首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of vector meals in the host community is an important element of understanding and predicting vector-borne disease risk. Lizards (such as the western fence lizard; Sceloporus occidentalis) play a unique role in Lyme disease ecology in the far-western United States. Lizards rather than mammals serve as the blood meal hosts for a large fraction of larval and nymphal western black-legged ticks (Ixodes pacificus--the vector for Lyme disease in that region) but are not competent reservoirs for the pathogen, Borrelia burgdorferi. Prior studies have suggested that the net effect of lizards is to reduce risk of human exposure to Lyme disease, a hypothesis that we tested experimentally. Following experimental removal of lizards, we documented incomplete host switching by larval ticks (5.19%) from lizards to other hosts. Larval tick burdens increased on woodrats, a competent reservoir, but not on deer mice, a less competent pathogen reservoir. However, most larvae failed to find an alternate host. This resulted in significantly lower densities of nymphal ticks the following year. Unexpectedly, the removal of reservoir-incompetent lizards did not cause an increase in nymphal tick infection prevalence. The net result of lizard removal was a decrease in the density of infected nymphal ticks, and therefore a decreased risk to humans of Lyme disease. Our results indicate that an incompetent reservoir for a pathogen may, in fact, increase disease risk through the maintenance of higher vector density and therefore, higher density of infected vectors.  相似文献   

2.
Vaccines that target blood-feeding disease vectors, such as mosquitoes and ticks, have the potential to protect against the many diseases caused by vector-borne pathogens. We tested the ability of an anti-tick vaccine derived from a tick cement protein (64TRP) of Rhipicephalus appendiculatus to protect mice against tick-borne encephalitis virus (TBEV) transmitted by infected Ixodes ricinus ticks. The vaccine has a "dual action" in immunized animals: when infested with ticks, the inflammatory and immune responses first disrupt the skin feeding site, resulting in impaired blood feeding, and then specific anti-64TRP antibodies cross-react with midgut antigenic epitopes, causing rupture of the tick midgut and death of engorged ticks. Three parameters were measured: "transmission," number of uninfected nymphal ticks that became infected when cofeeding with an infected adult female tick; "support," number of mice supporting virus transmission from the infected tick to cofeeding uninfected nymphs; and "survival," number of mice that survived infection by tick bite and subsequent challenge by intraperitoneal inoculation of a lethal dose of TBEV. We show that one dose of the 64TRP vaccine protects mice against lethal challenge by infected ticks; control animals developed a fatal viral encephalitis. The protective effect of the 64TRP vaccine was comparable to that of a single dose of a commercial TBEV vaccine, while the transmission-blocking effect of 64TRP was better than that of the antiviral vaccine in reducing the number of animals supporting virus transmission. By contrast, the commercial antitick vaccine (TickGARD) that targets only the tick's midgut showed transmission-blocking activity but was not protective. The 64TRP vaccine demonstrates the potential to control vector-borne disease by interfering with pathogen transmission, apparently by mediating a local cutaneous inflammatory immune response at the tick-feeding site.  相似文献   

3.
BackgroundTick-borne diseases are the most prevalent vector-borne diseases in Europe. Knowledge on the incidence and clinical presentation of other tick-borne diseases than Lyme borreliosis and tick-borne encephalitis is minimal, despite the high human exposure to these pathogens through tick bites. Using molecular detection techniques, the frequency of tick-borne infections after exposure through tick bites was estimated.MethodsTicks, blood samples and questionnaires on health status were collected from patients that visited their general practitioner with a tick bite or erythema migrans in 2007 and 2008. The presence of several tick-borne pathogens in 314 ticks and 626 blood samples of this cohort were analyzed using PCR-based methods. Using multivariate logistic regression, associations were explored between pathogens detected in blood and self-reported symptoms at enrolment and during a three-month follow-up period.ResultsHalf of the ticks removed from humans tested positive for Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Candidatus Neoehrlichia mikurensis, Rickettsia helvetica, Rickettsia monacensis, Borrelia miyamotoi and several Babesia species. Among 92 Borrelia burgdorferi s. l. positive ticks, 33% carried another pathogen from a different genus. In blood of sixteen out of 626 persons with tick bites or erythema migrans, DNA was detected from Candidatus Neoehrlichia mikurensis (n = 7), Anaplasma phagocytophilum (n = 5), Babesia divergens (n = 3), Borrelia miyamotoi (n = 1) and Borrelia burgdorferi s. l. (n = 1). None of these sixteen individuals reported any overt symptoms that would indicate a corresponding illness during the three-month follow-up period. No associations were found between the presence of pathogen DNA in blood and; self-reported symptoms, with pathogen DNA in the corresponding ticks (n = 8), reported tick attachment duration, tick engorgement, or antibiotic treatment at enrolment.ConclusionsBased on molecular detection techniques, the probability of infection with a tick-borne pathogen other than Lyme spirochetes after a tick bite is roughly 2.4%, in the Netherlands. Similarly, among patients with erythema migrans, the probability of a co-infection with another tick-borne pathogen is approximately 2.7%. How often these infections cause disease symptoms or to what extend co-infections affect the course of Lyme borreliosis needs further investigations.  相似文献   

4.
The genetic diversity of pathogens, and interactions between genotypes, can strongly influence pathogen phenotypes such as transmissibility and virulence. For vector-borne pathogens, both mammalian hosts and arthropod vectors may limit pathogen genotypic diversity (number of unique genotypes circulating in an area) by preventing infection or transmission of particular genotypes. Mammalian hosts often act as “ecological filters” for pathogen diversity, where novel variants are frequently eliminated because of stochastic events or fitness costs. However, whether vectors can serve a similar role in limiting pathogen diversity is less clear. Here we show using Francisella novicida and a natural tick vector of Francisella spp. (Dermacentor andersoni), that the tick vector acted as a stronger ecological filter for pathogen diversity compared to the mammalian host. When both mice and ticks were exposed to mixtures of F. novicida genotypes, significantly fewer genotypes co-colonized ticks compared to mice. In both ticks and mice, increased genotypic diversity negatively affected the recovery of available genotypes. Competition among genotypes contributed to the reduction of diversity during infection of the tick midgut, as genotypes not recovered from tick midguts during mixed genotype infections were recovered from tick midguts during individual genotype infection. Mediated by stochastic and selective forces, pathogen genotype diversity was markedly reduced in the tick. We incorporated our experimental results into a model to demonstrate how vector population dynamics, especially vector-to-host ratio, strongly affected pathogen genotypic diversity in a population over time. Understanding pathogen genotypic population dynamics will aid in identification of the variables that most strongly affect pathogen transmission and disease ecology.  相似文献   

5.
The Lyme disease agent Borrelia burgdorferi is primarily transmitted to vertebrates by Ixodes ticks. The classical and alternative complement pathways are important in Borrelia eradication by the vertebrate host. We recently identified a tick salivary protein, designated P8, which reduced complement-mediated killing of Borrelia. We now discover that P8 interferes with the human lectin complement cascade, resulting in impaired neutrophil phagocytosis and chemotaxis and diminished Borrelia lysis. Therefore, P8 was renamed the tick salivary lectin pathway inhibitor (TSLPI). TSLPI-silenced ticks, or ticks exposed to TSLPI-immune mice, were hampered in Borrelia transmission. Moreover, Borrelia acquisition and persistence in tick midguts was impaired in ticks?feeding on TSLPI-immunized, B.?burgdorferi-infected mice. Together, our findings suggest an essential role for the lectin complement cascade in Borrelia eradication and demonstrate how a vector-borne pathogen co-opts a vector protein to facilitate early mammalian infection and vector colonization.  相似文献   

6.
Lucy Gilbert 《Oecologia》2010,162(1):217-225
The impact of climate change on vector-borne infectious diseases is currently controversial. In Europe the primary arthropod vectors of zoonotic diseases are ticks, which transmit Borrelia burgdorferi sensu lato (the agent of Lyme disease), tick-borne encephalitis virus and louping ill virus between humans, livestock and wildlife. Ixodes ricinus ticks and reported tick-borne disease cases are currently increasing in the UK. Theories for this include climate change and increasing host abundance. This study aimed to test how I. ricinus tick abundance might be influenced by climate change in Scotland by using altitudinal gradients as a proxy, while also taking into account the effects of hosts, vegetation and weather effects. It was predicted that tick abundance would be higher at lower altitudes (i.e. warmer climates) and increase with host abundance. Surveys were conducted on nine hills in Scotland, all of open moorland habitat. Tick abundance was positively associated with deer abundance, but even after taking this into account, there was a strong negative association of ticks with altitude. This was probably a real climate effect, with temperature (and humidity, i.e. saturation deficit) most likely playing an important role. It could be inferred that ticks may become more abundant at higher altitudes in response to climate warming. This has potential implications for pathogen prevalence such as louping ill virus if tick numbers increase at elevations where competent transmission hosts (red grouse Lagopus lagopus scoticus and mountain hares Lepus timidus) occur in higher numbers.  相似文献   

7.
Zoonoses disproportionately affect tropical communities and are associated with human modification and use of ecosystems. Effective management is hampered by poor ecological understanding of disease transmission and often focuses on human vaccination or treatment. Better ecological understanding of multi-vector and multi-host transmission, social and environmental factors altering human exposure, might enable a broader suite of management options. Options may include “ecological interventions” that target vectors or hosts and require good knowledge of underlying transmission processes, which may be more effective, economical, and long lasting than conventional approaches. New frameworks identify the hierarchical series of barriers that a pathogen needs to overcome before human spillover occurs and demonstrate how ecological interventions may strengthen these barriers and complement human-focused disease control. We extend these frameworks for vector-borne zoonoses, focusing on Kyasanur Forest Disease Virus (KFDV), a tick-borne, neglected zoonosis affecting poor forest communities in India, involving complex communities of tick and host species. We identify the hierarchical barriers to pathogen transmission targeted by existing management. We show that existing interventions mainly focus on human barriers (via personal protection and vaccination) or at barriers relating to Kyasanur Forest Disease (KFD) vectors (tick control on cattle and at the sites of host (monkey) deaths). We review the validity of existing management guidance for KFD through literature review and interviews with disease managers. Efficacy of interventions was difficult to quantify due to poor empirical understanding of KFDV–vector–host ecology, particularly the role of cattle and monkeys in the disease transmission cycle. Cattle are hypothesised to amplify tick populations. Monkeys may act as sentinels of human infection or are hypothesised to act as amplifying hosts for KFDV, but the spatial scale of risk arising from ticks infected via monkeys versus small mammal reservoirs is unclear. We identified 19 urgent research priorities for refinement of current management strategies or development of ecological interventions targeting vectors and host barriers to prevent disease spillover in the future.  相似文献   

8.
Habitat heterogeneity influences pathogen ecology by affecting vector abundance and the reservoir host communities. We investigated spatial patterns of disease risk for two human pathogens in the Borrelia genus–B. burgdorferi and B. miyamotoi–that are transmitted by the western black-legged tick, Ixodes pacificus. We collected ticks (349 nymphs, 273 adults) at 20 sites in the San Francisco Bay Area, California, USA. Tick abundance, pathogen prevalence and density of infected nymphs varied widely across sites and habitat type, though nymphal western black-legged ticks were more frequently found, and were more abundant in coast live oak forest and desert/semi-desert scrub (dominated by California sagebrush) habitats. We observed Borrelia infections in ticks at all sites where we able to collect >10 ticks. The recently recognized human pathogen, B. miyamotoi, was observed at a higher prevalence (13/349 nymphs = 3.7%, 95% CI = 2.0–6.3; 5/273 adults = 1.8%, 95% CI = 0.6–4.2) than recent studies from nearby locations (Alameda County, east of the San Francisco Bay), demonstrating that tick-borne disease risk and ecology can vary substantially at small geographic scales, with consequences for public health and disease diagnosis.  相似文献   

9.
More than 19,000 human cases of Lyme disease (LD) are reported each year in the United States. Lyme disease cases occur when humans are exposed to the bacterium Borrelia burgdorferi through the bite of an infected ixodid tick. The probability of human exposure to infected ticks results from a combination of human behaviors and entomological risk. Human behaviors include use of tick habitats, use of protective clothing, and grooming for tick removal. Entomological risks include the density of ticks in a habitat and the proportion of these that are infected with B. burgdorferi. Recent studies have suggested that humans are at higher risk of exposure to B. burgdorferi near edges between forests and herbaceous communities, including lawns and old fields, but whether this increased risk is a function of human behaviors, entomological risk, or both, is unknown. We assessed entomological risk across forest–old field edges in Dutchess County, NY. Densities of ticks and of infected ticks were considerably higher within forests than at forest–field edges, and were lowest within fields. Thus, edges between forests and fields do not pose a higher entomological risk than do the forests themselves, although risk at the edge is higher than in herbaceous habitat. Landscapes with abundant edges between forested and herbaceous habitat, and roughly even proportions of both, might attract both heavy human use and pose moderately high entomological risk, and thus could be targeted for mitigation. We suggest that determining appropriate methods for reducing human exposure to LD requires differentiating entomological risk from human behaviors.  相似文献   

10.
Classical predator–prey and host–parasite systems have been extensively studied in a food web context. Less attention has been paid to communities that include pathogens and their vectors. We present a coarse-grained, pan-African analysis of the relationships between the abiotic environment (location, precipitation, temperature), the species richness and community composition of ixodid ticks, and the species richness and community composition of pathogens that ticks transmit to humans. We found strong correlations between the abiotic environment and tick species richness, and a weak but significant correlation between the abiotic environment and pathogen species richness. A substantial amount of variation in community composition of parasites and pathogens was not explained by the variables that we considered. A structural equation model that compensated for the indirect effects of climate on the pathogen community via tick community composition suggested that while the environment strongly regulates tick community composition and tick community composition strongly regulates pathogen community composition, abiotic influences on pathogen species richness and community composition are weak. Our results support the view that changes in the broader environment will influence tick-borne pathogens primarily via the influence of the environment on ticks. The interactions that regulate host–vector–pathogen dynamics are of particular relevance in understanding the relationships between environmental change and health concerns, such as the impact of climate change on the occurrence of vector-borne diseases.  相似文献   

11.
There is a public perception that the white‐tailed deer Odocoileus virginianus (Artiodactyla: Cervidae) is the main reservoir supporting the maintenance and spread of the causative agent of Lyme disease, Borrelia burgdorferi. This study examines the pathogen prevalence rate of Borrelia in adult Ixodes scapularis (Ixodida: Ixodidae), the black‐legged tick, collected from white‐tailed deer and compares it with pathogen prevalence rates in adult ticks gathered by dragging vegetation in two contiguous counties west of the Hudson Valley in upstate New York. In both Broome and Chenango Counties, attached and unattached ticks harvested from white‐tailed deer had significantly lower prevalences of B. burgdorferi than those collected from vegetation. No attached ticks on deer (n = 148) in either county, and only 2.4 and 7.3% of unattached ticks (n = 389) in Broome and Chenango Counties, respectively, were harbouring the pathogen. This contrasts with the finding that 40.8% of ticks in Broome County and 46.8% of ticks in Chenango County collected from vegetation harboured the pathogen. These data suggest that a mechanism in white‐tailed deer may aid in clearing the pathogen from attached deer ticks, although white‐tailed deer do contribute to the spatial distribution of deer tick populations and also serve as deadend host breeding sites for ticks.  相似文献   

12.
The soft tick, Ornithodoros coriaceus (Koch) (Acari: Argasidae), is a common mammalian parasite of livestock in many arid regions of the western U.S.A. The tick is a known vector of the undescribed bacterial pathogen that causes epizootic bovine abortion (EBA), which results in late-term abortions in beef cattle and subsequent economic loss, which can be considerable, to producers. A second reported bacterial pathogen, Borrelia coriaceae, a member of the relapsing fever complex, has also been identified in this tick and was at one time hypothesized to be the aetiological agent of EBA. In order to test whether bacterial infections in ticks overlapped geographically and to determine the prevalence of co-infection in O. coriaceus populations, we used molecular methods to detect bacterial DNA from ticks collected from a wide variety of habitats in California, Nevada and Oregon. Of the 15 sites at which ticks tested positive for the agent of EBA (aoEBA), eight also contained ticks positive for Borrelia spp. by polymerase chain reaction assay. Additionally, two ticks were co-infected; both of these were collected from the same location. Univariate risk analysis indicated the presence of juniper-dominated habitat at the collection site and geographic location to be significantly associated with infection of the tick vector by either pathogen.  相似文献   

13.
The spatio-temporal attachment site patterns of ticks feeding on their hosts can be of significance if co-feeding transmission (i.e. from tick to tick without a systemic infection of the host) of pathogens affects the persistence of a given disease. Using tick infestation data on roe deer, we analysed preferred attachment sites and niche width of Ixodes ticks (larvae, nymphs, males, females) and investigated the degree of inter- and intrastadial aggregation. The different development stages showed rather consistent attachment site patterns and relative narrow feeding site niches. Larvae were mostly found on the head and on the front legs of roe deer, nymphs reached highest densities on the head and highest adult densities were found on the neck of roe deer. The tick stages feeding (larvae, nymphs, females) on roe deer showed high degrees of intrastadial spatial aggregation, whereas males did not. Male ticks showed large feeding site overlap with female ticks. Feeding site overlap between larval-female and larval-nymphal ticks did occur especially during the months May–August on the head and front legs of roe deer and might allow pathogen transmission via co-feeding. Tick density, niche width and niche overlap on roe deer are mainly affected by seasonality, reflecting seasonal activity and abundance patterns of ticks. Since different tick development stages occur spatially and temporally clustered on roe deer, transmission experiments of tick-borne pathogens are urgently needed.  相似文献   

14.
Ticks are obligatory parasites with complex life cycles that often depend on larger bodied vertebrates as final hosts. These traits make them particularly sensitive to local coextinction with their host. Loss of wildlife abundance and diversity should thus lead to loss of tick abundance and diversity to the point where only generalist tick species remain. However, direct empirical tests of these hypotheses are lacking, despite their relevance to our understanding of tick-borne disease emergence in disturbed environments. Here, we compare vertebrate and tick communities across 12 forest islands and peninsulas in the Panama Canal that ranged 1000-fold in size (2.6–2811.3?ha). We used drag sampling and camera trapping to directly assess the abundance and diversity of communities of questing ticks and vertebrate hosts. We found that the abundance and species richness of ticks were positively related to those of wildlife. Specialist tick species were only present in fragments where their final hosts were found. Further, less diverse tick communities had a higher relative abundance of the generalist tick species Amblyomma oblongoguttatum, a potential vector of spotted fever group rickettsiosis. These findings support the host-parasite coextinction hypothesis, and indicate that loss of wildlife can indeed have cascading effects on tick communities. Our results also imply that opportunities for pathogen transmission via generalist ticks may be higher in habitats with degraded tick communities. If these patterns are general, then tick identities and abundances serve as useful bioindicators of ecosystem health, with low tick diversity reflecting low wildlife diversity and a potentially elevated risk of interspecific disease transmission via remaining host species and generalist ticks.  相似文献   

15.
The blacklegged tick Ixodes scapularis is the primary vector of the most prevalent vector-borne zoonosis in North America, Lyme disease (LD). Enzootic maintenance of the pathogen Borrelia burgdorferi by I. scapularis and small mammals is well documented, whereas its "cryptic" maintenance by other specialist ticks and wildlife hosts remains largely unexplored because these ticks rarely bite humans. We quantified B. burgdorferi infection in a cryptic bird-rabbit-tick cycle. Furthermore, we explored the role of birds in maintaining and moving B. burgdorferi strains by comparing their genetic diversity in this cryptic cycle to that found in cycles vectored by I. scapularis. We examined birds, rabbits, and small mammals for ticks and infection over a 4-year period at a focal site in Michigan, 90 km east of a zone of I. scapularis invasion. We mist netted 19,631 birds that yielded 12,301 ticks, of which 86% were I. dentatus, a bird-rabbit specialist. No resident wildlife harbored I. scapularis, and yet 3.5% of bird-derived ticks, 3.6% of rabbit-derived ticks, and 20% of rabbit ear biopsy specimens were infected with B. burgdorferi. We identified 25 closely related B. burgdorferi strains using an rRNA gene intergenic spacer marker, the majority (68%) of which had not been reported previously. The presence of strains common to both cryptic and endemic cycles strongly implies bird-mediated dispersal. Given continued large-scale expansion of I. scapularis populations, we predict that its invasion into zones of cryptic transmission will allow for bridging of novel pathogen strains to humans and animals.  相似文献   

16.
Lyme disease risk is increasing in the United States due in part to the spread of blacklegged ticks Ixodes scapularis, the principal vector of the spirochetal pathogen Borrelia burgdorferi. A 5-year study was undertaken to investigate hypothesized coinvasion of I. scapularis and B. burgdorferi in Lower Michigan. We tracked the spatial and temporal dynamics of the tick and spirochete using mammal, bird, and vegetation drag sampling at eight field sites along coastal and inland transects originating in a zone of recent I. scapularis establishment. We document northward invasion of these ticks along Michigan’s west coast during the study period; this pattern was most evident in ticks removed from rodents. B. burgdorferi infection prevalences in I. scapularis sampled from vegetation in the invasion zone were 9.3% and 36.6% in nymphs and adults, respectively, with the majority of infection (95.1%) found at the most endemic site. There was no evidence of I. scapularis invasion along the inland transect; however, low-prevalence B. burgdorferi infection was detected in other tick species and in wildlife at inland sites, and at northern coastal sites in years before the arrival of I. scapularis. These infections suggest that cryptic B. burgdorferi transmission by other vector-competent tick species is occurring in the absence of I. scapularis. Other Borrelia spirochetes, including those that group with B. miyamotoi and B. andersonii, were present at a low prevalence within invading ticks and local wildlife. Reports of Lyme disease have increased significantly in the invasion zone in recent years. This rapid blacklegged tick invasion—measurable within 5 years—in combination with cryptic pathogen maintenance suggests a complex ecology of Lyme disease emergence in which wildlife sentinels can provide an early warning of disease emergence.  相似文献   

17.
Anaplasma phagocytophilum is an obligate intracellular rickettsial pathogen transmitted by ixodid ticks. This bacterium colonizes myeloid and nonmyeloid cells and causes human granulocytic anaplasmosis--an important immunopathological vector-borne disease in the USA, Europe and Asia. Recent studies uncovered novel insights into the mechanisms of A. phagocytophilum pathogenesis and immunity. Here, we provide an overview of the underlying events by which the immune system responds to A. phagocytophilum infection, how this pathogen counteracts host immunity and the contribution of the tick vector for microbial transmission. We also discuss current scientific gaps in the knowledge of A. phagocytophilum biology for the purpose of exchanging research perspectives.  相似文献   

18.
Tick-borne encephalitis is an emerging vector-borne zoonotic disease reported in several European and Asiatic countries with complex transmission routes that involve various vertebrate host species other than a tick vector. Understanding and quantifying the contribution of the different hosts involved in the TBE virus cycle is crucial in estimating the threshold conditions for virus emergence and spread. Some hosts, such as rodents, act both as feeding hosts for ticks and reservoirs of the infection. Other species, such as deer, provide important sources of blood for feeding ticks but they do not support TBE virus transmission, acting instead as dead-end (i.e., incompetent) hosts. Here, we introduce an eco-epidemiological model to explore the dynamics of tick populations and TBE virus infection in relation to the density of two key hosts. In particular, our aim is to validate and interpret in a robust theoretical framework the empirical findings regarding the effect of deer density on tick infestation on rodents and thus TBE virus occurrence from selected European foci. Model results show hump-shaped relationships between deer density and both feeding ticks on rodents and the basic reproduction number for TBE virus. This suggests that deer may act as tick amplifiers, but may also divert tick bites from competent hosts, thus diluting pathogen transmission. However, our model shows that the mechanism responsible for the dilution effect is more complex than the simple reduction of tick burden on competent hosts. Indeed, while the number of feeding ticks on rodents may increase with deer density, the proportion of blood meals on competent compared with incompetent hosts may decrease, triggering a decline in infection. As a consequence, using simply the number of ticks per rodent as a predictor of TBE transmission potential could be misleading if competent hosts share habitats with incompetent hosts.  相似文献   

19.
The ranges of many tick species are changing due to climate change and human alteration of the landscape. Understanding tick responses to environmental conditions and how sampling method influences measurement of tick communities will improve our assessment of human disease risk. We compared tick sampling by three collection methods (dragging, CO2 trapping and rodent surveys) in adjacent forested and grassland habitats in the lower Midwest, USA, and analyzed the relationship between tick abundance and microclimate conditions. The study areas were within the overlapping ranges of three tick species, which may provide conditions for pathogen exchange and spread into new vectors. Dermacentor variabilis (American dog tick) was found using all methods, Amblyomma americanum (lonestar tick) was found by dragging and CO2 trapping and Ixodes scapularis (blacklegged deer tick) was found only on rodents. Proportion of each species differed significantly among sampling methods. More ticks were found in forests compared to open habitats. Further, more ticks were collected by dragging and from rodents in hotter, drier conditions. Our results demonstrate that multiple sampling methodologies better measure the tick community and that microclimate conditions strongly influence the abundance and activity of individual tick species.  相似文献   

20.
Ixodes scapularis, the tick vector of Lyme disease and human granulocytic ehrlichiosis (HGE), is prevalent in much of southern New York state. The distribution of this species has increased, as have reported cases of both Lyme disease and HGE. The unreliability of case reports, however, demonstrates the need for tick and pathogen surveillance in order to accurately define areas of high risk. In this study, a total of 89,550 m2 at 34 study sites was drag sampled in 1995 and a total of 51,540 m2 at 40 sites was sampled in 1996 to determine tick and pathogen distribution in southern New York state. I. scapularis was collected from 90% of the sites sampled, and regionally, a 2.5-fold increase in nymphal abundance occurred from 1995 to 1996. I. scapularis individuals from all sites were infected with Borrelia burgdorferi in 1995, while an examination of ticks for both B. burgdorferi and the agent of HGE in 1996 confirmed that these organisms were present in all counties; the average coinfection rate was 1.9%. No correlation was found between estimated risk and reported cases of Lyme disease. The geographic disparity of risk observed among sites in this study underscores the need for vector and pathogen surveillance on a regional level. An entomologic risk index can help identify sites for targeted tick control efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号