors and FADD-DN. These data indicate that nucleocytoplasmic shuttling of TRADD leads to the activation of distinct apoptosis mechanisms that connect the death receptor apparatus to nuclear events.  相似文献   

16.
17.
Nuclear protein import proceeds through the nuclear pore complex (NPC). Importin-beta mediates translocation via direct interaction with NPC components and carries importin-alpha with the NLS substrate from the cytoplasm into the nucleus. The import reaction is terminated by the direct binding of nuclear RanGTP to importin-beta which dissociates the importin heterodimer. Here, we analyse the sites of interaction on importin-beta for its multiple partners. Ran and importin-alpha respectively require residues 1-364 and 331-876 of importin-beta for binding. Thus, RanGTP-mediated release of importin-alpha from importin-beta is likely to be an active displacement rather than due to simple competition between Ran and importin-alpha for a common binding site. Importin-beta has at least two non-overlapping sites of interaction with the NPC, which could potentially be used sequentially during translocation. Our data also suggest that termination of import involves a transient release of importin-beta from the NPC. Importin-beta fragments which bind to the NPC, but not to Ran, resist this release mechanism. As would be predicted from this, these importin-beta mutants are very efficient inhibitors of NLS-dependent protein import. Surprisingly, however, they also inhibit M9 signal-mediated nuclear import as well as nuclear export of mRNA, U snRNA, and the NES-containing Rev protein. This suggests that mediators of these various transport events share binding sites on the NPC and/or that mechanisms exist to coordinate translocation through the NPC via different nucleocytoplasmic transport pathways.  相似文献   

18.
Disabled1 (DAB1) is an intracellular mediator of the Reelin-signaling pathway and essential for correct neuronal positioning during brain development. So far, DAB1 has been considered a cytoplasmic protein. Here, we show that DAB1 is subject to nucleocytoplasmic shuttling. In its steady state, DAB1 is mainly located in the cytoplasm. However, treatment with leptomycine B, a specific inhibitor of the CRM1 (chromosomal region maintenance 1)-RanGTP-dependent nuclear export, resulted in nuclear accumulation of DAB1. By using deletion or substitutional mutants of DAB1 fused with enhanced green fluorescent protein, we have mapped a bipartite nuclear localization signal and two CRM1-dependent nuclear export signals. These targeting signals were functional in both Neuro2a cells and primary cerebral cortical neurons. Using purified recombinant proteins, we have shown that CRM1 binds to DAB1 directly in a RanGTP-dependent manner. We also show that tyrosine phosphorylation of DAB1, which is indispensable for the layer formation of the brain, by Fyn tyrosine kinase or Reelin stimulation did not affect the subcellular localization of DAB1 in vitro. These results suggest that DAB1 is a nucleocytoplasmic shuttling protein and raise the possibility that DAB1 plays a role in the nucleus as well as in the cytoplasm.  相似文献   

19.
CRM1 is an export receptor mediating rapid nuclear exit of proteins and RNAs to the cytoplasm. CRM1 export cargoes include proteins with a leucine-rich nuclear export signal (NES) that bind directly to CRM1 in a trimeric complex with RanGTP. Using a quantitative CRM1-NES cargo binding assay, significant differences in affinity for CRM1 among natural NESs are demonstrated, suggesting that the steady-state nucleocytoplasmic distribution of shuttling proteins could be determined by the relative strengths of their NESs. We also show that a trimeric CRM1-NES-RanGTP complex is disassembled by RanBP1 in the presence of RanGAP, even though RanBP1 itself contains a leucine-rich NES. Selection of CRM1-binding proteins from Xenopus egg extract leads to the identification of an NES-containing DEAD-box helicase, An3, that continuously shuttles between the nucleus and the cytoplasm. In addition, we identify the Xenopus homologue of the nucleoporin CAN/Nup214 as a RanGTP- and NES cargo-specific binding site for CRM1, suggesting that this nucleoporin plays a role in export complex disassembly and/or CRM1 recycling.  相似文献   

20.
Gpn1 and Gpn3 are GTPases individually required for nuclear targeting of RNA polymerase II. Here we show that whereas Gpn3-EYFP distributed between the cytoplasm and cell nucleus, it was mainly cytoplasmic when coexpressed with Gpn1-Flag. Gpn3-Flag retained Gpn1-EYFP in the cytoplasm. However, Gpn3-EYFP/Gpn1-Flag nucleocytoplasmic shuttling was revealed after inhibiting nuclear export with leptomycin B. All Gpn3-EYFP coimmunoprecipitated with Gpn1-Flag, and all Gpn1-EYFP with Gpn3-Flag. Importantly, most endogenous Gpn1 and Gpn3 also associate. Gpn1–Gpn3 interaction was essential to maintain steady-state protein levels of both GTPases. We propose that most Gpn1 and Gpn3 associate, are mobilized, and function as a protein complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号