首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Batrachochytrium salamandrivorans (Bsal) is a virulent fungal pathogen that infects salamanders. It is implicated in the recent collapse of several populations of fire salamanders in Europe. This pathogen seems much like that of its sister species, Batrachochytrium dendrobatidis (Bd), the agent responsible for anuran extinctions and extirpations worldwide, and is considered to be an emerging global threat to salamander communities. Bsal thrives at temperatures found in many mountainous regions rich in salamander species; because of this, we have screened specimens of salamanders representing 17 species inhabiting mountain ranges in three continents: The Smoky Mountains, the Swiss Alps, and the Peruvian Andes. We screened 509 salamanders, with 192 representing New World salamanders that were never tested for Bsal previously. Bsal was not detected, and Bd was mostly present at low prevalence except for one site in the Andes.  相似文献   

2.
There is increasing evidence that the global spread of the fungal pathogen Batrachochytrium dendrobatidis (Bd) has been facilitated by the international trade in amphibians. Bd was first detected in the UK in 2004, and has since been detected in multiple wild amphibian populations. Most amphibians imported into the UK for the pet trade from outside the European Union enter the country via Heathrow Animal Reception Centre (HARC), where Bd-positive animals have been previously detected. Data on the volume, diversity and origin of imported amphibians were collected for 59 consignments arriving at HARC between November 2009 and June 2012, along with a surveillance study to investigate the prevalence of Bd in these animals. Forty-three amphibian genera were recorded, originating from 12 countries. It was estimated that 5000–7000 amphibians are imported through HARC into the UK annually for the pet trade. Bd was detected in consignments from the USA and Tanzania, in six genera, resulting in an overall prevalence of 3.6%. This suggests that imported amphibians are a source of Bd within the international pet trade.  相似文献   

3.
Chytridiomycosis is an emerging infectious disease of amphibians caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), which has led to devastating declines in amphibian populations worldwide. Current theory predicts that Bd infections are maintained through both reproduction on the host’s skin and reinfection from sources outside of the host. To investigate the importance of external reinfection on pathogen burden, we infected captive-bred individuals of the highly susceptible Panamanian Golden Frog, Atelopus glyphus, and wild-caught glass frogs, Espadarana prosoblepon, with Bd. We housed the animals in one of three treatments: individually, in heterospecific pairs, and in conspecific pairs. For 8 weeks, we measured the Bd load and shedding rate of all frogs. We found that Atelopus had high rates of increase in both Bd load and shedding rate, but pathogen growth rates did not differ among treatments. The infection intensity of Espadarana co-housed with Atelopus was indistinguishable from those housed singly and those in conspecific pairs, despite being exposed to a large external source of Bd zoospores. Our results indicate that Bd load in both species is driven by pathogen replication within an individual, with reinfection from outside the host contributing little to the amplification of host fungal load.  相似文献   

4.
Batrachochytrium dendrobatidis (Bd), an amphibian fungal pathogen, has infected >500 species and caused extinctions or declines in >200 species worldwide. Despite over a decade of research, little is known about its invasion biology. To better understand this, we conducted a museum specimen survey (1910–1997) of Bd in amphibians on 11 California islands and found a pattern consistent with the emergence of Bd epizootics on the mainland, suggesting that geographic isolation did not prevent Bd invasion. We propose that suitable habitat, host diversity, and human visitation overcome isolation from the mainland and play a role in Bd invasion.  相似文献   

5.
Epizootic disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd) is a major driver of amphibian declines, yet many amphibians declined before the pathogen was described. The Relict Leopard Frog, Rana onca (=Lithobates onca), was nearly extinct, with the exception of populations within a few geothermal springs. Growth of Bd, however, is limited by high water temperature, and geothermal springs may have provided refuge during outbreaks of chytridiomycosis. We conducted field surveys and laboratory experiments to assess the susceptibility of R. onca to Bd. In the field, we found Bd at one of the two areas where remnant populations of R. onca still occur, but not in the other. In the laboratory, we infected juvenile frogs from these two areas with two hypervirulent Bd isolates associated with declines in other ranid species. In our experiments, these Bd isolates did not affect survivorship of R. onca and most infections (64%) were cleared by the end of the experiments. We propose that R. onca either has inherent resistance to Bd or has recently evolved such resistance. These results may be important for conservation efforts aimed at establishing new populations of R. onca across a landscape where Bd exists. Resistance, however, varies among life stages, and we also did not assess Bd from the local environment. We caution that the resistance we observed for young frogs under laboratory conditions may not translate to the situation for R. onca in the wild.  相似文献   

6.
We studied the historical prevalence of the invasive and pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) among amphibians from the Bolivian Andes. Our aim was also to determine its geographic pattern of dispersion, and a potential host taxonomic signature. We collected frog tissue samples from nine museum collections covering a period from 1863 to 2005 and from the field during 2009–2016. Bd was diagnosed via quantitative PCR in 599 individuals of 17 genera and 54 species. We found an overall Bd prevalence of 41% among 44 species tested. The first incidence of Bd was from a Telmatobius culeus in 1863; this is the earliest report of detection for this pathogen in the world. Results reveal a non-random historical and geographical pattern of Bd occurrence and amphibian declines that suggests the presence of two different invasive strains, an ancient endemic and a more recent introduction. Prevalence of Bd increased significantly by the mid-1990s, particularly in the cloud-forests, and this is coincident with the timing of drastic amphibian declines. In contrast, amphibians occurring in drier altiplano habitats have persisted in spite of Bd presence. We hypothesize that the early 1990s, and the cloud-forests in central Bolivia were the center of an epidemic surge of Bd that took its toll on many species, especially in the genus Telmatobius. Further sampling of cloud-forest species, and ongoing genetic studies of Bd isolates from Bolivia should help resolve the history of this invasive pathogen and test hypotheses on the differential response of endangered hosts.  相似文献   

7.
The pathogenic fungus Batrachochytrium dendrobatidis (Bd) has been associated with global amphibian declines, but it is often difficult to discern the relative importance of Bd as a causal agent in declines that have already occurred. Retrospective analyses of museum specimens have allowed researchers to associate the timing of Bd arrival with the timing of past amphibian declines. Cascades frogs (Rana cascadae) have experienced dramatic declines in northern California, but it is not clear whether the onset of these declines corresponds to the arrival of Bd. We used quantitative real-time PCR assays of samples collected from museum specimens to determine historical Bd prevalence in the northern California range of Cascades frogs. We detected Bd in 13 of 364 (3.5%) Cascades frog specimens collected between 1907 and 2003, with the first positive result from 1978. A Bayesian analysis suggested that Bd arrived in the region between 1973 and 1978, which corresponds well with the first observations of declines in the 1980s.  相似文献   

8.
Amphibian populations are decreasing worldwide due to a variety of factors. In South America, the chytrid fungus Batrachochytrium dendrobatidis (Bd) is linked to many population declines. The pathogenic effect of Bd on amphibians can be inhibited by specific bacteria present on host skin. This symbiotic association allows some amphibians to resist the development of the disease chytridiomycosis. Here, we aimed (1) to determine for the first time if specific anti-Bd bacteria are present on amphibians in the Andes of Ecuador, (2) to monitor anti-Bd bacteria across developmental stages in a focal amphibian, the Andean marsupial tree frog, Gastrotheca riobambae, that deposits larvae in aquatic habitats, and (3) to compare the Bd presence associated with host assemblages including 10 species at sites ranging in biogeography from Amazonian rainforest (450 masl) to Andes montane rainforest (3200 masl). We sampled and identified skin-associated bacteria of frogs in the field using swabs and a novel methodology of aerobic counting plates, and a combination of morphological, biochemical, and molecular identification techniques. The following anti-Bd bacteria were identified and found to be shared among several hosts at high-elevation sites where Bd was present at a prevalence of 32.5%: Janthinobacterium lividum, Pseudomonas fluorescens, and Serratia sp. Bd were detected in Gastrotheca spp. and not detected in the lowlands (sites below 1000 masl). In G. riobambae, recognized Bd-resistant bacteria start to be present at the metamorphic stage. Overall bacterial abundance was significantly higher post-metamorphosis and on species sampled at lower elevations. Further metagenomic studies are needed to evaluate the roles of host identity, life-history stage, and biogeography of the microbiota and their function in disease resistance.  相似文献   

9.
Fungal pathogens have evolved a broad suite of strategies aiming at evading the host immune response. Amphibians are globally infected by the panzootic chytrid fungus Batrachochytrium dendrobatidis (Bd) and, while robust innate immune defences have been characterised, there is little evidence for the existence of effective adaptive immunity. We determine the immune response of the common midwife toad following challenge by Bd as larvae. Immune function was described for both the cell-mediated and antibody-mediated immune responses following infectious challenge as larval amphibians. While there were no significant differences in the ratio of neutrophils/lymphocytes between infected and uninfected individuals, early exposure of tadpoles to Bd significantly dampened the levels of circulating immunoglobulins (IgM and IgY) in the serum of juveniles after metamorphosis. Our results show that Bd immunosuppresses amphibians when infection occurs as larvae with potentially broad effects on the remodelling of immunity during metamorphosis.  相似文献   

10.
Decision-analytic models provide forecasts of how systems of interest will respond to management. These models can be parameterized using empirical data, but sometimes require information elicited from experts. When evaluating the effects of disease in species translocation programs, expert judgment is likely to play a role because complete empirical information will rarely be available. We illustrate development of a decision-analytic model built to inform decision-making regarding translocations and other management actions for the boreal toad (Anaxyrus boreas boreas), a species with declines linked to chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd). Using the model, we explored the management implications of major uncertainties in this system, including whether there is a genetic basis for resistance to pathogenic infection by Bd, how translocation can best be implemented, and the effectiveness of efforts to reduce the spread of Bd. Our modeling exercise suggested that while selection for resistance to pathogenic infection by Bd could increase numbers of sites occupied by toads, and translocations could increase the rate of toad recovery, efforts to reduce the spread of Bd may have little effect. We emphasize the need to continue developing and parameterizing models necessary to assess management actions for combating chytridiomycosis-associated declines.  相似文献   

11.
The thermal sensitivities of organisms regulate a wide range of ecological interactions, including host–parasite dynamics. The effect of temperature on disease ecology can be remarkably complex in disease systems where the hosts are ectothermic and where thermal conditions constrain pathogen reproductive rates. Amphibian chytridiomycosis, caused by the pathogen Batrachochytrium dendrobatidis (Bd), is a lethal fungal disease that is influenced by temperature. However, recent temperature studies have produced contradictory findings, suggesting that our current understanding of thermal effects on Bd may be incomplete. We investigated how temperature affects three different Bd strains to evaluate diversity in thermal responses. We quantified growth across the entire thermal range of Bd, and beyond the known thermal limits (T max and T min). Our results show that all Bd strains remained viable and grew following 24 h freeze (?12 °C) and heat shock (28 °C) treatments. Additionally, we found that two Bd strains had higher logistic growth rates (r) and carrying capacities (K) at the upper and lower extremities of the temperature range, and especially in low temperature conditions (2–3 °C). In contrast, a third strain exhibited relatively lower growth rates and carrying capacities at these same thermal extremes. Overall, our results suggest that there is considerable variation among Bd strains in thermal tolerance, and they establish a new thermal sensitivity profile for Bd. More generally, our findings point toward important questions concerning the mechanisms that dictate fungal thermal tolerances and temperature-dependent pathogenesis in other fungal disease systems.  相似文献   

12.
Chytridiomycosis, an amphibian disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is an ideal system for studying the influence of temperature on host–pathogen relationships because both host and pathogen are ectothermic. Studies of Bd in culture suggest that optimal growth occurs between 17 and 23°C, and death of the fungus occurs above 29 or below 0°C. Amphibian immune systems, however, are also temperature dependent and often more effective at higher temperatures. We therefore hypothesized that pathogen load, probability of infection and mortality in Bd-exposed frogs would peak at a lower temperature than that at which Bd grows best in vitro. To test this, we conducted a study where Bd- and sham-exposed Northern cricket frogs (Acris crepitans) were incubated at six temperatures between 11 and 26°C. While probability of infection did not differ across temperatures, pathogen load and mortality were inversely related to temperature. Survival of infected hosts was greatest between 20 and 26°C, temperatures where Bd grows well in culture. These results demonstrate that the conditions under which a pathogen grows best in culture do not necessarily reflect patterns of pathogenicity, an important consideration for predicting the threat of this and other wildlife pathogens.  相似文献   

13.
Species distribution models (SDMs) increasingly have been used to anticipate the spread of invasive species. However, these models are powerful conservation tools only if they are biologically relevant, and thus validation of these models is essential. Here, we evaluate four model selection frameworks for their ability to identify a best fit model of spread under low data conditions early in an invasion, specifically testing the efficacy of methods that utilize absence data in addition to presence data in evaluating models. We test this question using a simulation where we generated data with varying confidence in the accuracy of the absence data, as absences in early invasions may become presences in the future, and increasing quantity of observation data to test the models. We create these simulations based on a real-world example of a newly emergent, invasive fungal pathogen, Batrachochytrium salamandrivorans (Bsal). The simulation demonstrated that AIC and Likelihood consistently outperform both Kappa and AUC in selecting the true model as the best model when data are limited and absence data are low quality, with AIC providing the most conservative results due to penalties for overparameterization. With these results, we then used these techniques to compare five candidate models for predicting the spread of Bsal. Consistent with the simulation, the best fit model of the candidate models for Bsal was inconsistent across the four metrics. However, AIC, which performed best in the simulation study, suggested that the spread of Bsal into Western Europe was best predicted by a combination of bioclimatic suitability, salamander richness, and number of salamander imports. Our results highlight the difficulty in evaluating predictive models when data are limited and of low quality, as with a newly invasive species, but show that these challenges can be partially addressed with the appropriate model selection approach. Use of this approach is critical as SDMs of invasive species are often used to inform conservation policy and efforts before the invasion spreads, when limited data are available.  相似文献   

14.
Batrachochytrium dendrobatidis (Bd) is a pathogenic fungus which causes the disease chytridiomycosis in amphibians by infecting the animals’ epidermis. The most commonly applied method for the detection of Bd is the use of a sterile swab, rubbed over the keratinized areas of an amphibian and then processed to yield DNA for detection by qPCR. This method has been used to infer a threshold of lethal infection in some species; however, how reliable and reproducible the swabbing method is at detecting the true burden of infection suffered by individuals is not known. European midwife toads, Alytes obstetricans, are susceptible to chytridiomycosis and are highly parasitised by Bd across Europe. By quantifying Bd-load throughout the entire skin and comparing this to swab results taken from the same individual, we determined whether epidermal swabs provide a quantifiable and accurate indication of the true fungal burden suffered. Further, we examined whether we could infer a threshold for lethal infection based on comparison of swab data taken from infected A. obstetricans exhibiting different clinical states. From swab data, we detected significantly higher fungal burdens from moribund metamorphs compared to visually healthy individuals; however, the ability of these swab data to provide an accurate indication of the true fungal burden was not reliable. These data suggest that fungal load dynamics play an important role in disease-induced mortality in A. obstetricans at these sites, but that using swab data to infer an exact threshold for Bd-associated mortality might be inappropriate and misleading.  相似文献   

15.
The chytrid fungus Batrachochytrium dendrobatidis (Bd) has been implicated in amphibian declines on almost all continents. We report on prevalence and intensity of Bd in the United States amphibian populations across three longitudinally separated north-to-south transects conducted at 15 Department of Defense installations during two sampling periods (late-spring/early summer and mid to late summer). Such a standardized approach minimizes the effects of sampling and analytical bias, as well as human disturbance (by sampling restricted military bases), and therefore permits a cleaner interpretation of environmental variables known to affect chytrid dynamics such as season, temperature, rainfall, latitude, and longitude. Our prevalence of positive samples was 20.4% (137/670), and our mean intensity was 3.21 zoospore equivalents (SE = 1.03; range 0.001–103.59). Of the 28 amphibian species sampled, 15 tested positive. Three sites had no evidence of Bd infection; across the remaining 12 Bd-positive sites, neither infection prevalence nor intensity varied systematically. We found a more complicated pattern of Bd prevalence than anticipated. Early season samples showed no trend associated with increasing temperature and precipitation and decreasing (more southerly) latitudes; while in late season samples, the proportion of infected individuals decreased with increasing temperature and precipitation and decreasing latitudes. A similar pattern held for the east–west gradient, with the highest prevalence associated with more easterly/recently warmer sites in the early season then shifting to more westerly/recently cooler sites in the later season. Bd intensity across bases and sampling periods was comparatively low. Some of the trends in our data have been seen in previous studies, and our results offer further continental-level Bd sampling over which more concentrated local sampling efforts can be overlaid.  相似文献   

16.
Chytridiomycosis, an emerging infectious disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), has caused amphibian population declines worldwide. Bd was first described in the 1990s and there are still geographic gaps in the genetic analysis of this globally distributed pathogen. Relatively few genetic studies have focused on regions where Bd exhibits low virulence, potentially creating a bias in our current knowledge of the pathogen's genetic diversity. Disease-associated declines have not been recorded in Texas (USA), yet Bd has been detected on amphibians in the state. These strains have not been isolated and characterized genetically; therefore, we isolated, cultured, and genotyped Bd from central Texas and compared isolates to a panel of previously genotyped strains distributed across the Western Hemisphere. We also isolated other chytrids from east Texas not known to infect amphibians. To identify larval amphibian hosts, we sequenced part of the COI gene. Among 37 Bd isolates from Texas, we detected 19 unique multi-locus genotypes, but found no genetic structure associated with host species, Texas localities, or across North America. Isolates from central Texas exhibit high diversity and genetically cluster with BdGPL isolates from the western U.S. that have caused amphibian population declines. This study genetically characterizes isolates of Bd from the south central U.S. and adds to the global knowledge of Bd genotypes.  相似文献   

17.
The amphibian disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), has contributed to the decline of Chiricahua leopard frogs (Rana chiricahuensis), a federally threatened species native to the Southwestern United States. We characterized immunogenetic variability in R. chiricahuensis by sequencing an expressed Major Histocompatibility Complex (MHC) class IIβ gene across 13 natural populations in Arizona, USA, as well as 283 individuals that were captive reared from two egg masses. We recovered a total of five class IIβ MHC alleles compared to 84 alleles previously characterized in eight natural populations of the Arizona congener R. yavapaiensis, demonstrating reduced MHC diversity in R. chiricahuensis. One allele was fixed in five populations but none of the R. chiricahuensis alleles were closely related to R. yavapaiensis allele Q, which is significantly associated with chytridiomycosis resistance in laboratory trials. Nine of 13 R. chiricahuensis population localities were Bd positive, and bearing allele RachDRB*04 was the best genetic predictor of an individual being infected with Bd. A total of three class IIβ alleles were recovered from captive reared individuals, which were released to two natural population localities followed by recapture surveys to assess MHC-based survival over winter, the time when chytridiomycosis outbreaks are most severe. At one site, all released animals were fixed for a single allele and MHC-based survival could not be assessed. At the second site, fewer than half of the released but all of the recaptured individuals were homozygous for RachDRB*05, indicating that MHC genotype is important in determining Bd survival under natural field conditions. We conclude that the limited MHC variation in R. chiricahuensis is likely the consequence rather than the cause of natural selection favoring alleles that promote survival in the face of Bd. Our study highlights that preserving even low levels of functional genetic variation may be essential for population persistence, and that local disease adaptation may present as a reduction in genetic diversity. These finding also suggest that for populations that have declined due to a specific infectious pathogen, MHC-based genetically-informed reintroduction approaches may enhance species recovery efforts.  相似文献   

18.
Chytridiomycosis is an emerging infectious disease of amphibians caused by the chytrid Batrachochytrium dendrobatidis. The disease has been associated with global amphibian declines and species extinctions, however the principle drivers that underly the emergence of chytridiomycosis remain unclear. Current evidence suggests that the world trade in amphibians is implicated in the emergence of chytridiomycosis. Here, we review the evidence that the amphibian trade is driving the emergence of chytridiomycosis by (1) spreading infected animals worldwide, (2) introducing non-native infected animals into naïve populations and (3) amplifying infection of amphibians by co-housing, followed by untreated discharge of infectious zoospores into water supplies. We conclude that the evidence that the amphibian trade is contributing to the spread of Batrachochytrium dendrobatidis is strong, and that specific actions are necessary to prevent the introduction of the pathogen into thus-far uninfected areas. Specifically, we recommend the development of national risk-abatement plans, focused on firstly preventing introduction of Bd into disease free areas, and secondly, decreasing the impact of the disease on populations that are currently infected.  相似文献   

19.
The fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused declines and extinctions in amphibians worldwide, and there is increasing evidence that some strains of this pathogen are more virulent than others. While a number of putative virulence factors have been identified, few studies link these factors to specific epizootic events. We documented a dramatic decline in juvenile frogs in a Bd-infected population of Cascades frogs (Rana cascadae) in the mountains of northern California and used a laboratory experiment to show that Bd isolated in the midst of this decline induced higher mortality than Bd isolated from a more stable population of the same species of frog. This highly virulent Bd isolate was more toxic to immune cells and attained higher density in liquid culture than comparable isolates. Genomic analyses revealed that this isolate is nested within the global panzootic lineage and exhibited unusual genomic patterns, including increased copy numbers of many chromosomal segments. This study integrates data from multiple sources to suggest specific phenotypic and genomic characteristics of the pathogen that may be linked to disease-related declines.  相似文献   

20.
《Fungal biology》2020,124(1):34-43
While much research focus is paid to hypervirulent fungal lineages during emerging infectious disease outbreaks, examining enzootic pathogen isolates can be equally fruitful in delineating infection dynamics and determining pathogenesis. The fungal pathogen of amphibians, Batrachochytrium dendrobatidis (Bd), exhibits markedly different patterns of disease in natural populations, where it has caused massive amphibian declines in some regions, yet persists enzootically in others. Here we compare in vitro gene expression profiles of a panel of Bd isolates representing both the enzootic Bd-Brazil lineage, and the more recently diverged, panzootic lineage, Bd-GPL. We document significantly different lineage-specific and intralineage gene expression patterns, with Bd-Brazil upregulating genes with aspartic-type peptidase activity, and Bd-GPL upregulating CBM18 chitin-binding genes, among others. We also find pronounced intralineage variation in membrane integrity and transmembrane transport ability within our Bd-GPL isolates. Finally, we highlight unexpectedly divergent expression profiles in sympatric panzootic isolates, underscoring microgeographic functional variation in a largely clonal lineage. This variation in gene expression likely plays an important role in the relative pathogenesis and host range of Bd-Brazil and Bd-GPL isolates. Together, our results demonstrate that functional genomics approaches can provide information relevant to studies of virulence evolution within the Bd clade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号