首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper analyses the performance of MAbMaxTM/TricentricTM, a new generation hollow fibre bioreactor, for hybridoma growth and antibody productivity, the down stream processing of monoclonal antibody harvests throughout the run and the further control of antibody quality consistency. Handling and process parameters were optimised using a mouse hybridoma, IgG1K secretor, and then confirmed with several other hybridomas. Cells were kept at optimal viability during an unusually long period of time and a continuously high production of antibodies was detected over several months. Foetal bovine serum concentration was reduced to 1\% and the effects of weaning of cells from serum were monitored in terms of cell metabolism and antibody productivity. Antibody harvests collected at regular intervals throughout the run (2 to 12 weeks) were purified using affinity chromatography on a recombinant protein A/G matrix and then analysed in terms of antigen binding properties, isoelectric forms and oligosaccharide structures, in order 1) to control antibody quality consistency as a function of time and serum concentration and 2) to compare antibody characteristics as a function of culture conditions, in vitro bioreactor cultivation versus in vivo mouse ascite cultivation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
杂交瘤细胞的大量培养是一项迅速发展的技术。本文评述了杂交瘤细胞培养条件和代谢调控方面的研究进展,包括反应器培养中的过程参数优化、细胞损伤和保护、营养物质利用和有害副产物的形成、细胞生长和单抗分泌的动力学以及长期培养的稳定性等问题。同时,本文也讨论了在生物反应器中培养杂交瘤细胞的操作模式和控制策略的研究工作,特别是近年来备受重视的灌注培养和补料培养。  相似文献   

3.
Two hybridoma systems, mouse·human-human (m·h-h) heterohybridoma and human-human (h-h) hybridoma, have been established, and hybridomas secreting anti-tetanus toxoid and anti-HBsAg human monoclonal antibodies (MoAbs), both having a neutralizing activity have been obtained. Cell-line improvement was shown to be an efficient method for improving the productivity in a cell culture process. Two kinds of serum-free media, GFS (a serum substitute)-containing media and polyethylene glycol (PEG)-containing media, have been established to produce human MoAbs. m·h-h Heterohybridomas could be cultivated for a long period by perfusion culture in an agitation vessel, but h-h hybridomas could not. We found that h-h hybridomas show growth-associated antibody production kinetics and established two kinds of long-term cultivation systems: continuous perfusion culture and semicontinuous immobilized perfusion culture. We also scaled up batch culture and short-term perfusion culture to 200-L and 50-L fermentors, respectively. Processes for large-scale purification from the culture supernatants of both GFS- and PEG-containing serum-free media have also been developed.  相似文献   

4.
Forty- and ninety-liter airlift bioreactors have been used successfully to grow hybridoma cell lines in chemically defined serum-free media. In the airlift bioreactor, hybridoma cell growth and monoclonal antibody productivity are comparable to that obtained by conventional cell culture. At sparging rates of 0.60-1.20 vvh (volume of sparged gas per bioreactor volume per hour), the airlift bioreactor achieves rapid mixing and adequate oxygen mass transfer. Foaming is minimal and inconsequential for serum-free media and media supplemented with 5%-10% fetal bovine serum. The use of serum-free medium facilitates monoclonal antibody purification and enhances the purity of the final MAb product.  相似文献   

5.
单克隆抗体在生物学和医学研究领域中显示了极大的应用价值,是免疫检验中的新型试剂,是生物治疗的导向武器。作为医学检验试剂,单克隆抗体可以充分发挥其优势,如特异性好,灵敏度高,更便于质量控制,利于标准化和规范化。传统的方法是利用小鼠腹水制备单克隆抗体,但是近几十年杂交瘤细胞体外大规模培养制备单克隆抗体技术也在不断发展。特别是单克隆抗体在疾病诊断和治疗方面的需求,更进一步促进了杂交瘤细胞体外培养生产技术的发展,体外培养杂交瘤细胞生产的单克隆抗体已应用到许多方面。由于杂交瘤细胞的半贴壁性质,无论是悬浮培养还是贴壁培养,均可进行杂交瘤细胞的体外大规模培养。针对应用于体外诊断试剂的杂交瘤细胞体外培养制备单克隆抗体进行综述,主要包括中空纤维细胞培养和生物反应器细胞培养方法,以及不同培养方法优化的进展。  相似文献   

6.
B cell hybridomas are an important source of monoclonal antibodies. In this paper, we developed a high-throughput method to characterize mouse IgG antibodies using surface plasmon resonance technology. This assay rapidly determines their sub-isotypes, whether they bind native antigen and their approximate affinities for the antigen using only 50 μl of hybridoma cell culture supernatant. Moreover, we found that mouse hybridomas secreting IgG antibodies also have membrane form IgG expression without Igα. Based on this surface IgG, we used flow cytometry to isolate rare γ2a isotype switched variants from a γ2b antibody secreting hybridoma cell line. Also, we used fluorescent antigen to single cell sort antigen binding hybridoma cells from bulk mixture of fused hybridoma cells instead of the traditional multi-microwell plate screening and limiting dilution sub-cloning thus saving time and labor. The IgG monoclonal antibodies specific for the native antigen identified with these methods are suitable for in vivo therapeutic uses, but also for sandwich ELISA assays, histology, flow cytometry, immune precipitation and x-ray crystallography.  相似文献   

7.
A human hybrid hybridoma   总被引:1,自引:0,他引:1  
Hybrid hybridomas are obtained by fusion of two cells, each producing its own antibody. Several authors have reported the construction of murine hybrid hybridomas with the aim to obtain bispecific monoclonal antibodies. We have investigated, in a model system, the feasibility of constructing a human hybrid hybridoma. We fused two monoclonal cell lines: an ouabain-sensitive and azaserine/hypoxanthine-resistant Epstein-Barr virus-transformed human cell line that produces an IgG1 kappa antibody directed against tetanus toxoid and an azaserine/hypoxanthine-sensitive and ouabain-resistant human-mouse xenohybrid cell line that produces a human IgG1 lambda antibody directed against hepatitis-B surface antigen. Hybrid hybridoma cells were selected in culture medium containing azaserine/hypoxanthine and ouabain. The hybrid nature of the secreted antibodies was analyzed by means of two antigen-specific immunoassays. Our results show that it is possible, with the combined use of transformation and xenohybridization techniques, to construct human hybrid hybridomas that produce bispecific antibodies.  相似文献   

8.
We have recently described the production of cytotoxic T lymphocyte (CTL) hybridomas that grow continuously in culture, exhibiting constitutive, allospecific (anti-H-2b) killing activity. We now report on the response of these monoclonal CTL hybridomas to specific antigen (H-2Db) and to mitogenic lectins. Both specific antigen and T cell mitogens enhance hybridoma-mediated specific target cell killing. In addition, stimulated, but not unstimulated hybridoma cells secrete considerable amounts of IL 2 into the culture medium. Repeated cloning of the hybridomas provides strong evidence that both killing activity and IL 2 secretion can be attributed to one cell. Unfractionated Con A supernatants, containing IL 2 and other factors known to influence T cell responsiveness, or IL 2-containing media of stimulated hybridomas affect neither the growth nor the lytic activity of the hybridomas. Anti-LFA-1 monoclonal antibody, a potent inhibitor of CTL and CTL hybridoma-mediated target cell lysis, abolishes antigen- or mitogen-induced IL 2 secretion by the CTL hybridomas. Involvement of a single hybridoma receptor in antigen recognition (afferent and efferent) and in initiating IL 2 secretion is proposed. The CTL hybridomas displaying retarded killing activity before the antigenic or mitogenic stimulation appear to represent an intermediate stage in CTL differentiation, reminiscent of "memory" CTL.  相似文献   

9.
Rapamycin was used as a medium additive to slow the progression of CRL 1606 hybridomas through the cell cycle, under the hypothesis that such a modulation might reduce cell death. Cell cycle distributions for CRL hybridomas in the G1 phase of the cell cycle ranged from 20% to 35% during batch, fed-batch, and continuous culture experiments, independent of culture time, dilution rate, growth rates, or death rates. Rapamycin, an mTOR signaling inhibitor, immunosuppressant, and G1-phase arresting agent, was identified and tested for efficacy in restraining cell cycle progression in CRL 1606 hybridoma cultures. However, in the presence of 100 nM rapamycin, the percentage of cells in the G1 phase of the cell cycle during fed-batch cultures was only increased from 28% to 31% in control cultures to 37% to 48% for those with rapamycin. Accordingly, rapamycin only slightly reduced culture growth rate. Instead, the use of rapamycin more notably kept viability higher than that of control cultures by delaying cell death for 48 h, thereby enabling viable proliferation to higher maximum viable cell densities. Furthermore, rapamycin enhanced specific monoclonal antibody production by up to 100% during high-viability growth. Thus, over the course of 6-day fed-batch cultivations, the beneficial effects of rapamycin on viable cell density and specific productivity resulted in an increase in final monoclonal antibody titer from 0.25 to 0.56 g/L (124%). As rapamycin is reported to influence a much broader range of cellular functions than cell cycle alone, these findings are more illustrative of the influence that signal transduction pathways related to mTOR can have on overall cell physiology and culture productivity.  相似文献   

10.
Mouse myeloma NS0 cells widely used in hybridoma technology lack the expression of a major stress protein Hsp70 which is the principal component of the basic cellular defense mechanism. These cells rapidly undergo apoptosis at the late-stationary phase of batch culture following nutrient exhaustion. Since Hsp70 was recently demonstrated to protect cells against numerous apoptotic stimuli, the aim of the present study was to examine the protective potential of the protein expression in engineered myeloma NS0 cells and in resulting hybridomas. Myeloma cells were transfected with the hsp70 gene under beta-actin gene promoter. To imitate harmful conditions that hybridoma or myeloma cells often experience when cultivated in large scale for an antibody production, NS0(wt) and NS0(hsp70) cell cultures were maintained without changing the medium for a few days, and the expression of apoptotic markers has been studied. It was found that long-term cultivation induced apoptosis in original cells manifested by typical nuclei fragmentation, DNA ladders and activation of caspase-3. In contrast, in transfected cells under the same conditions the outcome of apoptosis was postponed for 24 hours. Most relevant was that the fusion of transfected myeloma cells with immune splenocytes resulted in twofold hybridomas output compared with wild-type fusion partner. Almost half of the hybridomas continued to be hsp70-positive and maintained higher robustness in culture. The level of monoclonal antibodies production by hybridoma cells obtained with the use of NS0(wt) and NS0(hsp70) was similar, however, the secreted product was better preserved in culture supernatants of Hsp70-positive cells. It is concluded that transfection of mouse myeloma cells with the hsp70 gene can be a novel means to increase hybridoma yield and reduce the sensitivity of myeloma and hybridoma cells to culture conditions insults accompanying monoclonal antibody production.  相似文献   

11.
Using porous microcarrier Cytopore and a low-serum medium supplement BIGBEF-3, we have successfully cultivated recombinant CHO cell line CL-11G producing prourokinase and hybridomas producing anti-prourokinase monoclonal antibody in Celligen 1.5 or 5 L bioreactor. The cell density obtained ranged from 1 to 2 × 107 cells mL-1. The yields of prourokinase and monoclonal antibody increased with increasing cell density. As the cells could spontaneously release from and reattach to porous microcarriers, it was very easy to scale-up the cultivation. Thus the bead to bead cell transfer method has been used to scale up the cultivation of CL-11G cells to a 20 L reactor-scale for the pilot production of prourokinase, and also to scale-up the culture of hybridomas for the production of monoclonal antibody for the purification of prourokinase. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
We succeeded in establishing a mouse-human (M-H) heterohybridoma clone which provides parental cells useful for human monoclonal antibody (hMoAb) production. Electron micrographs show that the M-H hybridoma cells retain characteristics of murine origin with regard to chromatin patterns, small granules, granular endoplasmic reticulum and Golgi apparatus. The human DNA incorporated into the M-H hybridoma is estimated to be about 1% of the total human chromosomal DNA. Mouse-human-human (M-H-H) hybridomas obtained by hybridization of the M-H hybridoma cells with Epstein-Barr virus(EBV)-transfected human B cells secrete immunoglobulin (Ig) in amounts comparable to those of murine hybridomas. Also the M-H-H hybridomas grow in nude mice and are capable of producing ascites containing large quantities of Ig. The Ig class switching takes place in the M-H-H hybridomas at a much higher frequency than in the original EBV transformant and the M-H hybridoma. Cells secreting specific monoclonal antibody of different Ig classes could be separated and concentrated by the use of fluorescence activated cell sorter (FACS).  相似文献   

13.
Since it was first introduced in late 1990s Wave bioreactor has been used for protein production by mammalian and insect cell lines. However, using Wave bioreactor to produce human monoclonal antibody by stable Drosophila Schneider 2 (S2) cell transfectants has not been reported before. In this study, S2 cells were co-transfected with an inducible vector expressing human monoclonal antibody heavy and light chains, respectively, specific for hemagglutinin (HA) of H5N1 influenza virus. Stable S2 transfectant clone was selected by limiting dilution assay. Stable S2 transfectant clone that produce the highest amount of human monoclonal antibody was inoculated into two 2-l disposable cellbags, where cell growth and antibody production were compared between batch and perfusion cultures using Wave bioreactor. Here, we report that maximum viable cell density reached 1.06?×?10(7) cells/ml in batch culture; whereas 1.04?×?10(8)?cells/ml was achieved in perfusion culture. The maximum volumetric antibody productivity in batch culture was 52?mg/l/day; while perfusion culture yielded 1,437?mg/l/day. As a result, the total antibody production was 201?mg in batch culture and 8,212?mg in perfusion culture. The antibody produced by both cultures displays full neutralizing activity. Thus, our results provide strong support for using Wave bioreactor in perfusion culture for a large-scale production of human monoclonal antibody by stable S2 cell transfectants.  相似文献   

14.
The continuous separation of nonviable hybridoma cells from viable hybridoma cells by using a narrow rectangular channel that is inclined from the vertical has been investigated experimentally. The effectiveness of the settler in selectively retaining viable hybridomas in the bioreactor while permitting the removal of nonviable hybridomas has been shown to depend on the flow rate through the settler. Intermediate flow rates through the settler have been found to provide the highest removal of nonviable hybridomas relative to viable hybridoma retention. At high dilution rates through the chemostat, over 95% of the viable cells could be partitioned to the bottom of the settler while over 50% of the nonviable cells are removed through the top of the settler. This successful separation is due to the significantly larger size of the viable hybridomas than the nonviable ones. A continuous perfusion experiment was performed in which an external inclined settler was used to retain virtually all of the viable hybridomas in the culture, while selectively removing from the culture approximately 20% of the nonviable cells that entered the settler. A stable viable cell concentration of 1.0 x 10(7) cells/mL was achieved, as was an antibody productivity of over 50 micrograms/(mL.day). These represent 3- and 6-fold increases, respectively, over the values obtained from a chemostat culture without cell retention.  相似文献   

15.
A perfusion system is described for the production of a human monoclonal antibody in non-secreting murine myeloma (NS0) cells that was previously shown to be difficult to produce at high levels using fed-batch culture. The perfusion system was based on the use of a commercially available cell settler as the separation device to separate the cells from the culture. Separation efficiency of the cell settler was above 98%. Based on the growth and glucose consumption rates, fresh media was added to the culture and the turnover rate for the bioreactor was set at a maximum of 1.5 times the bioreactor volume per day. The perfusion process resulted in twice the maximum viable cell densities and up to three times the total protein production in a 53-day run period when compared to the fed-batch process. In addition, charge heterogeneity of the antibody as measured by ion exchange chromatography was lower for material purified from the perfusion runs compared to fed-batch. Perfusion mode of culture using a commercially available gravity settler is therefore a viable alternative to fed-batch mode for high-level production of this monoclonal antibody in NS0 cells.  相似文献   

16.
A photo-crosslinkable resin, BIX12, was selected from among various photo-crosslinkable resins for the immobilization of animal cells. BIX12 had no cytotoxic effect on the growth of hybridoma cells and the production of monoclonal antibody, although other photo-crosslinkable resins had significant inhibitory effects. Using BIX12-alginate hybrid gel particles, hybridoma cells could grow in the resins and produce monoclonal antibody. For the continuous production of monoclonal antibody, perfusion culture using a fluidized-bed bioreactor with direct air bubbling was carried out. By this cultivation, monoclonal antibody could be produced stably for more than 50 d. A high viable cell density of more than 107 cells/ml-gel was attained, and the antibody productivity was improved 8.5-fold compared with conventional suspension culture using a spinner flask. Anchorage-dependent cells were also immobilized in the resin particles by three immobilization procedures. Among these procedures, porous BIX12 formed by adding gelatin powder provided good support strength and allowed the cells to grow on the surface inside of the support.  相似文献   

17.
Monoclonal antibodies (mAb) are high added value glycoproteins recommended for immunotherapy, diagnosis, and also for the treatment of bacterial infections resistant to multiple drugs such as Methicillin Resistant Staphylococcus aureus (MRSA). In addition to environmental conditions related to cell cultures, the intrinsic characteristics of hybridoma cells, like the secretion stability of monoclonal antibodies by the cells through successive subcultures, are relevant for the characterization of cell lines related to the productivity of mAb. The rate of mAb production differs significantly between different cell lines and different passage numbers, and it is an important variable in characterization of cell lines. In order to find a more robust, faster-growing, and higher-productivity cell line of hybridoma, cultivations in 24-well plates were performed in different subculture periods, or cell passages (P), of hybridoma cells producing MRSA anti-PBP2a monoclonal antibodies [MRSA-antiPBP2a (mAb)]. The objective of this study was to study the effects of cell growth and production of MRSA-antiPBP2a mAb secreted by murine hybridoma cells grown in different passages as well as determine the which passages the hybridomas can be cultivated without harming their growth and productivity. So, cell growth profiles of hybridomas secreting MRSA-antiPBP2a (mAb) and the production of MRSA-antiPBP2a mAb in different subculture periods or cell passages (P) were studied. Cell growth tests, monoclonal antibody productivity, and metabolite characteristics revealed substantial differences in those cells kept between P10 and P50. Similarities in the secretion of monoclonal antibody, growth, and metabolic profiles, were noted in the MRSA-antiPBP2a mAb producing hybridoma cells kept between P10 and P20. Also, glucose consumption (g/L) and lactate production (g/L) in the latter cell cultures were monitored daily through biochemical analyzer. As of P30, it was observed a 4.4 times reduction in productivity, a 13 % reduction in metabolic yield, and a significant change in cell growth. Secretion of MRSA-antiPBP2a mAb should be obtained through the culture of hybridomas up to P20 in order to keep its stability.  相似文献   

18.
Murine hybridoma cells that produce monoclonal antibody directed against human fibronectin have been cultured in VITAFIBER II and VITAFIBER V hollow fiber bioreactors using defined, serum-free WRC 935 medium. During a two-week growth period, following inoculation of the bioreactors, the cells proliferated to an extent where the bioreactor was filled with cultured cells. Using a 5 sq. ft. VITAFIBER V bioreactor, over 15 grams of antibody were produced during the 40 days of the experiment. This antibody was greater than 95% IgG. During the production period, this packed mass of cells produced 579 +/- 15 mg IgG per day. Because the medium is formulated for air equilibration and high cell densities, WRC 935 medium is especially useful for production of gram quantities of monoclonal antibodies using continuous feed hollow fiber bioreactor cell culture systems.  相似文献   

19.
Monoclonal antibodies were prepared against two different human tumour cell lines, the melanoma cell line SK-Mel-25 and the acute lymphoblastic leukemia T cell line CCRF-CEM. Presence of antibodies against human tumour cells in the supernatants of hybridoma cultures was tested by binding of 125I-F(ab′)2 anti-mouse IgG. On two occasions a hybridoma culture, initially selected for subsequent cloning as it seemingly produced antibodies against tumour cells, was later found to produce monoclonal antibodies specific for Mycoplasma hyorhinis. In immunofluorescent staining patchy structures were visible which seemed to be attached to the cell surface. By combined staining with FITC-conjugated anti-mouse immunoglobulin for monoclonal antibody, Evans blue for cytoplasm and Hoechst compound no. 33258 for DNA, the reaction against mycoplasma could be recognized. These results demonstrate that if cultured cells are used for preparation of monoclonal antibodies, there is a good chance that the selected hybridomas may produce antibodies against ‘culture artifacts’ such as mycoplasmas, in addition to the target antigens. Thus mycoplasma contamination of cell cultures poses a serious problem in the hybridoma research and the testing system for antibody specificity should be carefully monitored.  相似文献   

20.
The introduction of retrovirally encoded myc or ras genes into the mouse hybridoma cell line PQXB 1/2, in which antibody production is unstable, resulted in altered growth characteristics: infected cells showed increased growth rates, higher peak cell densities, and slower decline of viability following maximum density than did control cultures. In addition, some oncogene-infected cultures maintained initial levels of antibody production during 16 weeks in culture, while antibody levels fell by 90% in uninfected PQXB cells. Both myc and ras oncogenes were expressed at only low levels in control and infected cells. These results suggest that oncogene expression in hybridomas can lead to enhanced growth characteristics and can stabilize antibody production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号