首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Alzheimer's disease and tauopathies, tau protein aggregates into neurofibrillary tangles that progressively spread to synaptically connected brain regions. A prion‐like mechanism has been suggested: misfolded tau propagating through the brain seeds neurotoxic aggregation of soluble tau in recipient neurons. We use transgenic mice and viral tau expression to test the hypotheses that trans‐synaptic tau propagation, aggregation, and toxicity rely on the presence of endogenous soluble tau. Surprisingly, mice expressing human P301Ltau in the entorhinal cortex showed equivalent tau propagation and accumulation in recipient neurons even in the absence of endogenous tau. We then tested whether the lack of endogenous tau protects against misfolded tau aggregation and toxicity, a second prion model paradigm for tau, using P301Ltau‐overexpressing mice with severe tangle pathology and neurodegeneration. Crossed onto tau‐null background, these mice had similar tangle numbers but were protected against neurotoxicity. Therefore, misfolded tau can propagate across neural systems without requisite templated misfolding, but the absence of endogenous tau markedly blunts toxicity. These results show that tau does not strictly classify as a prion protein.  相似文献   

2.
The two hallmark pathologies of Alzheimer's disease (AD) are amyloid plaques, composed of the small amyloid-beta (Abeta) peptide, and neurofibrillary tangles, comprised aggregates of the microtubule binding protein, tau. The molecular linkage between these two lesions, however, remains unknown. Based on human and mouse studies, it is clear that the development of Abeta pathology can trigger tau pathology, either directly or indirectly. However, it remains to be established if the interaction between Abeta and tau is bidirectional and whether the modulation of tau will influence Abeta pathology. To address this question, we used the 3xTg-AD mouse model, which is characterized by the age-dependent buildup of both plaques and tangles. Here we show that genetically augmenting tau levels and hyperphosphorylation in the 3xTg-AD mice has no effect on the onset and progression of Abeta pathology. These data suggest that the link between Abeta and tau is predominantly if not exclusively unidirectional, which is consistent with the Abeta cascade hypothesis and may explain why tauopathy-only disorders are devoid of any Abeta pathology.  相似文献   

3.
Transgenic mice overexpressing the P301L mutant human tau protein exhibit an accumulation of hyperphosphorylated tau and develop neurofibrillary tangles. The consequences of tau pathology were investigated here by proteomics followed by functional analysis. Mainly metabolism-related proteins including mitochondrial respiratory chain complex components, antioxidant enzymes, and synaptic proteins were identified as modified in the proteome pattern of P301L tau mice. Significantly, the reduction in mitochondrial complex V levels in the P301L tau mice revealed using proteomics was also confirmed as decreased in human P301L FTDP-17 (frontotemporal dementia with parkinsonism linked to chromosome 17) brains. Functional analysis demonstrated a mitochondrial dysfunction in P301L tau mice together with reduced NADH-ubiquinone oxidoreductase activity and, with age, impaired mitochondrial respiration and ATP synthesis. Mitochondrial dys-function was associated with higher levels of reactive oxygen species in aged transgenic mice. Increased tau pathology as in aged homozygous P301L tau mice revealed modified lipid peroxidation levels and the up-regulation of antioxidant enzymes in response to oxidative stress. Furthermore, P301L tau mitochondria displayed increased vulnerability toward beta-amyloid (Abeta) peptide insult, suggesting a synergistic action of tau and Abeta pathology on the mitochondria. Taken together, we conclude that tau pathology involves a mitochondrial and oxidative stress disorder possibly distinct from that caused by Abeta.  相似文献   

4.
MARKing tau for tangles and toxicity   总被引:5,自引:0,他引:5  
In healthy neurons, tau proteins regulate microtubule function in the axon. In the brains of individuals with Alzheimer's disease, tau is hyperphosphorylated and aggregated into intraneuronal deposits called neurofibrillary tangles (NFTs). Hyperphosporylation dislodges tau from the microtubule surface, potentially resulting in compromised axonal integrity and the accumulation of toxic tau peptides. Recent biochemical and animal model studies have re-evaluated tau phosphorylation and other aspects of neurofibrillar pathology. The results indicate that phosphorylation of tau's microtubule-binding domain by the protein kinase MARK primes tau for hyperphosphorylation by the kinases GSK-3 and Cdk5, which in turn triggers the aggregation of tau into filaments and tangles. Toxic consequences for the neuron might be exacerbated by tangle formation but are already evident during the early steps of the process.  相似文献   

5.
Mutations in the presenilin 1 (PS1) gene are responsible for the early onset of familial Alzheimer disease (FAD). Accumulating evidence shows that PS1 is involved in gamma-secretase activity and that FAD-associated mutations of PS1 commonly accelerate Abeta(1-42) production, which causes Alzheimer disease (AD). Recent studies suggest, however, that PS1 is involved not only in Abeta production but also in other processes that lead to neurodegeneration. To better understand the causes of neurodegeneration linked to the PS1 mutation, we analyzed the development of tau pathology, another key feature of AD, in PS1 knock-in mice. Hippocampal samples taken from FAD mutant (I213T) PS1 knock-in mice contained hyperphosphorylated tau that reacted with various phosphodependent tau antibodies and with Alz50, which recognizes the conformational change of PHF tau. Some neurons exhibited Congo red birefringence and Thioflavin T reactivity, both of which are histological criteria for neurofibrillary tangles (NFTs). Biochemical analysis of the samples revealed SDS-insoluble tau, which under electron microscopy examination, resembled tau fibrils. These results indicate that our mutant PS1 knock-in mice exhibited NFT-like tau pathology in the absence of Abeta deposition, suggesting that PS1 mutations contribute to the onset of AD not only by enhancing Abeta(1-42) production but by also accelerating the formation and accumulation of filamentous tau.  相似文献   

6.
Phosphorylation of the microtubule-associated protein tau is regulated by the balanced interplay of kinases and phosphatases. Disturbance of this balance causes hyperphosphorylation of tau and neurofibrillary tangle formation in Alzheimer’s disease brain. Here, we crossed Dom5 mice that express a substrate-specific dominant negative mutant form, L309A Cα, of protein phosphatase 2A (PP2A) with neurofibrillary-tangle-forming P301L mutant tau transgenic pR5 mice. This exacerbated the tau pathology of pR5 mice significantly. Double-transgenic Dom5/pR5 mice showed 7-fold increased numbers of hippocampal neurons that specifically phosphorylated the pathological S422 epitope of tau. They showed 8-fold increased numbers of tangles compared to pR5 mice, in agreement with our previous finding that tangle formation is correlated with and preceded by phosphorylation of tau at the S422 epitope. This suggests that, in addition to kinases, PP2A and its regulatory subunits may be a therapeutic target for Alzheimer’s disease.  相似文献   

7.
Hutton M  McGowan E 《Neuron》2004,43(3):293-294
The report by Oddo and colleagues in this issue of Neuron demonstrates for the first time that clearance of amyloid also results in the removal of early-stage tau pathology in mice that develop both amyloid plaques and neurofibrillary tangles (NFT), the two hallmark lesions of Alzheimer's disease (AD). This result supports a primary role for Abeta in AD etiology.  相似文献   

8.
Bi M  Ittner A  Ke YD  Götz J  Ittner LM 《PloS one》2011,6(12):e26860
In Alzheimer's disease (AD) brains, the microtubule-associated protein tau and amyloid-β (Aβ) deposit as intracellular neurofibrillary tangles (NFTs) and extracellular plaques, respectively. Tau deposits are furthermore found in a significant number of frontotemporal dementia cases. These diseases are characterized by progressive neurodegeneration, the loss of intellectual capabilities and behavioral changes. Unfortunately, the currently available therapies are limited to symptomatic relief. While active immunization against Aβ has shown efficacy in both various AD mouse models and patients with AD, immunization against pathogenic tau has only recently been shown to prevent pathology in young tau transgenic mice. However, if translated to humans, diagnosis and treatment would be routinely done when symptoms are overt, meaning that the histopathological changes have already progressed. Therefore, we used active immunization to target pathogenic tau in 4, 8, and 18 months-old P301L tau transgenic pR5 mice that have an onset of NFT pathology at 6 months of age. In all age groups, NFT pathology was significantly reduced in treated compared to control pR5 mice. Similarly, phosphorylation of tau at pathological sites was reduced. In addition, increased astrocytosis was found in the oldest treated group. Taken together, our data suggests that tau-targeted immunization slows the progression of NFT pathology in mice, with practical implications for human patients.  相似文献   

9.
Cdk5 is a key factor in tau aggregation and tangle formation in vivo   总被引:28,自引:0,他引:28  
Tau aggregation is a common feature of neurodegenerative diseases such as Alzheimer's disease, and hyperphosphorylation of tau has been implicated as a fundamental pathogenic mechanism in this process. To examine the impact of cdk5 in tau aggregation and tangle formation, we crossed transgenic mice overexpressing the cdk5 activator p25, with transgenic mice overexpressing mutant (P301L) human tau. Tau was hyperphosphorylated at several sites in the double transgenics, and there was a highly significant accumulation of aggregated tau in brainstem and cortex. This was accompanied by increased numbers of silver-stained neurofibrillary tangles (NFTs). Insoluble tau was also associated with active GSK. Thus, cdk5 can initiate a major impact on tau pathology progression that probably involves several kinases. Kinase inhibitors may thus be beneficial therapeutically.  相似文献   

10.
Summary Cytochemical and biochemical techniques have been used to assess the relationship of epitopes on the microtubuleassociated protein, tau, to the cytoskeletal pathology of Alzheimer's disease. The main probes were Tau-1 and Alz-50, two monoclonal antibodies which recognize tau and a potentially related 68kDa protein. Sequential treatment of tissue slices with combinations of the antibodies showed that each blocked the binding of the other to neurofibrillary tangles and neuritic plaques but not to normal axons. Western blot analysis of tau proteins isolated from Alzheimer's disease brains did not reveal such blocking patterns. The issue of steric hindrance affecting antibody binding in tissue sections was addressed by using Alz-50 in combination with Tau-2, another monoclonal antibody recognizing tau on blots and in Alzheimer's disease pathology. Neither antibody blocked the binding of the other to neurofibrillary tangles and neuritic plaques. These data suggest that the Alz-50 and Tau-1 epitopes are selectively organized in the tangles and plaques to be in close proximity which supports the hypothesis that in Alzheimer's disease pathology, tau is modified.  相似文献   

11.
Role of glycosylation in hyperphosphorylation of tau in Alzheimer's disease   总被引:10,自引:0,他引:10  
In Alzheimer's disease (AD) brain, microtubule-associated protein tau is abnormally modified by hyperphosphorylation and glycosylation, and is aggregated as neurofibrillary tangles of paired helical filaments. To investigate the role of tau glycosylation in neurofibrillary pathology, we isolated various pools of tau protein from AD brain which represent different stages of tau pathology. We found that the non-hyperphosphorylated tau from AD brain but not normal brain tau was glycosylated. Monosaccharide composition analyses and specific lectin blots suggested that the tau in AD brain was glycosylated mainly through N-linkage. In vitro phosphorylation indicated that the glycosylated tau was a better substrate for cAMP-dependent protein kinase than the deglycosylated tau. These results suggest that the glycosylation of tau is an early abnormality that can facilitate the subsequent abnormal hyperphosphorylation of tau in AD brain.  相似文献   

12.
The stepwise progression of tau pathology [NFTs (neurofibrillary tangles) and NTs (neuropil threads)] in AD (Alzheimer's disease) is generally assumed to begin in the transentorhinal region (entorhinal stage) from which it progresses to the hippocampus (limbic stage) and to neocortical regions (neocortical stage). This stepwise progression is reflected in the NFT Braak stages. However, it has been shown recently that tau pathology is frequently seen in subcortical nuclei, in particular the LC (locus coeruleus) in over 90% of individuals under 30 years of age, suggesting that AD-associated tau pathology begins in the LC and not in the transentorhinal region. On the other hand, only minimal amounts of tau pathology are seen in the LC in cases with considerable entorhinal tau pathology, while the severity of tau pathology in the LC significantly increases with increasing NFT Braak stages. These findings suggest that the LC becomes increasingly involved during AD progression rather than representing the site initially affected. Further studies are warranted to answer the question of whether tau pathology in the LC of young individuals is associated with AD or whether it rather reflects non-specific neuronal damage.  相似文献   

13.
Accumulation of amyloid-beta (Abeta) is one of the earliest molecular events in Alzheimer disease (AD), whereas tau pathology is thought to be a later downstream event. It is now well established that Abeta exists as monomers, oligomers, and fibrils. To study the temporal profile of Abeta oligomer formation in vivo and to determine their interaction with tau pathology, we used the 3xTg-AD mice, which develop a progressive accumulation of plaques and tangles and cognitive impairments. We show that SDS-resistant Abeta oligomers accumulate in an age-dependent fashion, and we present evidence to show that oligomerization of Abeta appears to first occur intraneuronally. Finally, we show that a single intrahippocampal injection of a specific oligomeric antibody is sufficient to clear Abeta pathology, and more importantly, tau pathology. Therefore, Abeta oligomers may play a role in the induction of tau pathology, making the interference of Abeta oligomerization a valid therapeutic target.  相似文献   

14.
The lack or excess of the protein tau can be deleterious for neurons. The absence of tau can result in retarded neurogenesis and neuronal differentiation, although adult mice deficient in tau are viable, probably because of the compensation of the loss of tau by other MAPs (microtubule-associated proteins). On the contrary, the overexpression of tau can be toxic for the cell. One way to reduce intracellular tau levels can be achieved by its secretion through microvesicles to the extracellular space. Furthermore, tau can be found in the extracellular space because of the neuronal cell death occurring in neurodegenerative disorders such as Alzheimer's disease. The presence of toxic extracellular tau could be the mechanism for the spreading of tau pathology in these neurodegenerative disorders.  相似文献   

15.
Increasing evidence points to soluble assemblies of aggregating proteins as a major mediator of neuronal and synaptic dysfunction. In Alzheimer disease (AD), soluble amyloid-beta (Abeta) appears to be a key factor in inducing synaptic and cognitive abnormalities. Here we report the novel finding that soluble tau also plays a role in the cognitive decline in the presence of concomitant Abeta pathology. We describe improved cognitive function following a reduction in both soluble Abeta and tau levels after active or passive immunization in advanced aged 3xTg-AD mice that contain both amyloid plaques and neurofibrillary tangles (NFTs). Notably, reducing soluble Abeta alone did not improve the cognitive phenotype in mice with plaques and NFTs. Our results show that Abeta immunotherapy reduces soluble tau and ameliorates behavioral deficit in old transgenic mice.  相似文献   

16.
Alzheimer's disease (AD) is an age‐related neurodegenerative disease. The most common pathological hallmarks are amyloid plaques and neurofibrillary tangles in the brain. In the brains of patients with AD, pathological tau is abnormally accumulated causing neuronal loss, synaptic dysfunction, and cognitive decline. We found a histone deacetylase 6 (HDAC6) inhibitor, CKD‐504, changed the tau interactome dramatically to degrade pathological tau not only in AD animal model (ADLPAPT) brains containing both amyloid plaques and neurofibrillary tangles but also in AD patient‐derived brain organoids. Acetylated tau recruited chaperone proteins such as Hsp40, Hsp70, and Hsp110, and this complex bound to novel tau E3 ligases including UBE2O and RNF14. This complex degraded pathological tau through proteasomal pathway. We also identified the responsible acetylation sites on tau. These dramatic tau‐interactome changes may result in tau degradation, leading to the recovery of synaptic pathology and cognitive decline in the ADLPAPT mice.  相似文献   

17.
Apoptosis in transgenic mice expressing the P301L mutated form of human tau   总被引:3,自引:0,他引:3  
The rTg4510 mouse is a tauopathy model, characterized by massive neurodegeneration in Alzheimer's disease (AD)-relevant cortical and limbic structures, deficits in spatial reference memory, and progression of neurofibrillary tangles (NFT). In this study, we examined the role of apoptosis in neuronal loss and associated tau pathology. The results showed that DNA fragmentation and caspase-3 activation are common in the hippocampus and frontal cortex of young rTg4510 mice. These changes were associated with cleavage of tau into smaller intermediate fragments, which persist with age. Interestingly, active caspase-3 was often co-localized with cleaved tau. In vitro, fibrillar Abeta(1-42) resulted in nuclear fragmentation, caspase activation, and caspase-3-induced cleavage of tau. Notably, incubation with the antiapoptotic molecule tauroursodeoxycholic acid abrogated apoptosis-mediated cleavage of tau in rat cortical neurons. In conclusion, caspase-3-cleaved intermediate tau species occurred early in rTg54510 brains and preceded cell loss in Abeta-exposed cultured neurons. These results suggest a potential role of apoptosis in neurodegeneration.  相似文献   

18.
Both Alzheimer's disease (AD) and almost every second case of frontotemporal lobar degeneration (FTLD) are characterized by the deposition of hyperphosphorylated forms of the microtubule-associated protein tau in neurons and/or glia. This unifying pathology led to coining the umbrella term "tauopathies" for these conditions. While the deposition of tau ultimately results in the formation of typical histopathological lesions, such as the neurofibrillary tangles (NFTs) in AD, it is now well accepted that tau interferes with normal functions in neurons already before its deposition. Together with the identification of pathogenic mutations in the tau-encoding gene MAPT in FTLD and evidence from a rising number of in vivo animal models a central role of tau in neurodegeneration has emerged. Here, we review the role of pathological tau in axonal transport, mitochondrial respiration, and in mediating amyloid-β toxicity in AD. Furthermore, we review recent findings regarding the spreading of tau pathology throughout the brain as disease progresses.  相似文献   

19.
Intracellular accumulation of filamentous tau aggregates with progressive neuronal loss is a common characteristic of tauopathies. Although the neurodegenerative mechanism of tau‐associated pathology remains unclear, molecular elements capable of degrading and/or sequestering neurotoxic tau species may suppress neurodegenerative progression. Here, we provide evidence that p62/SQSTM1, a ubiquitinated cargo receptor for selective autophagy, acts protectively against neuronal death and neuroinflammation provoked by abnormal tau accumulation. P301S mutant tau transgenic mice (line PS19) exhibited accumulation of neurofibrillary tangles with localization of p62 mostly in the brainstem, but neuronal loss with few neurofibrillary tangles in the hippocampus. In the hippocampus of PS19 mice, the p62 level was lower compared to the brainstem, and punctate accumulation of phosphorylated tau unaccompanied by co‐localization of p62 was observed. In PS19 mice deficient in p62 (PS19/p62‐KO), increased accumulation of phosphorylated tau, acceleration of neuronal loss, and exacerbation of neuroinflammation were observed in the hippocampus as compared with PS19 mice. In addition, increase of abnormal tau and neuroinflammation were observed in the brainstem of PS19/p62‐KO. Immunostaining and dot‐blot analysis with an antibody selectively recognizing tau dimers and higher‐order oligomers revealed that oligomeric tau species in PS19/p62‐KO mice were significantly accumulated as compared to PS19 mice, suggesting the requirement of p62 to eliminate disease‐related oligomeric tau species. Our findings indicated that p62 exerts neuroprotection against tau pathologies by eliminating neurotoxic tau species, suggesting that the manipulative p62 and selective autophagy may provide an intrinsic therapy for the treatment of tauopathy.  相似文献   

20.
In Alzheimer's disease and related dementias, human tau protein aggregates into paired helical filaments and neurofibrillary tangles. However, such tau aggregates have not yet been demonstrated in transgenic mouse models of the disease. One of the possible explanations would be that mouse tau has different properties which prevents it from aggregating. We have cloned several murine tau isoforms, containing three or four repeats and different combinations of inserts, expressed them in Escherichia coli and show here that they can all be assembled into paired helical filaments similar to those in Alzheimer's disease, using the same protocols as with human tau. Therefore, the absence of pathologically aggregated tau in transgenic mice cannot be explained by intrinsic differences in mouse tau protein and instead must be explained by other as yet unknown factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号