首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gastroesophageal reflux has been indicated as anetiopathological factor in disorders of the upper airway. Upper airwaycollapsing pressure stimulates pressure-responsive laryngeal receptorsthat reflexly increase the activity of upper airway abductor muscles. We studied, in anesthetized dogs, the effects of repeated laryngeal instillations of HCl-pepsin (HCl-P; pH = 2) on the response of laryngeal afferent endings and the posterior cricoarytenoid muscle (PCA) to negative pressure. The effect of negative pressure on receptordischarge or PCA activity was evaluated by comparing their response toupper airway (UAO) and tracheal occlusions (TO). It is only during UAO,but not during TO, that the larynx is subjected to negative transmuralpressure. HCl-P instillation decreased the rate of discharge during UAOof the 10 laryngeal receptors studied from 56.4 ± 10.9 (SE) to 38.2 ± 9.2 impulses/s (P < 0.05). With UAO, the peak PCA moving time average, normalized by dividing itby the peak values of esophageal pressure, decreased after six HCl-Ptrials from 4.29 ± 0.31 to 2.23 ± 0.18 (n = 6;P < 0.05). The responses to TO ofeither receptors or PCA remained unaltered. We conclude that exposureof the laryngeal mucosa to HCl-P solutions, as it may occur withgastroesophageal reflux, impairs the patency-maintaining mechanismsprovided by laryngeal sensory feedback. Inflammatory and necroticalterations of the laryngeal mucosa are likely responsible for theseeffects.

  相似文献   

2.
Potassium channels are important contributors to membrane excitability in smooth muscles. There are regional differences in resting membrane potential and K(+)-channel density along the length of the feline circular smooth muscle esophagus. The aim of this study was to assess responses of K(+)-channel currents to cholinergic (ACh) stimulation along the length of the feline circular smooth muscle esophageal body. Perforated patch-clamp technique assessed K(+)-channel responses to ACh stimulation in isolated smooth muscle cells from the circular muscle layer of the esophageal body at 2 (distal)- and 4-cm (proximal) sites above the lower esophageal sphincter. Western immunoblots assessed ion channel and receptor expression. ACh stimulation produced a transient increase in outward current followed by inhibition of spontaneous transient outward currents. These ACh-induced currents were abolished by blockers of large-conductance Ca(2+)-dependent K(+) channels (BK(Ca)). Distal cells demonstrated a greater peak current density in outward current than cells from the proximal region and a longer-lasting outward current increase. These responses were abolished by atropine and the specific M(3) receptor antagonist 4-DAMP but not the M(1) receptor antagonist pirenzipine or the M(2) receptor antagonist methoctramine. BK(Ca) expression along the smooth muscle esophagus was similar, but M(3) receptor expression was greater in the distal region. Therefore, ACh can differentially activate a potassium channel (BK(Ca)) current along the smooth muscle esophagus. This activation probably occurs through release of intracellular calcium via an M(3) pathway and has the potential to modulate the timing and amplitude of peristaltic contraction along the esophagus.  相似文献   

3.
The aims of this study were to characterize sexual dimorphism in the larynx of adult Xenopus laevis and to determine how sex differences arise during postmetamorphic development. The larger male larynx is a result of greater cell numbers in both cartilage and muscle. The dilator laryngis muscle of the male larynx has 6-7 times more muscle fibers than that of the female. At metamorphosis, the larynx is sexually monomorphic and feminine in phenotype. The DNA content of the male larynx doubles during the first 6 months following metamorphosis; there is no net DNA increase in the female larynx during this time. Both sexes experience a marked increase in laryngeal DNA content and mass between 6 months and adulthood. The number of muscle fibers in the male larynx increases at an average rate of 150 fibers a day during the first 10 months of postmetamorphic development. There is no net change in fiber numbers in the female larynx from metamorphosis to adulthood. Administration of the antiandrogen Flutamide to metamorphic frogs prevents the net addition of laryngeal muscle fibers in males. Thus, we propose that addition of postmetamorphic laryngeal muscle fibers in males is dependent upon the presence of circulating androgens. Exogenous testosterone administration results in an increase in laryngeal mass, DNA content, and cellular proliferation in juvenile frogs. Using [3H]thymidine injections to probe ongoing, as well as testosterone-induced, cell proliferation, we conclude that cellular proliferation is regulated differently in males and females during development. Thus androgen-induced proliferation is one cellular mechanism responsible for the sexual dimorphism observed in adults.  相似文献   

4.
Receptors responding to transmural pressure, airflow, and contraction of laryngeal muscles have been previously identified in the larynx. To assess the relative contribution of these three types of receptors to the reflex changes in breathing pattern and upper airway patency, we studied diaphragmatic (DIA) and posterior cricoarytenoid muscle (PCA) activity in anesthetized dogs during spontaneous breathing and occluded efforts with and without bypassing the larynx. Inspiratory duration (TI) was longer, mean inspiratory slope (peak DIA/TI) was lower, and PCA activity was greater with upper airway occlusion than with tracheal occlusion (larynx bypassed). Bilateral section of the superior laryngeal nerves eliminated these differences. When respiratory airflow was diverted from the tracheostomy to the upper airway the only change attributable to laryngeal afferents was an increase in PCA activity. These results confirm the importance of the superior laryngeal nerves in the regulation of breathing pattern and upper airway patency and suggest a prevalent role for laryngeal negative pressure receptors.  相似文献   

5.
The mechanical function of phasic respiratory-related activity of the cricothyroid muscle of the larynx is poorly understood. We studied five adult cross-bred dogs (weight 14-20 kg) deeply anesthetized with pentobarbitone sodium, mechanically ventilated via a tracheostomy, and placed prone with the mouth open. Bilateral cricothyroid muscle contraction was induced by supramaximal electrical stimulation of the external branches of the superior laryngeal nerve. Computerized axial tomography was used to assess effects of cricothyroid muscle contraction. During cricothyroid muscle contraction, oropharyngeal (tip of epiglottis) cross-sectional area increased by 18.0 +/- 3.0% (SE) (P = 0.008), whereas combined left and right piriform recess cross-sectional area increased by 85 +/- 25% (n = 4; P = 0.02) at the midepiglottic level and by 152 +/- 37% (P = 0.01) at the base of the epiglottis. Furthermore, at the base of the epiglottis the maximum horizontal distance between the alae of the thyroid cartilage increased by 21 +/- 8% (P = 0.05). In contrast, lateral glottic diameter decreased by 52 +/- 2% (n = 4; P = 0.01), whereas dorsoventral glottic diameter increased by 18 +/- 5% (n = 4; P less than 0.02). The cricothyroid muscle, therefore, has the capacity to act simultaneously as a pharyngeal dilator and a glottic constrictor and thus may play a role in the control of oropharyngeal as well as laryngeal patency.  相似文献   

6.
Studies were performed to investigate the effect of prostaglandin E2 on esophageal motility in 12 healthy volunteers. PGE2 infusion caused a dose-dependent reduction in the lower esophageal sphincter pressure. The threshold dose was less than 0.05 mug-kg-1-min-1 and maximal reduction of pressure (60%) occurred with a dose of 0.4 mug-kg-1-min-1. In contrast to its effect on the lower esophageal sphincter, PGE2 did not alter the pressure in the upper esophageal sphincter. PGE2 did not influence resting esophageal pressures; the amplitude of peristaltic contractions was reduced in the lower but not in the upper part of the body of the esophagus. These studies show that in man PGE2 exerts selective inhibitory influence on the activity of the lower part of the esophagus and lower esophageal sphincter which are composed of smooth muscle fibers.  相似文献   

7.
We investigated the mechanisms of airway protection and bolus transport during retching and vomiting by recording responses of the pharyngeal, laryngeal, and hyoid muscles and comparing them with responses during swallowing and responses of the gastrointestinal tract. Five dogs were chronically instrumented with electrodes on the striated muscles and strain gauges on smooth muscles. Retching and vomiting were stimulated by apomorphine (5-10 ug/kg iv). During retching, the hyoid and thyroid descending and laryngeal abductor muscles were activated; between retches, the hyoid, thyroid, and pharyngeal elevating, and laryngeal adductor muscles were activated. Vomiting always occurred during the ascending phase of retching and consisted of three sequential phases of hyoid and pharyngeal muscle activation culminating in simultaneous activation of all recorded elevating and descending laryngeal, hyoid, and pharyngeal muscles. Retrograde activation of esophagus and pharyngeal muscles occurred during the later phases, and laryngeal adductor was maximally activated in all phases of the vomit. During swallowing, the laryngeal adductor activation was followed immediately by brief activation of the laryngeal abductor. We concluded that retching functions to mix gastric contents with refluxed intestinal secretions and to impart an orad momentum to the bolus before vomiting. During retches, the airway is protected by glottal closure, and between retches, it is protected by ascent of the larynx and closure of the upper esophageal sphincter. The airway is protected by maximum glottal closure during vomiting. During swallowing, the airway is protected by laryngeal elevation and glottal closure followed by brief opening of the glottis, which may release subglottal pressure expelling material from the laryngeal vestibule.  相似文献   

8.
Previously, coexpression of smooth and skeletal differentiation markers, but not myogenic regulatory factors (MRFs), was observed from E16.5 mouse fetuses in a small percentage of diaphragm level esophageal muscle cells, suggesting that MRFs are not involved in the process of initiation of developmentally programmed transdifferentiation in the esophagus. To investigate smooth-to-skeletal esophageal muscle transition, we analyzed Myf5nlacZ knock-in mice, MyoD-lacZ and myogenin-lacZ transgenic embryos with a panel of the antibodies reactive with myogenic regulatory factors (MRFs) and smooth and skeletal muscle markers. We observed that lacZ-expressing myogenic precursors were not detected in the esophagus before E15.5, arguing against the hypothesis that muscle precursor cells populate the esophagus at an earlier stage of development. Rather, the expression of the MRFs initiated in smooth muscle cells in the upper esophagus of E15.5 mouse embryos and was immediately followed by the expression of skeletal muscle markers. Moreover, transdifferentiation was markedly delayed or absent only in the absence of Myf5, suggesting that appropriate initiation and progression of smooth-to-skeletal muscle transdifferentiation is Myf5-dependent. Accordingly, the esophagus of Myf5(-/-):MyoD(-/-)embryos completely failed to undergo skeletal myogenesis and consisted entirely of smooth muscle. Lastly, extensive proliferation of muscularis precursor cells, without programmed cell death, occurred concomitantly with esophageal smooth-to-skeletal muscle transdifferentiation. Taken together, these results indicate that transdifferentiation is the fate of all smooth muscle cells in the upper esophagus and is normally initiated by Myf5.  相似文献   

9.
Esophageal electrodes have been used for recording the electromyographic (EMG) activity of the posterior cricoarytenoid muscle (PCA). To determine the specificity of this EMG technique, esophageal electrode recordings were compared with intramuscular recordings in eight anesthetized mongrel dogs. Intramuscular wire electrodes were placed in the right and left PCA, and the esophageal electrode was introduced through the nose or mouth and advanced into the upper esophagus. On direct visualization of the upper airway, the unshielded catheter electrode entered the esophagus on the right or left side. Cold block of the recurrent laryngeal nerve (RLN) ipsilateral to the esophageal electrode was associated with a marked decrease in recorded activity, whereas cold block of the contralateral RLN resulted only in a small reduction in activity. After supplemental doses of anesthesia were administered, bilateral RLN cold block essentially abolished the activity recorded with the intramuscular electrodes as well as that recorded with the esophageal electrode. Before supplemental doses of anesthesia were given, especially after vagotomy, the esophageal electrode, and in some cases the intramuscular electrodes, recorded phasic inspiratory activity not originating from the PCA. Therefore, one should be cautious in interpreting the activity recorded from esophageal electrodes as originating from the PCA, especially in conditions associated with increased respiratory efforts.  相似文献   

10.
Prostaglandins may be implicated in the bronchoconstriction which occurs in asthma. Prostaglandins F2 alpha (PGF2 alpha) and D2 (PGD2) have been reported to produce bronchoconstriction in asthmatic subjects in vivo and PGF2 alpha contracts human isolated airway smooth muscle. We examined the relative efficacy and potency of PGF2 alpha and PGD2 on human bronchial spiral strips taken from 6 patients at thoracotomy. PGF2 alpha had greater efficacy than PGD2. The mean % Tmax (percentage of maximal contractile response) +/- s.e. mean were 84 +/- 7 and 54 +/- 7 respectively (P less than 0.05). PGF2 alpha (mean pD2 +/- s.e. mean = 6.39 +/- 0.6) tended to be more potent than PGD2 (5.68 +/- 0.2). Since, in vivo, PGD2 has greater efficacy and potency than PGF2 alpha, our results suggest that the in vivo effect of these prostaglandins does not result solely from an action on airway muscle.  相似文献   

11.
Thirty women, divided among three different age groups, i.e. 30 years (range 26-35; n = 10), 50 years (range 46-55; n = 10) and 70 years (range 66-75; n = 10) volunteered as subjects for examination of the characteristics of the muscle cross-sectional area (CSA), maximal voluntary isometric force, isometric force-time and relaxation-time of their leg extensor muscles. The CSA of the quadriceps femoris muscle in the youngest age group was slightly larger (NS) than in the middle-aged group and much larger (P less than 0.01) than in the oldest age group whose CSA was markedly smaller (P less than 0.01) than the middle-aged group. Maximal force in the youngest group was slightly greater (NS) than in the middle-aged group and much greater (P less than 0.01) than in the oldest group whose values were markedly smaller (P less than 0.05) than the middle-aged group. The individual values in CSA correlated with maximal force both in the total subject sample (r = 0.82; P less than 0.001) and in the three age groups separately (r = 0.72; P less than 0.01; r = 0.86; P less than 0.01 and r = 0.67; P less than 0.05, respectively). When the force values were related to the CSA of the muscle, the mean values of 45.4 N.cm-2, SD 5.6, 47.6 N.cm-2, SD 5.0 and 46.8 N.cm-2, SD 7.0 for the three groups did not differ significantly from each other.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Telomeres are repetitive DNA sequences located at the ends of chromosomes. Telomeres are shortened by repeated cell divisions and by oxidative DNA damage, and cells with critically shortened telomeres cannot divide. We hypothesized that chronic gastroesophageal reflux disease (GERD)-induced injury of the esophageal squamous epithelium results in progressive telomeric shortening that eventually might interfere with mucosal healing. To address our hypothesis, we compared telomere length and telomerase activity in biopsy specimens of esophageal squamous epithelium from GERD patients and control patients. Endoscopic biopsies were taken from the esophageal squamous epithelium of 38 patients with GERD [10 long-segment Barrett's esophagus (LSBE), 15 short-segment (SSBE), 13 GERD without Barrett's esophagus] and 16 control patients without GERD. Telomere length was assessed using the terminal restriction fragment assay, and telomerase activity was studied by the PCR-based telomeric repeat amplification protocol assay. Patients with GERD had significantly shorter telomeres in the distal esophagus than controls [8.3 +/- 0.5 vs. 10.9 +/- 1.5 (SE) Kbp, P = 0.043]. Among the patients with GERD, telomere length in the distal esophagus did not differ significantly in those with and without Barrett's esophagus (LSBE 7.9 +/- 0.8, SSBE 8.6 +/- 0.9, GERD without BE 8.7 +/- 1.0 Kbp). No significant differences in telomerase activity in the distal esophagus were noted between patients with GERD and controls (4.0 +/- 0.39 vs. 5.2 +/- 0.53 RIUs). Telomeres in the squamous epithelium of the distal esophagus of patients who have GERD, with and without Barrett's esophagus, are significantly shorter than those of patients without GERD despite similar levels of telomerase activity.  相似文献   

13.
This study was performed to evaluate the characteristics of esophageal receptors in anesthetized and artificially ventilated dogs. The electrical activity of the esophageal afferents was recorded from the peripheral cut end of the cervical vagus nerve. A cuffed catheter was inserted into the esophagus at the level of the third tracheal ring and was used to establish the esophageal location of the endings. Most of the receptors were localized in the intrathoracic portion of the esophagus. The majority of the receptors studied (36 of 43) showed a slow adaptation to a maintained stretch of the esophageal wall. Vagal cooling blocked receptor activity at temperatures ranging from 3.5 to 25 degrees C. Twenty-eight of 43 receptors, including 4 rapidly adapting endings (RAR), were challenged with saline, HCl + pepsin (HCl-P; pH 1) and distilled water (8 ml, 37 degrees C). HCl-P solutions specifically stimulated only three receptors; saline or water did not. Five slowly adapting receptors and two RARs were also challenged with topically applied capsaicin; only one RAR was stimulated. To ascertain a possible effect of smooth muscle contraction, 17 receptors were tested with intravenous injections of ACh and/or asphyxia; only 4 were stimulated. These characteristics do not support an important reflexogenic role of the esophagus in response to chemical stimuli.  相似文献   

14.
Our laboratory has previously demonstrated that maximal bronchoconstriction produces a greater degree of airway narrowing in immature than in mature rabbit lungs (33). To determine whether these maturational differences could be related to airway structure, we compared the fraction of the airway wall occupied by airway smooth muscle (ASM) and cartilage, the proportion of wall area internal to ASM, and the number of alveolar attachments to the airways, from mature and immature (6-mo- and 4-wk-old, respectively) rabbit lungs that were formalin fixed at total lung capacity. The results demonstrate that the airway walls of immature rabbits had a greater percentage of smooth muscle, a lower percentage of cartilage, and fewer alveolar attachments compared with mature rabbit airways; however, we did not find maturational differences in the airway wall thickness relative to airway size. We conclude that structural differences in the airway wall may contribute to the greater airway narrowing observed in immature rabbits during bronchoconstriction.  相似文献   

15.
We examined the effect of posterior cricoarytenoid (PCA) muscle activity on the pressure-flow (PV) relationship of the larynx in five anesthetized tracheostomized dogs. The PCA activity was recorded using bipolar fine-wire electrodes, expressed as a percentage of the quiet breathing level and altered by mechanical ventilation, changes in lung volume, and chest wall compression. Subglottic pressure was recorded while a constant flow of air was passed through the upper airway. In the absence of PCA activity the PV relationship was alinear and could be described by a power function (P = K0Va, where K0 and a are constants). The slope of the log P-log V plots in the absence of PCA and thyroarytenoid activity was 1.83 +/- 0.02 (SD), whereas with increasing PCA activity it was 1.88 +/- 0.11. An effective hydraulic diameter (DH) was calculated for 20% increments of PCA activity, and in two dogs glottic diameter (Dg) was calculated from glottic area measurements obtained by fiber-optic laryngoscopy. Both DH and Dg increased linearly with increasing PCA activity. Denervation of the cricothyroid muscle had no systematic effect on laryngeal resistance. The results indicate that the PV relationship of the larynx may be described by a power function with a single exponent, the magnitude of which is independent of glottic dilator muscle activity and consistent with orifice flow. However, laryngeal diameter increases linearly with PCA activity in the range studied.  相似文献   

16.
Several studies from our laboratory show that axial stretch of the lower esophageal sphincter (LES) in an oral direction causes neurally mediated LES relaxation. Under physiological conditions, axial stretch of the LES is caused by longitudinal muscle contraction (LMC) of the esophagus. Because longitudinal muscle is composed of skeletal muscle in mice, vagal-induced LMC and LES relaxation are both blocked by pancuronium. We conducted studies in rats (thought to have skeletal muscle esophagus) to determine if vagus nerve-mediated LES relaxation is also blocked by pancuronium. LMC-mediated axial stretch on the LES was monitored using piezoelectric crystals. LES and esophageal pressures were monitored with a 2.5-Fr solid-state pressure transducer catheter. Following bilateral cervical vagotomy, the vagus nerve was stimulated electrically. LES, along with the esophagus, was harvested after in vivo experiments and immunostained for smooth muscle (smooth muscle α-actin) and skeletal muscle (fast myosin heavy chain). Vagus nerve-stimulated LES relaxation and esophageal LMC were reduced in a dose-dependent fashion and completely abolished by pancuronium (96 μg/kg) in six rats (group 1). On the other hand, in seven rats, LES relaxation and LMC were only blocked completely by a combination of pancuronium (group 2) and hexamethonium. Immunostaining revealed that the longitudinal muscle layer was composed of predominantly skeletal muscle in the group 1 rats. On the other hand, the longitudinal muscle layer of group 2 rats contained a significant amount of smooth muscle (P < 0.05). Our study shows tight coupling between axial stretch on the LES and relaxation of the LES, which suggests a cause and effect relationship between the two. We propose that the vagus nerve fibers that cause LMC induce LES relaxation through the stretch-sensitive activation of inhibitory motor neurons.  相似文献   

17.
The present experiments examined the local effects of two new mammalian tachykinins isolated from porcine spinal cord, substance K and neuromedin K, on gastroduodenal motility of anesthetized dogs. Tachykinins were injected through the gastroepiploic and cranial pancreaticoduodenal arteries at concentrations ranging from 1 to 100 ng/ml. Substance K, neuromedin K and substance P increased gastroduodenal smooth muscle contractions in a dose-dependent manner. The contractile response of the gastric antrum to newly discovered tachykinins was not as long-lasting as that to substance P. The potencies of various tachykinins on contractile responses showed the following rank order of potencies: physalaemin = eledoisin = substance P greater than substance K = neuromedin K in gastric smooth muscle; physalaemin = substance P = eledoisin greater than substance K = neuromedin K in the duodenal smooth muscle. Administration of atropine (100-200 micrograms/kg) inhibited the effect of tachykinins both in the gastric antrum and in the proximal duodenum. These results indicate that substance K and neuromedin K could act as transmitters or as modulators of neuronal activity influencing gastroduodenal motility.  相似文献   

18.
The association between asthma and gastroesophageal reflux has been attributed to microaspiration of gastric contents and/or vagally mediated reflex bronchoconstriction. In previous experimental studies concerning the pulmonary effects of tracheal or esophageal acid infusion, only animals without airway inflammation have been studied. We assessed the effects of esophageal and tracheal administration of hydrochloric acid (HCl) on normal guinea pigs (GP) and GP with airway inflammation induced by repeated ovalbumin exposures. These GP were anesthetized (pentobarbital sodium) and received 1) 20 microl of either 0.2 N HCl or saline into the trachea, or 2) 1 ml of either 1 N HCl or saline into the esophagus. Intratracheal HCl resulted in a significant increase in both respiratory system elastance and resistance (P < 0.001). There were no significant changes in respiratory mechanics when HCl was infused into the esophagus. In conclusion, we observed that infusion of large volumes of HCl into the esophagus did not change pulmonary mechanics significantly, even in guinea pigs with chronic allergen-induced airway inflammation. In contrast, intratracheal administration of small amounts of acid had substantial effects in normal GP and GP with airway inflammation.  相似文献   

19.
The distribution pattern of histochemically detectable 5'-nucleotidase (5'-Nase) activity is described in smooth muscle cells of the rat's gastrointestinal tube (esophagus, stomach, small intestine, large intestine). Both, light and electron microscopic methods are used. Faint positive 5'-Nase activity is observed on smooth muscle cells of the lamina muscularis mucosae in the thoracal esophagus whereas it is completely absent from smooth muscle cells of the abdominal esophagus and the stomach. In the small and large intestine strong positive 5'-Nase reaction is found on smooth muscle cells of the lamina muscularis mucosae and the innermost part of the lamina muscularis externa. In the circular and longitudinal layer of the lamina muscularis externa a slight increase in 5'-Nase activity is observed from the proximal to the distal segments. The reaction product is restricted to the outer cell surface of smooth muscle cells. In the small intestine the strong enzymatic activity in the innermost part of the muscularis externa is found to be localized at small and dense muscle cells (sd-cells). Common morphological and histochemical characteristics of sd-cells and smooth muscle cells of the lamina muscularis mucosae are emphasized. Hypothetical functions e.g. uptake of precursors of nucleosidephosphates, possible functional connection to a high glycogen content, correlation between 5'-Nase activity and proliferation capacity and local vasodilatory effect are discussed.  相似文献   

20.
We studied changes in both laryngeal resistance (Rla) and respiratory resistance (Rrs) after a voluntary deep breath in 7 normal and 20 asthmatic subjects. Rla was measured using a low-frequency sound method (Sekizawa et al. J. Appl. Physiol. 55: 591-597, 1983) and Rrs by forced oscillation at 3 Hz. In normal subjects, both Rla and Rrs significantly decreased after a voluntary deep breath (0.05 less than P less than 0.01). During methacholine provocation in the normal subjects, a voluntary deep breath significantly decreased Rrs (0.05 less than P less than 0.01, but Rla was significantly increased (0.05 less than P less than 0.01). In 10 asthmatic subjects in remission, a voluntary deep breath significantly increased Rrs (0.05 less than P less than 0.01) but significantly decreased Rla (0.05 less than P less than 0.01). In another 10 asthmatic subjects during spontaneous mild attacks, a voluntary deep breath significantly increased both Rrs and Rla (0.05 less than P less than 0.01). The present study showed that without obvious bronchoconstriction, Rla decreased after a voluntary deep breath in both normal and asthmatic subjects but, with bronchoconstriction, Rla increased in both groups. Subtraction of the change in Rla from Rrs gives the change in Rrs below the larynx (Rlow). Rlow changed little or decreased in normal subjects and increased in asthmatic subjects, irrespective of base-line bronchomotor tone. These results suggest that airway response below the larynx after a voluntary deep breath differentiates patients with bronchial asthma from normal subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号