首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Salmonella typhimurium basal body, a part of the flagellar rotary motor, consists of four rings (denoted M, S, P and L) and a coaxial rod. Using low-dose electron microscopy and image averaging methods on negatively stained and frozen-hydrated preparations, we examined whole basal body complexes and subcomplexes obtained by dissociation in acid. Dissociation occurs in steps, allowing us to obtain images of substructures lacking the M ring, lacking the M and S rings, and lacking the M and S rings and the proximal portion of the rod. We obtained images of the L and P ring subcomplex. The existence of a subcomplex missing only the M ring suggests either that the S and M rings derive from two different proteins, or that the M ring is a labile domain of a single protein, which makes up both rings. At the 25 to 30 A resolution of our averaged images, the L, P and S rings appear cylindrically symmetric. Images of the M ring show variability that may be due to differences in angular orientation of the grid, but equally could be due to structural variations. Three-dimensional reconstructions of these structures from the averaged images reveal the internal structure and spatial organization of these components.  相似文献   

3.
4.
Image reconstruction of the flagellar basal body of Salmonella typhimurium   总被引:11,自引:0,他引:11  
The basal body is thought to be a part of the rotary motor of the bacterial flagellum. It consists of a central rod coaxial with a set of four rings, which are associated with the cell envelope. We used single-particle averaging methods to analyze images of negatively stained basal bodies of Salmonella typhimurium. Several averages were computed, so that the reliability of features could be assessed. We carried out the same analysis on electron micrographs of isolated, negatively stained L-P rings. In order to interpret the averages in terms of a three-dimensional structure, we carried out image reconstruction on them. The resulting three-dimensional map corresponds to the cylindrically averaged structure of the basal body. To show that the reconstruction procedure is legitimate, we demonstrate it on model data. The results of the modelling show that features very near to the axis of the reconstruction are not reliable but that broader, off-axis features are represented faithfully. The L ring is L-shaped, with the long arm of the L parallel to the axis of the rod, and the short arm pointing away from the rod. The P ring, on the other hand, appears to be a ring or disk. The position of the L-P ring complex on the rod seems to vary somewhat, consistent with its putative role as a bushing. The cross-sectional shape of the S ring is that of a frustum rather than a disk. The M ring, which is oval in cross section, sits atop the S ring, making contact with it at an outer radius. The S ring appears to make contact with the rod, whereas the M ring does not. This situation, if true, is difficult to reconcile with the common notion that the S ring is stationary and the M ring rotates. It seems more likely that the S ring and rod rotate as a unit.  相似文献   

5.
The flagellar hook–basal body (HBB) complex of the Gram-positive bacterium Bacillus subtilis was purified and analysed by electron microscopy, gel electrophoresis, and amino acid sequencing of the major component proteins. The purified HBB complex consisted of the inner (M and S) rings, a rod and a hook. There were no outer (P and L) rings that are found in Gram-negative bacteria. The hook was 15 nm in thickness and 70 nm in length, which is thinner and longer than the hook of Salmonella typhimurium . The hook protein had an apparent molecular mass of 29 kDa, and its N-terminal sequence was identical to that of B. subtilis FlgG, which was previously reported as a rod protein. The sequence of the reported FlgG protein of B. subtilis is more closely related to that of FlgE (the hook protein) rather than FlgG (the rod protein) of S. typhimurium , in spite of the difference of the apparent molecular masses between the two hook proteins (29 kDa versus 42 kDa). The hook–basal body contained six major proteins (with apparent molecular masses of 82, 59, 35, 32, 29 and 20 kDa) and two minor proteins (23 kDa and 13 kDa), which consistently appeared from preparation to preparation. The N-terminus of each of these proteins was sequenced. Comparison with protein databases revealed the following polypeptide–gene correspondences: 82 kDa, fliF ; 59 kDa, flgK ; 35 kDa, orfF ; 32 kDa, yqhF ; 23 kDa, orf3 of the flaA locus; 20 kDa, flgB and flgC ; 13 kDa, not determined. The band at 20 kDa was a mixture of FlgB and FlgC, as revealed by two-dimensional gel analysis. Characteristic features of B. subtilis HBB are discussed in comparison with those of S. typhimiurium .  相似文献   

6.
Deoxycytidine triphosphate deaminase (EC 3.5.4., dCTP aminohydrolase) of Salmonella typhimurium LT2 has been pruified 500-fold. The reaction requires the presence of Mg-2plus, Mn-2plus, Ca-2lus, or Co-2plus. Kinetics of the reaction with varying Mg-2plus concentrations, keeping the concentration of dCTP constant, suggests that the true substrate of the reaction is MgdCTP. The dependence of the rate of reaction on dCTP concentration in the presnece of 5-fold excess of Mg-2plus is sigmoid, with a Hill coefficient of 1.7. The enzyme is specifically inhibited by dTTP and dUTP. In the presence of increasing dTTP concentrations the sigmoidicity of the substrate saturation curves increases. With 0.2 and 0.4 mM dTTP the Hill coefficients are 2.6 and 3.0, respectively. Despite several attempts no dissociation of the substrate site and the inhibitor site of the enzyme was achieved.  相似文献   

7.
Of the more than 30 genes required for flagellar function, 6 are located between pyrC and ptsG on the Escherichia coli genetic man. This cluster of genes is called flagellar region I. Four-point transductional crosses were used to establish the position and order of the region I flagellar genes with respect to the outside markers ptsG and pyrC. Bacteriophage lambda-E. coli hybrids that contained most of the genes necessary for flagellar formation were constructed. The properties of specific hybrids that carried the region I fla genes were examined by genetic complementation and by measuring the capacity of the hybrids to direct the synthesis of specific polypeptides. The results of these tests with lambda hybrids and with a series of deletion mutations derived from the lambda hybrids demonstrated the existence of at least six flagellar-specific cistrons. These directed the synthesis of polypeptides with the following apparent molecular weights: flaV, 11,000; flaK, 42,000; flaL, 30,000 and 27,000; flaM, 38,000; flS, 60,000; and flaT, 35,000. Plasmid ColE1-E. coli hybrids with region I flagellar genes were also used to program the synthesis of polypeptides in minicell-producing strains. The polypeptides synthesized in these experiments were identical to polypeptides of the hook-basal body structure and helped to confirm the assignment of genes to specific polypeptides. The synthesis of all of these polypeptides was regulated by the same mechanism that regulates the synthesis of other flagellar-related structural components.  相似文献   

8.
A Salmonella typhimurium strain possessing a mutation in the fliF gene (coding for the component protein of the M ring of the flagellar basal body) swarmed poorly on a semisolid plate. However, cells grown in liquid medium swam normally and did not show any differences from wild-type cells in terms of swimming speed or tumbling frequency. When mutant cells were grown in a viscous medium, detached bundles of flagellar filaments as long as 100 microns were formed and the cells had impaired motility. Electron microscopy and immunoelectron microscopy revealed that the filaments released from the cells had the hook and a part of the rod of the flagellar basal body still attached. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional gel electrophoresis showed that the rod portion of the released structures consisted of the 30-kilodalton FlgG protein. Double mutants containing this fliF mutation and various che mutations were constructed, and their behavior in viscous media was analyzed. When the flagellar rotation of the mutants was strongly biased to either a counterclockwise or a clockwise direction, detached bundles were not formed. The formation of large bundles was most extreme in mutants weakly biased to clockwise rotation.  相似文献   

9.
A tRNA methylase, in which supK strains of Salmonella typhimurium are deficient, was purified from strain LT2 and characterized. Column chromatography of protein extracts from wild-type cells on phosphocellulose, diethylaminoethyl-Sephadex A-50, and hydroxlapatite resulted in an enzyme that was estimated to be about 50% pure. tRNA from S. typhimurium which had been incubated at pH 9.0 served as a substrate for this methylase. The enzyme has a molecular weight of about 50,000 as estimated by gel chromatography and by electrophoresis on sodium dodecyl sulfate-polyacrylamide gels. The optimal assay conditions, as well as the kinetics and stability of the enzyme, were studied. As with other tRNA-methylating enzymes, S-adenosylhomocysteine is a potent inhibitor.  相似文献   

10.
The flaAII.2, flaQ, and flaN genes of Salmonella typhimurium are important for assembly, rotation, and counterclockwise-clockwise switching of the flagellar motor. Paralyzed and nonchemotactic mutants were subjected to selection pressure for partial acquisition of motility and chemotaxis, and the suppressor mutations of the resulting pseudorevertants were mapped and isolated. Many of the intergenic suppressor mutations were in one of the other two genes. Others were in genes for cytoplasmic components of the chemotaxis system, notably cheY and cheZ; one of the mutations was found in the cheA gene and one in a motility gene, motB. Suppression among the three fla genes was allele specific, and many of the pseudorevertants were either cold sensitive or heat sensitive. We conclude that the FlaAII.2, FlaQ, and FlaN proteins form a complex which determines the rotational sense, either counterclockwise or clockwise, of the motor and also participates in the conversion of proton energy into mechanical work of rotation. This switch complex is probably mounted to the base of the flagellar basal body and, via binding of the CheY and CheZ proteins, receives sensory information and uses it to control flagellar operation.  相似文献   

11.
Morphological pathway of flagellar assembly in Salmonella typhimurium.   总被引:14,自引:0,他引:14  
The process of flagellar assembly was investigated in Salmonella typhimurium. Seven types of flagellar precursors produced by various flagellar mutants were purified by CsCl density gradient protocol. They were characterized morphologically by electron microscopy, and biochemically by two-dimensional gel electrophoresis. The MS ring is formed in the absence of any other flagellar components, including the switch complex and the putative export apparatus. Four proteins previously identified as rod components, FlgB, FlgC, FlgF, FlgG, and another protein, FliE, assemble co-operatively into a stable structure. The hook is formed in two distinct steps; formation of its proximal part and elongation. Proximal part formation occurs, but elongation does not occur, in the absence of the LP ring. FlgD is necessary for hook formation, but not for LP-ring formation. A revised pathway of flagellar assembly is proposed based on these and other results.  相似文献   

12.
The stoichiometries of components within the flagellar hook-(basal-body) complex of Salmonella typhimurium have been determined. The hook protein (FlgE), the most abundant protein in the complex, is present at approximately 130 subunits. Hook-associated protein 1 (FlgK) is present at approximately 12 subunits. The distal rod protein (FlgG) is present at approximately 26 subunits, while the proximal rod proteins (FlgB, FlgC and FlgF) are present at only approximately six subunits each. The stoichiometries of the proximal rod proteins and hook-associated protein 1 are, within experimental error, consistent with values of 5 or 6, and 11, respectively. Such values would correspond to either one or two turns of a helical structure with a basic helix of approximately 5.5 subunits per turn, which is the geometry of both the hook and the filament and, one supposes, the rod and hook-associated proteins. These stoichiometries may derive from rules for the heterologous interactions that occur when a helical structure consists of successive segments constructed from different proteins; the stoichiometries within the hook and the distal portion of the rod must, however, be set by different mechanisms. The stoichiometries for the ring proteins are approximately 26 subunits each for the M-ring protein (FliF), the P-ring protein (FlgI), and the L-ring protein (FlgH); the protein responsible for the S-ring feature is not known. The rings presumably have rotational rather than helical symmetry, in which case the stoichiometries would be directly constrained by the intersubunit bonding angle. The ring stoichiometries are discussed in light of other information concerning flagellar structure and function.  相似文献   

13.
The flagellar filament of the mutant Salmonella typhimurium strain SJW814 is straight, and has a right-handed twist like the filament of SJW1655. Three-dimensional reconstructions from electron micrographs of ice-embedded filaments reveal a flagellin subunit that has the same domain organization as that of SJW1655. Both show slight changes from the domain organization of the subunits from SJW1660, which possesses a straight, left-handed filament. This points to the possible role of changes in subunit conformation in the left-to-right-handed structural transition in filaments. Comparison of the left and right-handed filaments shows that the subunit's orientation and intersubunit bonding appear to change. The orientation of the subunit in the SJW814 filament is intermediate between that of SJW1655 and SJW1660. Its intermediate orientation may explain why the filaments of SJW1655 and SJW1660 are locked in one conformation, whereas the filament of SJW814 can be induced to switch by, for example, changes in pH and ionic strength.  相似文献   

14.
Specific inhibition of flagellar rotation reversal was observed after exposure of chemotactic Salmonella typhimurium to citrate autoclaved at neutral pH. The presence of a rotation reversal inactivator was established in autoclaved citrate-containing media and nutrient broth. Since modulation of flagellar rotation by attractants and repellents is the basis of chemotactic behavior, a specific inhibitor of rotation reversal, which is essential for tumble generation, provides a useful probe into the molecular mechanism of bacterial chemotaxis. The inactivator inhibits clockwise rotation without affecting counterclockwise rotation, speed of rotation, or the capacity of the cells to grow and divide. Inactivation of clockwise rotation is gradual and irreversible, differing from the transient inhibition of clockwise rotation by attractants, which is characterized by an immediate suppression followed by a return to normal rotation patterns. The rotation reversal inactivator is stable to acidification, rotary evaporation, lyophilization, and rehydration.  相似文献   

15.
Flagellar hook-basal body (HBB) complexes were purified from Rhodobacter sphaeroides. The HBB was more acid labile but more heat stable than that of Salmonella species, and protein identification revealed that HBB components were expressed only from one of the two sets of flagellar gene clusters on the R. sphaeroides genome, under the heterotrophic growth conditions tested here.  相似文献   

16.
17.
An aminopeptidase specific for methionine (peptidase M) has been purified from wild-type and mutant Salmonella typhimurium strains. Recombinant peptidase M was also purified from Escherichia coli. These preparations were characterized with respect to their physicochemical properties using analytical ultracentrifugation, SDS/PAGE, isoelectric focusing, titration curve analysis, amino acid analysis, N-and C-terminal sequencing and various spectroscopic methods. Peptidase M activity is stimulated by Co2+, in agreement with previous studies using crude extracts of Salmonella. The purified preparations did not contain significant amounts of any metal. Enzymically important metal is loosely associated and lost during enzyme purification. Peptidase M was shown to contain seven free sulphydryl residues none of which are involved in either intra-or inter-molecular disulphide bonds. Most appear solvent-accessible as evidenced by their reactivity under native conditions. Limited modification of the sulphydryl residues with either iodoacetamide or 5,5'-dithiobis(2-nitrobenzoic acid) led to inactivation. Several cysteines were shown to be labelled to various degrees by peptide mapping of inactivated S-[14C]carboxymethylated protein. Whether cysteine modification affects enzymic activity directly (blocking an active site) or indirectly (by causing conformational change) remains to be established.  相似文献   

18.
Incomplete flagellar structures were detected in osmotically shocked cells or membrane-associated fraction of many nonflagellate mutants of Salmonella typhimurium by electron microscopy. The predominant types of these structures in the mutants were cistron specific. The incomplete basal bodies were detected in flaFI, flaFIV, flaFVIII, and flaFIX mutants, the structure homologous to a basal body in flaFV mutants, the polyhook-basal body complex in flaR mutants, and the hook-basal body complex in flaL and flaU mutants. No structures homologous to flagellar bases or their parts were detected in the early-fla group nonflagellate mutants of flaAI, flaAII, flaAIII, flaB, flaC, flaD, flaE, flaFII, flaFIII, flaFVI, flaFVII, flaFX, flaK, and flaM. From these observations, a process of flagellar morphogenesis was postulated. The functions of the early-fla group are essential to the formation of S ring-M ring-rod complexes bound to the membrane. The completion of basal bodies requires succeeding functions of flaFI, flaFIV, flaFVIII, and flaFIX. Next, the formation of hooks attached to basal bodies proceeds by the function of flaFV and by flaR, which controls the hook length. Flagellar filaments appear at the tips of hooks because of the functions of flaL, flaU, and flagellin genes.  相似文献   

19.
Electron cryomicroscopy of rotor complexes of the Salmonella typhimurium flagellar motor, overproduced in a nonmotile Escherichia coli host, has revealed a variation in subunit symmetry of the cytoplasmic ring (C ring) module. C rings with subunit symmetries ranging from 31 to 38 were found. They formed a Gaussian distribution around a mean between 34 and 35, a similar number to that determined for native C rings. C-ring diameter scaled with the number of subunits, indicating that the elliptical-shaped subunits maintained constant intersubunit spacing. Taken together with evidence that the M ring does not correspondingly increase in size, this finding indicates that rotor assembly does not require strict stoichiometric interactions between the M- and C-ring subunits. Implications for motor function are discussed.  相似文献   

20.
Three Salmonella typhimurium flagellar motor proteins, FliG, FliM and FliN, are required for the switching of rotation sense. The proteins have been localized to the cytoplasmic module of the flagellar base. Structures, which were morphologically indistinguishable from the native transmembrane MS-ring and cytoplasmic C-ring basal body modules, formed in Escherichia coli upon plasmid-encoded synthesis of these proteins together with FliF. The structures localized to the cell membrane and contained all three motor proteins, as determined by immuno-electron microscopy. This result supports the deduction, based on earlier biochemical analysis, that the C-ring is composed entirely of these proteins and, therefore, functions as a dedicated motor component. In addition, it demonstrates that the morphologically correct assembly of the C-ring onto the MS-ring proceeds independently of other structural components of these modules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号