首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T Furukawa  S Maruyama  M Kawaichi  T Honjo 《Cell》1992,69(7):1191-1197
The J kappa RBP binds to the immunoglobulin recombination signal sequence flanking the kappa-type J segment. We previously isolated the highly conserved homolog of the J kappa RBP gene from D. melanogaster, which is not thought to have immunoglobulin molecules. Using many deficiency mutants and in situ hybridization, we mapped the Drosophila J kappa RBP gene in a region containing two recessive lethal mutations, i.e., br26 and br7, which shows the dominant Suppressor of Hairless (Su(H)) phenotype in heterozygotes. All six Su(H) alleles analyzed at the DNA level contained mutations in the Drosophila J kappa RBP gene. Since the Su(H) mutation affects peripheral nervous system development, the Drosophila J kappa RBP gene product is involved in gene regulation of peripheral nervous system development. The results also imply that the immunoglobulin recombination signal sequence and the target sequence of the Drosophila J kappa RBP protein might have a common evolutionary origin.  相似文献   

2.
We previously isolated a cDNA encoding the 60-kDa murine protein (RBP-J kappa protein) that specifically binds to the immunoglobulin J kappa recombination signal sequence. The RBP-J kappa gene is highly conserved in a wide variety of organisms including man, Xenopus, Drosophila, and yeast. We have isolated and characterized the Drosophila homologue of the RBP-J kappa gene. The Drosophila RBP-J kappa gene was mapped to the polytene region 35BC of chromosome 2. The nucleotide sequence of this gene indicates that it is not one of the known genes located in the 35 BC region. The nucleotide and amino acid sequences of the Drosophila and mouse RBP-J kappa genes are 60 and 75% homologous, respectively. The central 248-residue regions of RBP-J kappa proteins of the two species are 93% homologous and include the 40-residue integrase motif. The Drosophila RBP-J kappa protein expressed in COS cells bound to the J kappa recognition sequence with the same specificity as the murine counterpart. These results suggest that Drosophila may have a site-specific recombination system which utilizes the immunoglobulin recombination signal sequence. Implications for evolution of immunoglobulin gene rearrangement were also discussed.  相似文献   

3.
4.
5.
6.
7.
Novel Notch alleles reveal a Deltex-dependent pathway repressing neural fate.   总被引:11,自引:0,他引:11  
BACKGROUND: The Notch receptor triggers a wide range of cell fate choices in higher organisms. In Drosophila, segregation of neural from epidermal lineages results from competition among equivalent cells. These cells express achaete/scute genes, which confer neural potential. During lateral inhibition, a single neural precursor is selected, and neighboring cells are forced to adopt an epidermal fate. Lateral inhibition relies on proteolytic cleavage of Notch induced by the ligand Delta and translocation of the Notch intracellular domain (NICD) to the nuclei of inhibited cells. The activated NICD, interacting with Suppressor of Hairless [Su(H)], stimulates genes of the E(spl) complex, which in turn repress the proneural genes achaete/scute. RESULTS: Here, we describe new alleles of Notch that specifically display loss of microchaetae sensory precursors. This phenotype arises from a repression of neural fate, by a Notch signaling distinct from that involved in lateral inhibition. We show that the loss of sensory organs associated with this phenotype results from a constitutive activation of a Deltex-dependent Notch-signaling event. These novel Notch alleles encode truncated receptors lacking the carboxy terminus of the NICD, which is the binding site for the repressor Dishevelled (Dsh). Dsh is known to be involved in crosstalk between Wingless and Notch pathways. CONCLUSIONS: Our results reveal an antineural activity of Notch distinct from lateral inhibition mediated by Su(H). This activity, mediated by Deltex (Dx), represses neural fate and is antagonized by elements of the Wingless (Wg)-signaling cascade to allow alternative cell fate choices.  相似文献   

8.
Chromatin remodeling at the Ig loci prior to V(D)J recombination.   总被引:8,自引:0,他引:8  
Rearrangement of Ig H and L chain genes is highly regulated and takes place sequentially during B cell development. Several lines of evidence indicate that chromatin may modulate accessibility of the Ig loci for V(D)J recombination. In this study, we show that remodeling of V and J segment chromatin occurs before V(D)J recombination at the endogenous H and kappa L chain loci. In recombination-activating gene-deficient pro-B cells, there is a reorganization of nucleosomal structure over the H chain J(H) cluster and increased DNase I sensitivity of V(H) and J(H) segments. The pro-B/pre-B cell transition is marked by a decrease in the DNase I sensitivity of V(H) segments and a reciprocal increase in the nuclease sensitivity of Vkappa and Jkappa segments. In contrast, J(H) segments remain DNase I sensitive, and their nucleosomal organization is maintained in mu(+) recombination-activating gene-deficient pre-B cells. These results indicate that initiation of rearrangement is associated with changes in the chromatin structure of both V and J segments, whereas stopping recombination involves changes in only V segment chromatin. We further find an increase in histone H4 acetylation at both the H and kappa L chain loci at the pro-B cell stage. Although histone H4 acetylation appears to be an early change associated with B cell commitment, acetylation alone is not sufficient to promote subsequent modifications in Ig chromatin.  相似文献   

9.
The Notch signaling pathway is critical in cell fate specification throughout development. In the developing wing disc, single sensory organ precursors (SOPs) are selected from proneural clusters via a process of lateral inhibition mediated by the Notch signaling pathway. The epidermal growth factor receptor (EGFR) pathway has also been implicated in SOP formation. Here, we describe the Drosophila melanogaster gene friend of echinoid (fred), a paralogue of echinoid (ed), a gene recently identified as a negative regulator of the EGFR pathway. fred function was examined in transgenic flies by using inducible RNA interference (RNAi). Suppression of fred in developing wing discs results in specification of ectopic SOPs, additional microchaeta, and cell death. In eye-antennal discs, fred suppression causes a rough eye phenotype. These phenotypes are suppressed by overexpression of Notch, Suppressor of Hairless [Su(H)], and Enhancer of split m7. In contrast, overexpression of Hairless, a negative regulator of the Notch pathway, and decreased Su(H) activity enhance these phenotypes. Thus, fred acts in close concert with the Notch signaling pathway. Dosage-sensitive genetic interaction also suggests a close relationship between fred and ed.  相似文献   

10.
11.
12.
We have investigated whether J kappa recombination signal sequence (RS) binding protein (RBP-J kappa) has any partial catalytic activities involved in the VDJ recombination reaction, such as cleavage, ligation, and bending of DNA. Murine RBP-J kappa protein purified by J kappa-RS affinity chromatography did not show DNA cleavage activities but contained a strong DNA ligase activity. To obtain a large amount of purified RBP-J kappa protein, recombinant RBP-J kappa was synthesized in Escherichia coli as a fusion protein and also in silkworm cells. Although recombinant RBP-J kappa produced in silkworm cells could bind J kappa-RS, it failed to show either ligase or DNA bending activity. Since the DNA affinity-purified RBP-J kappa has the ligase activity, the RBP-J kappa protein may form a complex with a ligase in vivo. We have raised monoclonal antibodies against the RBP-J kappa fusion protein which was synthesized in E. coli and unable to bind J kappa-RS. Using the anti-RBP-J kappa monoclonal antibody we have shown that the RBP-J kappa protein is expressed ubiquitously in mammalian tissues. The ubiquitous expression of the RBP-J kappa protein is consistent with the hypothesis that the RBP-J kappa protein may have dual function [Furukawa et al. (1991) J. Biol. Chem. 266, 23334-23340].  相似文献   

13.
During Drosophila external sensory organ development, one sensory organ precursor (SOP) arises from a proneural cluster, and undergoes asymmetrical cell divisions to produce an external sensory (es) organ made up of different types of daughter cells. We show that phyllopod (phyl), previously identified to be essential for R7 photoreceptor differentiation, is required in two stages of es organ development: the formation of SOP cells and cell fate specification of SOP progeny. Loss-of-function mutations in phyl result in failure of SOP formation, which leads to missing bristles in adult flies. At a later stage of es organ development, phyl mutations cause the first cell division of the SOP lineage to generate two identical daughters, leading to the fate transformation of neurons and sheath cells to hair cells and socket cells. Conversely, misexpression of phyl promotes ectopic SOP formation, and causes opposite fate transformation in SOP daughter cells. Thus, phyl functions as a genetic switch in specifying the fate of the SOP cells and their progeny. We further show that seven in absentia (sina), another gene required for R7 cell fate differentiation, is also involved in es organ development. Genetic interactions among phyl, sina and tramtrack (ttk) suggest that phyl and sina function in bristle development by antagonizing ttk activity, and ttk acts downstream of phyl. It has been shown previously that Notch (N) mutations induce formation of supernumerary SOP cells, and transformation from hair and socket cells to neurons. We further demonstrate that phyl acts epistatically to N. phyl is expressed specifically in SOP cells and other neural precursors, and its mRNA level is negatively regulated by N signaling. Thus, these analyses demonstrate that phyl acts downstream of N signaling in controlling cell fates in es organ development.  相似文献   

14.
15.
Zona occludens (ZO) proteins are molecular scaffolds localized to cell junctions, which regulate epithelial integrity in mammals. Using newly generated null alleles, we demonstrate that polychaetoid (pyd), the unique Drosophila melanogaster ZO homologue, regulates accumulation of adherens junction-localized receptors, such as Notch, although it is dispensable for epithelial polarization. Pyd positively regulates Notch signaling during sensory organ development but acts negatively on Notch to restrict the ovary germline stem cell niche. In both contexts, we identify a core antagonistic interaction between Pyd and the WW domain E3 ubiquitin ligase Su(dx). Pyd binds Su(dx) directly, in part through a noncanonical WW-binding motif. Pyd also restricts epithelial wing cell numbers to control adult wing shape, a function associated with the FERM protein Expanded and independent of Su(dx). As both Su(dx) and Expanded regulate trafficking, we propose that a conserved role of ZO proteins is to coordinate receptor trafficking and signaling with junctional organization.  相似文献   

16.
Grishaeva TM  Bogdanov IuF 《Genetika》2000,36(10):1301-1321
By the beginning of 2000, more than 80 genes specifically controlling meiosis and meiotic recombination in Drosophila melanogaster have been described. Meiosis in Drosophila is different from the classical model. In females, these differences concern cytological features of prophase I, which have no principal genetic significance. Drosophila males lack lateral synapsis of chromosomes, recombination and chiasmata, and their chromosomes segregate in meiosis I following the "touch-and-go" principle. Meiotic genes in Drosophila can be classified according to their functions as affecting prerequisites for recombination and crossing over, controlling chromosome segregation in meiosis I separately in males and females and controlling sister-chromatid segregation in meiosis II in both sexes. Some meiotic genes are pleiotropic. There are meiotic genes controlling mitosis, and vice versa. Some genes for DNA repair in somatic cells are also involved in meiosis. Meiotic genes in Drosophila are compared with their counterparts in other organisms.  相似文献   

17.
18.
DNA binding specificity of the RBP-J kappa protein was extensively examined. The mouse RBP-J kappa protein was originally isolated as a nuclear protein binding to the J kappa type V(D)J recombination signal sequence which consisted of the conserved heptamer (CACTGTG) and nonamer (GGTTTTTGT) sequences separated by a 23-base pair spacer. Electrophoretic mobility shift assay using DNA probes with mutations in various parts of the J kappa recombination signal sequence showed that the RBP-J kappa protein recognized the sequence outside the recombination signal in addition to the heptamer but did not recognize the nonamer sequence and the spacer length at all. Database search identified the best naturally occurring binding motif (CACTGTGGGAACGG) for the RBP-J kappa protein in the promoter region of the m8 gene in the Enhancer of split gene cluster of Drosophila. The binding assay with a series of m8 motif mutants indicated that the protein recognized mostly the GTGGGAA sequence and also interacted weakly with ACT and CG sequences flanking this hepta-nucleotide. Oligonucleotides binding to the RBP-J kappa protein were enriched from a pool of synthetic oligonucleotides containing 20-base random sequences by the repeated electrophoretic mobility shift assay. The enriched oligomer shared a common sequence of CGTGGGAA. All these data indicate that the RBP-J kappa protein recognizes a unique core sequence of CGTGGGAA and does not bind to the V(D)J recombination signal without the flanking sequence.  相似文献   

19.
The Drosophila RNA binding protein RBP9 and its Drosophila and human homologs, ELAV and the Hu family of proteins, respectively, are highly expressed in the nuclei of neuronal cells. However, biochemical studies suggest that the Hu proteins function in the regulation of mRNA stability, which occurs in the cytoplasm. In this paper, we show that RBP9 is expressed not only in the nuclei of neuronal cells but also in the cytoplasm of cystocytes during oogenesis. Despite the predominant expression of RBP9 in nerve cells, mutational analysis revealed a female sterility phenotype rather than neuronal defects for Rbp9 mutants. The female sterility phenotype of the Rbp9 mutants resulted from defects in oogenesis; the lack of Rbp9 activity caused the germarium region of the mutants to be filled with undifferentiated cystocytes. RBP9 appears to stimulate cystocyte differentiation by regulating the expression of bag-of-marbles (bam) mRNA, which encodes a developmental regulator of germ cells. RBP9 protein bound specifically to bam mRNA in vitro, which is required for cystocyte proliferation, and the number of cells that expressed BAM protein was increased 5- to 10-fold in the germarium regions of Rbp9 mutants. These results suggest that RBP9 protein binds to bam mRNA to down regulate BAM protein expression, which is essential for the initiation of cystocyte differentiation into functional egg chambers. In hypomorphic Rbp9 mutants, cystocytes differentiated into egg chambers; however, oocyte determination and positioning were perturbed. Therefore, the concentrated localization of RBP9 protein in the oocyte of the early egg chambers may be required for proper oocyte determination or positioning.  相似文献   

20.
The complete amino acid sequence of five light chain variable (V) regions of human monoclonal IgM kappa rheumatoid factors (RF) was determined, and their cross-reactive idiotypes (CRI) were characterized with antibodies induced by immunization with synthetic peptides PSL2 and PSL3, corresponding to the second and third complementarity-determining regions (CDR) of the SIE light chain. Together with two additional RF studied previously, all seven RF belong to the V kappa IIIb sub-subgroup. The region encoded by the V kappa gene segment (positions 1 to 95) in all seven proteins was virtually identical in primary structure, whereas the sequence from positions 96 to 108 defined the usage of the J kappa 1 gene in three proteins and the J kappa 2 gene in four of them. Position 96 contributed by the recombination of the V kappa and J kappa gene segments showed the presence of four different amino acid residues. Both anti-PSL2 and anti-PSL3 bind efficiently to all separated L chains when analyzed by the Western blot technique, and the binding was inhibited specifically by the corresponding peptides. The results reveal that the majority of human IgM-RF light chains are derived from a single germ line V kappa gene or a family of closely related V kappa III germ line genes, and express two "primary structure-dependent" CRI, which are largely dependent on the amino acid sequence of the second and third light chain CDR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号