首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wako H  Endo S 《Biophysical chemistry》2011,159(2-3):257-266
The conformational change of a protein upon ligand binding was examined by normal mode analysis (NMA) based on an elastic-network model (ENM) for a full-atom system using dihedral angles as independent variables. Specifically, we investigated the extent to which conformational change vectors of atoms from an apo form to a holo form of a protein can be represented by a linear combination of the displacement vectors of atoms in the apo form calculated for the lowest-frequency m normal modes (m=1, 2,…, 20). In this analysis, the latter vectors were best fitted to the former ones by the least-squares method. Twenty-two paired proteins in the holo and apo forms, including three dimer pairs, were examined. The results showed that, in most cases, the conformational change vectors were reproduced well by a linear combination of the displacement vectors of a small number of low-frequency normal modes. The conformational change around an active site was reproduced as well as the entire conformational change, except for some proteins that only undergo significant conformational changes around active sites. The weighting factors for 20 normal modes optimized by the least-squares fitting characterize the conformational changes upon ligand binding for these proteins. The conformational changes sampled around the apo form of a protein by the linear combination of the displacement vectors obtained by ENM-based NMA may help solve the flexible-docking problem of a protein with another molecule because the results presented herein suggest that they have a relatively high probability of being involved in an actual conformational change.  相似文献   

2.
The conformational behavior of single strand (ss) TAT and ATA trimers of DNA have been studied by computational chemistry tools including CICADA software interfaced with AMBER molecular mechanics and dynamics. The Single-Coordinate-Driving (SCD) method has been used in conjunction with molecular dynamics simulated annealing. It has been revealed that the conformational flexibility of each sequence differs substantially from the other one. Four common conformational families have been found for both trimers. These are: helical, reverse-stacked (base 3), half-stacked (base 3), reverse-stacked (base 1). However, the energies of conformers representing the families are different for both the studied systems. An additional conformational family, bulged, has been found for ss(ATA), while ss(TAT) has been found also in half-stacked (base 1) conformation. In general, ss(TAT) exhibits a higher number of low energy conformations while ss(ATA) shows one interesting low energy conformational interconversion between reverse-stacked (A3) family and half-stacked (A3) family. The high conformational variability of the trimers has been confirmed by flexibility analysis and by molecular dynamics simulations, which have also shown the conformational stability of single conformational families. It has been concluded that the methodology used is able to provide a very detailed picture of the conformational space of these molecules.  相似文献   

3.
Abstract

The conformational behavior of single strand (ss) TAT and ATA trimers of DNA have been studied by computational chemistry tools including CICADA software interfaced with AMBER molecular mechanics and dynamics. The Single-Coordinate-Driving (SCD) method has been used in conjunction with molecular dynamics simulated annealing. It has been revealed that the conformational flexibility of each sequence differs substantially from the other one. Four common conformational families have been found for both trimers. These are: helical, reverse-stacked (base 3), half-stacked (base 3), reverse-stacked (base 1). However, the energies of conformers representing the families are different for both the studied systems. An additional conformational family, bulged, has been found for ss(ATA), while ss(TAT) has been found also in half-stacked (base 1) conformation. In general, ss(TAT) exhibits a higher number of low energy conformations while ss(ATA) shows one interesting low energy conformational interconversion between reverse-stacked (A3) family and half-stacked (A3) family. The high conformational variability of the trimers has been confirmed by flexibility analysis and by molecular dynamics simulations, which have also shown the conformational stability of single conformational families. It has been concluded that the methodology used is able to provide a very detailed picture of the conformational space of these molecules.  相似文献   

4.
《Biophysical journal》2021,120(15):2943-2951
Despite their importance in function, the conformational state of proteins and its changes are often poorly understood, mainly because of the lack of an efficient tool. MurD, a 47-kDa protein enzyme responsible for peptidoglycan biosynthesis, is one of those proteins whose conformational states and changes during their catalytic cycle are not well understood. Although it has been considered that MurD takes a single conformational state in solution as shown by a crystal structure, the solution nuclear magnetic resonance (NMR) study suggested the existence of multiple conformational state of apo MurD in solution. However, the conformational distribution has not been evaluated. In this work, we investigate the conformational states of MurD by the use of electron paramagnetic resonance (EPR), especially intergadolinium distance measurement using double electron-electron resonance (DEER) measurement. The gadolinium ions are fixed on specific positions on MurD via a rigid double-arm paramagnetic lanthanide tag that has been originally developed for paramagnetic NMR. The combined use of NMR and EPR enables accurate interpretation of the DEER distance information to the structural information of MurD. The DEER distance measurement for apo MurD shows a broad distance distribution, whereas the presence of the inhibitor narrows the distance distribution. The results suggest that MurD exists in a wide variety of conformational states in the absence of ligands, whereas binding of the inhibitor eliminates variation in conformational states. The multiple conformational states of MurD were previously implied by NMR experiments, but our DEER data provided structural characterization of the conformational variety of MurD.  相似文献   

5.
ATP drives the conformational change of the group II chaperonin from the open lid substrate-binding conformation to the closed lid conformation to encapsulate an unfolded protein in the central cavity. The detailed mechanism of this conformational change remains unknown. To elucidate the intra-ring cooperative action of subunits for the conformational change, we constructed Thermococcus chaperonin complexes containing mutant subunits in an ordered manner and examined their folding and conformational change abilities. Chaperonin complexes containing wild-type subunits and mutant subunits with impaired ATP-dependent conformational change ability or ATP hydrolysis activity, one by one, exhibited high protein refolding ability. The effects of the mutant subunits correlate with the number and order in the ring. In contrast, the use of a mutant lacking helical protrusion severely affected the function. Interestingly, these mutant chaperonin complexes also exhibited ATP-dependent conformational changes as demonstrated by small angle x-ray scattering, protease digestion, and changes in fluorescence of the fluorophore attached to the tip of the helical protrusion. However, their conformational change is likely to be transient. They captured denatured proteins even in the presence of ATP, whereas addition of ATP impaired the ability of the wild-type chaperonin to protect citrate synthase from thermal aggregation. These results suggest that ATP binding/hydrolysis causes the independent conformational change of the subunit, and further conformational change for the complete closure of the lid is induced and stabilized by the interaction between helical protrusions.  相似文献   

6.
Conformational selection is an established mechanism in molecular recognition. Despite its power to explain binding events, it is hardly used in protein/ligand design to modulate molecular recognition. Here, we explore the opportunities and limitations of design by conformational selection. Using appropriate thermodynamic cycles, our approach predicts the effects of a conformational shift on binding affinity and also allows one to disentangle the effects induced by a conformational shift from other effects influencing the binding affinity. The method is assessed and applied to explain the contribution of a conformational shift on the binding affinity of six ubiquitin mutants showing different conformational shifts in six different complexes.  相似文献   

7.
Conformational alterations occurring in bovine alpha 2-macroglobulin (alpha 2M) resulting from proteolysis and nucleophilic modification have been monitored by UV difference spectra, circular dichroism, and changes in the fluorescence of 6-(p-toluidino)-2-naphthalenesulfonate (TNS) and bis(8-anilino-1-naphthalenesulfonate) (Bis-ANS). The results of this study indicate that these two dyes appear capable of differentiating between conformational changes induced by proteolysis and those induced by methylamine treatment. It appears that TNS is a sensitive probe for monitoring protease-induced but not methylamine-induced conformational changes in bovine alpha 2M. Bis-ANS, on the other hand, appears suitable for monitoring conformational changes induced by methylamine treatment or proteolysis of the molecule and was used as a probe to monitor the kinetics of the conformational change induced by methylamine treatment. It was found that the conformational change did not occur simultaneously with cleavage of the thiol ester bonds by the nucleophile, measured by titration of free sulfhydryl groups with 5,5'-dithiobis(2-nitrobenzoate). The data are consistent with a model in which initial nucleophilic attack results in exposure of sulfhydryl groups, resulting in a conformational change measured by an increase in fluorescence. This event is followed by a unimolecular step representing a conformational change in the protein that results in a further increase in the fluorescence signal. The second-order rate constant for hydrolysis of the thiol ester bonds was determined to be 3.4 +/- 1.0 M-1 s-1, while the rate constant for the conformational change was (4.4 +/- 0.8) X 10(-4) s-1.  相似文献   

8.
The hydrophobic fluorescent probe, 1-anilino-8-naphthalene sulphonate (ANS), has been used to study conformational changes of mouse antigen-stimulated lymphocytes in vivo. Studies revealed that early conformational changes appear in Bovine Serum Albumin-- or Sheep Erythrocytes-- stimulated splenic and thymic lymphocytes. These conformational changes are detected by fluorescence intensity changes, when ANS is bound to lymphocytes. The kinetic studies further indicate that the course of conformational changes may vary considerably depending on antigens.  相似文献   

9.
A lambda light chain, isolated from an immunoglobulin G molecule, was found to reversibly precipitate at low temperatures. This cryoprecipitation was a function of pH, ionic strength, protein concentration, and time as well as temperature. The lambda chain underwent a cooperative conformational change as the temperature was lowered from 26 to 0 degrees C as judged by ultraviolet difference spectroscopy and circular dichroism. Normal lambda chains showed no conformational change. By difference spectroscopy it was possible to calculate the equilibrium constant governing the conformational change. The change was strongly exothermic (delta H approximately -80 kcal mol-1) and accompanied by a large decrease in entropy (delta S approximately -280 eu). The midpoint of the transition was dependent on the initial protein concentration, suggesting that only the noncovalent dimer of the lambda chain exhibited the conformational change. The existence of a monomer-dimer eqiulibrium (KA approximately 4 X 10(5) M-1) was confirmed by sedimentation velocity. No conformational change was observed by circular dichroism at concentrations where greater than 95% of lambda chain was in the form of a monomer. Although high ionic strength inhibited cryoprecipitation, it had no effect on the conformational change. Stabilization of the dimer by forming an interchain disulfide bond between two monomers abolished both the conformational change and cryoprecipitation. A fragment corresponding to the constant region was isolated from both peptic and tryptic digests of the lambda chain. This fragment neither cryoprecipitated nor showed temperature dependence conformational changes. It proved impossible to isolate a fragment corresponding to the variable region. Both qualitative and quantitative models are presented to account for the behavior of the lambda chain at low temperatures.  相似文献   

10.
Interdependence of conformational variables in double-helical DNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
A Sarai  R L Jernigan    J Mazur 《Biophysical journal》1996,71(3):1507-1518
DNA exhibits conformational polymorphism, with the details depending on the sequence and its environment. To understand the mechanisms of conformational polymorphism and these transitions, we examine the interrelationships among the various conformational variables of DNA. In particular, we examine the stress-strain relation among conformational variables, describing base-pair morphology and their effects on the backbone conformation. For the calculation of base pairs, we use the method previously developed to calculate averages over conformational variables of DNA. Here we apply this method to calculate the Boltzmann averages of conformational variables for fixed values of one particular conformational variable, which reflects the strain in the structure responding to a particular driving stress. This averaging over all but one driving variable smooths the usual rough energy surface to permit observation of the effects of one conformational variable at a time. The stress-strain analyses of conformational variables of base pair slide, twist, and roll, which exhibit characteristic changes during the conformational transition of DNA, have shown that the conformational changes of base pairs are strongly correlated with one another. Furthermore, the stress-strain relations are not symmetrical with respect to these variables, i.e., the response of one coordinate to another is different from the reverse direction. We also examine the effect of conformational changes in base-pair variables on the sugar-backbone conformation by using the minimization method we developed. The conformational changes of base pairs affect the sugar pucker and other dihedral angles of the backbone of DNA, but each variable affects the sugar-backbone differently. In particular, twist is found to have the most influence in affecting the sugar pucker and backbone conformation. These calculated conformational changes in base pairs and backbone segments are consistent with experimental observations and serve to validate the calculation method.  相似文献   

11.
Conformational potential energy hypersurfaces, PES, for the terminally blocked L-Cysteine, L,L-Cystine and D,L-Cystine have been analyzed by means of molecular mechanics in combination with the programs ROSE, CICADA, PANIC and COMBINE. Low energy conformations and conformational transitions, conformational channels, have been located. Global and fragmental flexibility and conformational softness have been calculated for each conformer as well as for the entire molecule. The PES analyses were used for simulation of conformational movement based on Boltzmann probability of the points obtained on the PES. Boltzmann travelling revealed interesting correlated conformational movement where three or even more dihedral angles changed simultaneously. It could be shown that conformational behavior and flexibility were strongly influenced by the absolute configurations of the amino acids in the peptides.  相似文献   

12.
Conformational potential energy hypersurfaces, PES, for the terminally blocked L-Cysteine, L,L-Cystine and D,L-Cystine have been analyzed by means of molecular mechanics in combination with the programs ROSE, CICADA, PANIC and COMBINE. Low energy conformations and conformational transitions, conformational channels, have been located. Global and fragmental flexibility and conformational softness have been calculated for each conformer as well as for the entire molecule. The PES analyses were used for simulation of conformational movement based on Boltzmann probability of the points obtained on the PES. Boltzmann travelling revealed interesting correlated conformational movement where three or even more dihedral angles changed simultaneously. It could be shown that conformational behavior and flexibility were strongly influenced by the absolute configurations of the amino acids in the peptides.  相似文献   

13.
The conformations of intact and acid dissociated, as well as the relative rates of conformational repair of reassociating, ovine lutropin, and a chemically deglycosylated form of lutropin, have been studied by circular dichroism, zero-order, and difference absorption spectroscopy. Deglycosylation produces only small conformational changes in the intact or acid dissociated form of the molecule. While conformational repair of reassociating lutropin requires up to 72 h, and goes no further than 75-80%, deglycosylated lutropin reaches greater than 90% conformational repair in less than 4 h. The efficacy of second-order absorption spectra in characterizing conformations and conformational changes in these molecules is demonstrated.  相似文献   

14.
The proteins can be considered as a microheterogeneous structured media possessing memory and feedback properties. The conformational energy surface depends on the chemical states of protein groups. Conformational motions are local diffusion with relaxation times much longer than vibrational relaxation times in condensed media. Owing to the hierarchy of relaxation times chemical reaction rates depend on conformation parametrically. Regulation of functional activity by conformational mobility is accomplished via transmission of information in the form of changes in the distribution functions of separate groups along the conformational substates. The interpretation of drastic effects on conformational mobility needs super-stochastic approaches. A possible mechanism of sharp conformational change are discussed in terms of the catastrophe theory.  相似文献   

15.
Weng J  Fan K  Wang W 《PloS one》2012,7(1):e30465
BtuCD is a member of the ATP-binding cassette transporters in Escherichia coli that imports vitamin B(12) into the cell by utilizing the energy of ATP hydrolysis. Crystal structures of BtuCD and its homologous protein HI1470/1 in various conformational states support the "alternating access" mechanism which proposes the conformational transitions of the substrate translocation pathway at transmembrane domain (TMD) between the outward-facing and inward-facing states. The conformational transition at TMD is assumed to couple with the movement of the cytoplasmic nucleotide-binding domains (NBDs) driven by ATP hydrolysis/binding. In this study, we performed targeted molecular dynamics (MD) simulations to explore the atomic details of the conformational transitions of BtuCD importer. The outward-facing to inward-facing (O→I) transition was found to be initiated by the conformational movement of NBDs. The subsequent reorientation of the substrate translocation pathway at TMD began with the closing of the periplasmic gate, followed by the opening of the cytoplamic gate in the last stage of the conformational transition due to the extensive hydrophobic interactions at this region, consistent with the functional requirement of unidirectional transport of the substrates. The reverse inward-facing to outward-facing (I→O) transition was found to exhibit intrinsic diversity of the conformational transition pathways and significant structural asymmetry, suggesting that the asymmetric crystal structure of BtuCD-F is an intermediate state in this process.  相似文献   

16.
A N Radchenko 《Biofizika》1999,44(2):356-367
Recording and retrieving functions of the neural memory are simulated as a control of local conformational processes in neural synaptic fields. The localization of conformational changes is related to the afferent temporal-spatial pulse pattern flow, the microstructure of connections and a plurality of temporal delays in synaptic fields and afferent pathways. The loci of conformations are described by sets of afferent addresses named address domains. Being superimposed on each other, address domains form a multilayer covering of the address space of the neuron or the ensemble. The superposition factor determines the dissemination of the conformational process, and the fuzzing of memory, and its accuracy and reliability. The engram is formed as detects in the packing of the address space and hence can be retrieved in inverse form. The accuracy of the retrieved information depends on the threshold level of conformational transitions, the distribution of conformational changes in synaptic fields of the neuronal population, and the memory loading factor. The latter is represented in the model by a slow potential. It reflects total conformational changes and displaces the membrane potential to monostable conformational regimes, by governing the exit from the recording regime, the potentiation of the neurone, and the readiness to reproduction. A relative amplitude of the slow potential and the coefficient of postconformational modification of ionic conductivity, which provides maximum reliability, accuracy, and capacity of memory, are calculated.  相似文献   

17.
The conformational changes of bovine heart cytochrome c (cyt c) induced by the adsorption on gold nanoparticles with different sizes have been investigated by electronic absorption, circular dichroism (CD), and Fourier transform infrared spectra. The combination of these techniques can give complementary information about adsorption-induced conformational changes. The results show that there are different conformational changes for cyt c adsorbed on gold nanoparticles with different sizes due to the different interaction forces between cyt c and gold nanoparticles. The colloidal gold concentration-dependent conformation distribution curves of cyt c obtained by analysis of CD spectra using the singular value decomposition least-squares method show that the coverage of cyt c on the gold nanoparticles surface also affects the conformational changes of the adsorbed cyt c.  相似文献   

18.
A conformational change of the homotrimeric glycoprotein hemagglutinin (HA) of influenza virus mediates fusion between the viral envelope and the endosome membrane. The conformational change of the HA ectodomain is triggered by the acidic pH of the endosome lumen. An essential step of the conformational change is the formation of an extended coiled-coil motif exposing the hydrophobic fusion peptide toward the target membrane. The structures of the neutral-pH, non-fusion active conformation of the HA ectodomain and of a fragment of the ectodomain containing the coiled-coil motif are known. However, it is not known by which mechanism protonation triggers the conformational change of the stable neutral-pH conformation of the ectodomain. Here, recent studies on the stability of the HA ectodomain at neutral pH, the energetics of the conformational change toward the fusion-active state and of the unfolding of the HA ectodomain are summarised. A model for the early steps of the conformational change of the HA ectodomain is presented. The model implicates that protonation leads to a partial dissociation of the distal domains of the HA monomers that is driven by electrostatic repulsion. The opening of the ectodomain enables water to enter the ectodomain. The interaction of water with respective sequences originally shielded from contact with water drives the formation of the coiled-coil structure.  相似文献   

19.
The kinetics of heat-induced aggregation of apo-concanavalin A (aConA) was investigated as a function of temperature and protein concentration by circular dichroism and turbidity. Heat-induced aggregation, as well as conformational change, of aConA was fitted to stretched-exponential equations. The exponent of the conformational change maintained 0.5 despite the protein concentration and temperature, indicating the presence of a common intermediate during the conformational change. After the process, aggregates grew with increasing temperature and initial protein concentration. The reaction order of aggregation was 1.5, indicating that the rate-limiting steps of aConA aggregation involve both conformational change and aggregation.  相似文献   

20.
Delta mu H(+) is known to stimulate the enzyme activity of chloroplast ATP synthase in addition to its important role as energy supply for ATP synthesis. In the present study, we focused on the relationship between the proton translocation via the membrane sector of ATP synthase, F(o), and the conformational change of the central stalk subunit gamma. The conformational change of CF(1) mainly at the gamma subunit was induced by the proton flow via F(o) in the absence of substrates. The effects of inhibitors on CF(o) or CF(1) for this conformational change were also examined. The observed conformational change was partially suppressed by ADP binding. From these results, we propose the Delta mu H(+)-dependent conformational change of CF(1) on the enzyme activation process, which is affected by both ADP binding to the catalytic sites and proton flow via F(o) portion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号