首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The growth pattern of Saccharomyces cerevisiae and Propionibacterium freudenreichii ssp. shermanii (P. shermanii; propionic acid bacteria, PABs) during cocultivation in liquid media depended on the ratio of the cells in the inoculum. An increase in the growth rate of S. cerevisiae was observed at a PAB to yeast ratio of approximately 3 : 1; higher ratios exerted adverse effects on yeast growth. The culture liquid of 18- to 24-h (young) cultures of PABs stimulated yeast growth. Although yeast growth-stimulating exometabolites of PABs were not high-molecular-weight compounds, they were thermolabile. When present in the medium at concentrations of up to 1.5%, the antimicrobial agent sodium propionate did not interfere with S. cerevisiae growth; however, it completely inhibited the growth of B. subtilis at a concentration of 0.2%.  相似文献   

2.
The alcoholic fermentation in Brazil displays some peculiarities because the yeast used is recycled in a non-aseptic process. After centrifugation, the cells are treated with acid to control the bacterial growth. However, it is difficult to manage the indigenous yeasts without affecting the main culture of Saccharomyces cerevisiae. This work evaluated how the cell treatment could be modified to combat contaminant yeasts based on the differential sensitivities to low pH and high concentrations of ethanol displayed by an industrial strain of S. cerevisiae and three strains of Dekkera bruxellensis, which are common contaminant yeasts in Brazilian fermentation processes. The tests were initially performed in rich medium with a low pH or a high concentration of ethanol to analyse the yeast growth profile. Then, the single and combined effects of low pH and ethanol concentration on the yeast cell viability were evaluated under non-proliferative conditions. The effects on the fermentation parameters were also verified. S. cerevisiae grew best when not subjected to the stresses, but this yeast and D. bruxellensis had similar growth kinetics when exposed to a low pH or increased ethanol concentrations. However, the combined treatments of low pH (2.0) and ethanol (11 or 13 %) resulted in a decrease of D. bruxellensis cell viability almost three times higher than of S. cerevisiae, which was only slightly affected by all cell treatments. The initial viability of the treated cells was restored within 8 h of growth in sugar cane juice, with the exception of the combined treatment for D. bruxellensis. The ethanol-based cell treatment, in despite of slowing the fermentation, could decrease and maintain D. bruxellensis population under control while S. cerevisiae was taking over the fermentation along six fermentative cycles. These results indicate that it may be possible to control the growth of D. bruxellensis without major effects on S. cerevisiae. The cells could be treated between the fermentation cycles by the parcelled addition of 13 % ethanol to the tanks in which the yeast cream is treated with sulphuric acid at pH 2.0.  相似文献   

3.
Scheffersomyces stipitis is a yeast able to ferment pentoses to ethanol, unlike Saccharomyces cerevisiae, it does not present the so-called overflow phenomenon. Metabolic features characterizing the presence or not of this phenomenon have not been fully elucidated. This work proposes that genome-scale metabolic response to variations in NAD(H/+) availability characterizes fermentative behavior in both yeasts. Thus, differentiating features in S. stipitis and S. cerevisiae were determined analyzing growth sensitivity response to changes in available reducing capacity in relation to ethanol production capacity and overall metabolic flux span. Using genome-scale constraint-based metabolic models, phenotypic phase planes and shadow price analyses, an excess of available reducing capacity for growth was found in S. cerevisiae at every metabolic phenotype where growth is limited by oxygen uptake, while in S. stipitis this was observed only for a subset of those phenotypes. Moreover, by using flux variability analysis, an increased metabolic flux span was found in S. cerevisiae at growth limited by oxygen uptake, while in S. stipitis flux span was invariant. Therefore, each yeast can be characterized by a significantly different metabolic response and flux span when growth is limited by oxygen uptake, both features suggesting a higher metabolic flexibility in S. cerevisiae. By applying an optimization-based approach on the genome-scale models, three single reaction deletions were found to generate in S. stipitis the reducing capacity availability pattern found in S. cerevisiae, two of them correspond to reactions involved in the overflow phenomenon. These results show a close relationship between the growth sensitivity response given by the metabolic network and fermentative behavior.  相似文献   

4.
Low-molecular weight aliphatic acids, furaldehydes and a broad range of different aromatic compounds are known to inhibit the fermentation of lignocellulose hydrolysates by yeasts. In this work, a cocktail of different lignocellulose-derived inhibitors was used to compare the inhibitor resistance of eleven different industrial and laboratory Saccharomyces cerevisiae strains and two Zygosaccharomyces strains. The inhibitor cocktail was composed of two aliphatic acids, formic and acetic acid, two furaldehydes, furfural and 5-hydroxymethylfurfural (HMF), and two aromatic compounds, cinnamic acid and coniferyl aldehyde. Fermentations were performed under oxygen-limited conditions and with different levels (100, 75, 50, 25 and 0%) of the inhibitor cocktail present. The ethanol yield on initial glucose, the volumetric and specific ethanol productivity, the biomass yield and the glucose consumption rates were used as criteria for the performance of the strains. The results revealed major differences in inhibitor resistance between yeast strains within the same species. The ethanol yield of the S. cerevisiae strain that was least affected decreased only with 10% at an inhibitor cocktail concentration of 100%, while the decrease in ethanol yield for the most sensitive S. cerevisiae strain was more than 50% already at an inhibitor cocktail concentration of 25%. Ethanol formation was generally less affected than growth and ethanol yield less than ethanol productivity. The two most resistant strains were an S. cerevisiae strain isolated from a spent sulphite liquor plant and one of the laboratory S. cerevisiae strains. Additional fermentations with either HMF or coniferyl aldehyde revealed that the degree of resistance of different yeast strains was highly dependent on the inhibitor used. A mutant strain of S. cerevisiae displaying enhanced resistance against coniferyl aldehyde compared with the parental strains was identified.  相似文献   

5.
The so far largely uncharacterized central carbon metabolism of the yeast Pichia stipitis was explored in batch and glucose-limited chemostat cultures using metabolic-flux ratio analysis by nuclear magnetic resonance. The concomitantly characterized network of active metabolic pathways was compared to those identified in Saccharomyces cerevisiae, which led to the following conclusions. (i) There is a remarkably low use of the non-oxidative pentose phosphate (PP) pathway for glucose catabolism in S. cerevisiae when compared to P. stipitis batch cultures. (ii) Metabolism of P. stipitis batch cultures is fully respirative, which contrasts with the predominantly respiro-fermentative metabolic state of S. cerevisiae. (iii) Glucose catabolism in chemostat cultures of both yeasts is primarily oxidative. (iv) In both yeasts there is significant in vivo malic enzyme activity during growth on glucose. (v) The amino acid biosynthesis pathways are identical in both yeasts. The present investigation thus demonstrates the power of metabolic-flux ratio analysis for comparative profiling of central carbon metabolism in lower eukaryotes. Although not used for glucose catabolism in batch culture, we demonstrate that the PP pathway in S. cerevisiae has a generally high catabolic capacity by overexpressing the Escherichia coli transhydrogenase UdhA in phosphoglucose isomerase-deficient S. cerevisiae.  相似文献   

6.
The effect of aqueous extract from R. rosea root on lifespan and the activity of antioxidant enzymes in budding yeast Saccharomyces cerevisiae have been studied. The supplementation of the growth medium with R. rosea extract decreased survival of exponentially growing S. cerevisiae cells under H2O2-induced oxidative stress, but increased viability and reproduction success of yeast cells in stationary phase. The extract did not significantly affect catalase activity and decreased SOD activity in chronologically aged yeast population. These results suggest that R. rosea acts as a stressor for S. cerevisiae cells, what sensitizes yeast cells to oxidative stress at exponential phase, but induces adaptation in stationary phase cells demonstrating the positive effect on yeast survival without activation of major antioxidant enzymes.  相似文献   

7.
In the budding yeast Saccharomyces cerevisiae the Srs2/RadH DNA helicase promotes survival after ultraviolet (UV) irradiation, and has been implicated in DNA repair, recombination and checkpoint signalling following DNA damage. A second helicase, Sgs1, is the S.cerevisiae homologue of the human BLM and WRN proteins, which are defective in cancer predisposition and/or premature ageing syndromes. Saccharomyces cerevisiae cells lacking both Srs2 and Sgs1 exhibit a severe growth defect. We have identified an Srs2 orthologue in the fission yeast Schizosaccharomyces pombe, and have investigated its role in responses to UV irradiation and inhibition of DNA replication. Deletion of fission yeast srs2 caused spontaneous hyper-recombination and UV sensitivity, and simultaneous deletion of the SGS1 homologue rqh1 caused a severe growth defect reminiscent of that seen in the equivalent S.cerevisiae mutant. However, unlike in budding yeast, inactivation of the homologous recombination pathway did not suppress this growth defect. Indeed, the homologous recombination pathway was required for maintenance of normal fission yeast viability in the absence of Srs2, and loss of homologous recombination and loss of Srs2 contributed additively to UV sensitivity. We conclude that Srs2 plays related, but not identical, roles in the two yeast species.  相似文献   

8.
During the industrial bioethanol fermentation, Saccharomyces cerevisiae cells are often stressed by bacterial contaminants, especially lactic acid bacteria. Generally, lactic acid bacteria contamination can inhibit S. cerevisiae cell growth through secreting lactic acid and competing with yeast cells for micronutrients and living space. However, whether are there still any other influences of lactic acid bacteria on yeast or not? In this study, Lactobacillus plantarum ATCC 8014 was co-cultivated with S. cerevisiae S288c to mimic the L. plantarum contamination in industrial bioethanol fermentation. The contaminative L. plantarum-associated expression changes of genes involved in carbohydrate and energy related metabolisms in S. cerevisiae cells were determined by quantitative real-time polymerase chain reaction to evaluate the influence of L. plantarum on carbon source utilization and energy related metabolism in yeast cells during bioethanol fermentation. Contaminative L. plantarum influenced the expression of most of genes which are responsible for encoding key enzymes involved in glucose related metabolisms in S. cerevisiae. Specific for, contaminated L. plantarum inhibited EMP pathway but promoted TCA cycle, glyoxylate cycle, HMP, glycerol synthesis pathway, and redox pathway in S. cerevisiae cells. In the presence of L. plantarum, the carbon flux in S. cerevisiae cells was redistributed from fermentation to respiratory and more reducing power was produced to deal with the excess NADH. Moreover, L. plantarum contamination might confer higher ethanol tolerance to yeast cells through promoting accumulation of glycerol. These results also highlighted our knowledge about relationship between contaminative lactic acid bacteria and S. cerevisiae during bioethanol fermentation.  相似文献   

9.
The ER chaperone calreticulin (CALR) also has extracellular functions and can exit the mammalian cell in response to various factors, although the mechanism by which this takes place is unknown. The yeast Saccharomyces cerevisiae efficiently secretes human CALR, and the analysis of this process in yeast could help to clarify how it gets out of eukaryotic cells. We have achieved a secretion titer of about 140 mg/L CALR in our S. cerevisiae system. Here, we present a comparative quantitative whole proteome study in CALR-secreting yeast using non-equilibrium pH gradient electrophoresis (NEPHGE)-based two-dimensional gel electrophoresis (2DE) as well as liquid chromatography mass spectrometry in data-independent analysis mode (LC-MSE). A reconstructed carrier ampholyte (CA) composition of NEPHGE-based first-dimension separation for 2DE could be used instead of formerly commercially available gels. Using LC-MSE, we identified 1574 proteins, 20 of which exhibited differential expression. The largest group of differentially expressed proteins were structural ribosomal proteins involved in translation. Interestingly, we did not find any signs of cellular stress which is usually observed in recombinant protein-producing yeast, and we did not identify any secretory pathway proteins that exhibited changes in expression. Taken together, high-level secretion of human recombinant CALR protein in S. cerevisiae does not induce cellular stress and does not burden the cellular secretory machinery. There are only small changes in the cellular proteome of yeast secreting CALR at a high level.  相似文献   

10.
The fruity odor of Chinese liquor is largely derived from ester formation. Ethyl caproate, an ethyl ester eliciting apple-like flavor, is one of the most important esters in the strong aromatic Chinese liquor (or Luzhou-flavor liquor), which is the most popular and best-selling liquor in China. In the traditional fermentation process, ethyl caproate in strong aromatic liquor is mainly produced by aroma-producing yeast, bacteria, and mold with high esterification abilities in a mud pit at later fermentation stages at the expense of both fermentation time and grains rather than by the ethanol-fermenting yeast Saccharomyces cerevisiae. To increase the production of ethyl caproate by Chinese liquor yeast (S. cerevisiae AY15) and shorten the fermentation period, we constructed a recombinant strain EY15 by overexpressing EHT1 (encoding ethanol hexanoyl transferase), in which FAA1 (encoding acyl-CoA synthetases) was deleted. In liquid fermentation of corn hydrolysate and solid fermentation of sorghum, ethyl caproate production by EY15 was remarkably increased to 2.23 and 2.83 mg/L, respectively, which were 2.97- and 2.80-fold higher than those of the parental strain AY15. Furthermore, an increase in ethyl octanoate (52 and 43 %) and ethyl decanoate (61 and 40 %) production was observed. The differences in fermentation performance between EY15 and AY15 were negligible. This study resulted in the creation of a promising recombinant yeast strain and introduced a method that can be used for the clean production of strong aromatic Chinese liquor by ester-producing S. cerevisiae without the need for a mud pit.  相似文献   

11.
The bop gene codes for the membrane protein bacterio-opsin (BO), which on binding all-trans-retinal, constitutes the light-driven proton pump bacteriorhodopsin (BR) in the archaebacterium Halobacterium salinarium The designation H. salinarium instead of the former designation H. halobium is used throughout this paper following the classification of Tindall (1992) . This gene was cloned in a yeast multi-copy vector and expressed in Saccharomyces cerevisiae under the control of the constitutive ADH1 promoter. Both the authentic gene and a modified form lacking the precursor sequence were expressed in yeast. Both proteins are incorporated into the membrane in S. cerevisiae. The presequence is thus not required for membrane targeting and insertion of the archaebacterial protein in budding yeast, or in the fission yeast Schizosaccharomyces pombe, as has been shown previously. However, in contrast to S. pombe transformants, which take on a reddish colour when all-trans-retinal is added to the culture medium as a result of the in vivo regeneration of the pigment, S. cerevisiae cells expressing BO do not take on a red colour. The precursor of BO is processed to a protein identical in size to the mature BO found in the purple membrane of Halobacterium. The efficiency of processing in S. cerevisiae is dependent on growth phase, as well as on the composition of the medium and on the strain used. The efficiency of processing of BR is reduced in S. pombe and in a retinal-deficient strain of H. salinarium, when retinal is present in the medium.  相似文献   

12.
Metabolic capabilities of cells are not only defined by their repertoire of enzymes and metabolites, but also by availability of enzyme cofactors. The molybdenum cofactor (Moco) is widespread among eukaryotes but absent from the industrial yeast Saccharomyces cerevisiae. No less than 50 Moco-dependent enzymes covering over 30 catalytic activities have been described to date, introduction of a functional Moco synthesis pathway offers interesting options to further broaden the biocatalytic repertoire of S. cerevisiae. In this study, we identified seven Moco biosynthesis genes in the non-conventional yeast Ogataea parapolymorpha by SpyCas9-mediated mutational analysis and expressed them in S. cerevisiae. Functionality of the heterologously expressed Moco biosynthesis pathway in S. cerevisiae was assessed by co-expressing O. parapolymorpha nitrate-assimilation enzymes, including the Moco-dependent nitrate reductase. Following two-weeks of incubation, growth of the engineered S. cerevisiae strain was observed on nitrate as sole nitrogen source. Relative to the rationally engineered strain, the evolved derivatives showed increased copy numbers of the heterologous genes, increased levels of the encoded proteins and a 5-fold higher nitrate-reductase activity in cell extracts. Growth at nM molybdate concentrations was enabled by co-expression of a Chlamydomonas reinhardtii high-affinity molybdate transporter. In serial batch cultures on nitrate-containing medium, a non-engineered S. cerevisiae strain was rapidly outcompeted by the spoilage yeast Brettanomyces bruxellensis. In contrast, an engineered and evolved nitrate-assimilating S. cerevisiae strain persisted during 35 generations of co-cultivation. This result indicates that the ability of engineered strains to use nitrate may be applicable to improve competitiveness of baker's yeast in industrial processes upon contamination with spoilage yeasts.  相似文献   

13.
Starter cultures of Candida tropicalis and Saccharomyces cerevisiae isolated from tchapalo were tested in pure culture and co-culture of four ratios [2:1, 25:4, 1:4, 2:3 (cells/cells)] for their ability to ferment sorghum wort to produce tchapalo. All the starters showed means growth rate between 0.043 and 0.101 h?1. Only C. tropicalis in pure culture showed growth rate lower than that of S. cerevisiae in single culture. During fermentation, according to total soluble solids depletion, yeast starters could be grouped in four different profiles. But in the beer produced, total soluble solids contents were statistically identical. The lowest values were obtained with co-culture C. tropicalis + S. cerevisiae in the ratios of 2:1 and 2:3. Starter cultures with large ratio of C. tropicalis produced a higher organic acids and 2-butanone than S. cerevisiae in pure culture. However, co-culture C. tropicalis + S. cerevisiae (2:1) was the alone starter which produced higher ethanol than S. cerevisiae in pure culture. The beers produced with C. tropicalis + S. cerevisiae (25:4), C. tropicalis + S. cerevisiae (1:4) and C. tropicalis were widely different from those produced with the others starter cultures.  相似文献   

14.
Eukaryotic translation initiation factor 6 (eIF6) binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. The Saccharomyces cerevisiae gene that encodes the 245-amino-acid eIF6 (calculated Mr 25,550), designated TIF6, has been cloned and expressed in Escherichia coli. The purified recombinant protein prevents association between 40S and 60S ribosomal subunits to form 80S ribosomes. TIF6 is a single-copy gene that maps on chromosome XVI and is essential for cell growth. eIF6 expressed in yeast cells associates with free 60S ribosomal subunits but not with 80S monosomes or polysomal ribosomes, indicating that it is not a ribosomal protein. Depletion of eIF6 from yeast cells resulted in a decrease in the rate of protein synthesis, accumulation of half-mer polyribosomes, reduced levels of 60S ribosomal subunits resulting in the stoichiometric imbalance in the 40S/60S subunit ratio, and ultimately cessation of cell growth. Furthermore, lysates of yeast cells depleted of eIF6 remained active in translation of mRNAs in vitro. These results indicate that eIF6 does not act as a true translation initiation factor. Rather, the protein may be involved in the biogenesis and/or stability of 60S ribosomal subunits.  相似文献   

15.
The dipeptide L-carnosine (β-alanyl-L-histidine) has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose), 10–30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol), L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types.  相似文献   

16.
This study investigated effects of feeding three individual, and a mixed, yeast culture (Kluyveromyces marximanus NRRL3234, Saccharomyces cerevisiae NCDC42, Saccharomyces uvarum ATCC9080 all in a 1:1:1, ratio) on growth performance, nutrient utilization and microbial crude protein (CP) synthesis in feedlot lambs during the post-weaning phase of growth. Sixty weaner lambs (90 ± 3.5 d old and 15.9 ± 0.50 kg BW) were fed for 91 d in five equal groups. The control group of lambs received sterilized culture medium while the treatment groups were fed a yeast culture in addition to a ad libitum total mixed ration (TMR). The yeast culture, dosed at 1 ml/kg body weight (BW) had 1.5–2.0 × 109 live cells/ml. Yeast culture supplementation did not influence intake and digestibility of organic matter (OM), CP, neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose and the metabolizable energy (ME) level of the diets were similar between control and yeast supplemented lambs. Lambs in all groups were in positive N balance, but N intake and N voided in feces and urine, as well as N balance, did not change due to yeast culture supplementation. Urinary allantoin excretion was similar, but purine derivatives absorbed (mM/d) were higher (P<0.05) in yeast culture supplemented lambs. Yeast culture supplementation improved (P<0.05) microbial CP synthesis. Supplementation of SC and mixed yeast improved (P=0.002) BW gain of lambs by 21% and 16% respectively. All yeast culture supplemented lambs had higher feed efficiency in comparison to control lambs. Among the three yeast cultures used, S. cerevisiae had the most potential as a growth promoting feed additive in feedlot lamb production, and it may serve as an alternate to antibiotics and ionophores as a growth promoter of weaner lambs.  相似文献   

17.
《Fungal biology》2022,126(10):658-673
In northwestern Argentina, sugarcane-derived industrial fermentation is being extensively used for bioethanol production, where highly adaptive native strains compete with the baker's yeast Saccharomyces cerevisiae traditionally used as starter culture. Yeast populations of 10 distilleries from Tucumán (Argentina) were genotypic and phenotypic characterized to select well-adapted bioethanol-producing autochthonous strains to be used as starter cultures for the industrial production of bioethanol fuel. From the 192 isolates, 69.8% were identified as S. cerevisiae, 25.5% as non-Saccharomyces, and 4.7% as Saccharomyces sp. wild yeasts. The majority of S. cerevisiae isolates (68.5%) were non-flocculating yeasts, while the flocculating strains were all obtained from the only continuous fermentation process included in the study. Simple Sequence Repeat analysis revealed a high genetic diversity among S. cerevisiae genotypes, where all of them were very different from the original baker's strain used as starter. Among these, 38 strains multi-tolerant to stress by ethanol (8%), temperature (42.5 °C) and pH (2.0) were obtained. No major differences were found among these strains in terms of ethanol production and residual sugars in batch fermentation experiments with cell recycling. However, only 10 autochthonous strains maintained their viability (more than 80%) throughout five consecutive cycles of sugarcane-based fermentations. In summary, 10 autochthonous isolates were found to be superior to baker's yeast used as starter culture (S. cerevisiae Calsa) in terms of optimal technological, physiological and ecological properties. The knowledge generated on the indigenous yeast populations in industrial fermentation processes of bioethanol-producing distilleries allowed the selection of well-adapted bioethanol-producing strains.  相似文献   

18.
Effects of Hilyses®, fermented Saccharomyces cerevisiae (S. cerevisiae), on growth, body composition and skin mucus immune components in rainbow trout were quantified. Ninety rainbow trout (105 ± 5 g) were randomly assigned to 2 groups in triplicates and fed dietary Hilyses® (5 g kg?1) or control diet without Hilyses® for 50 days. Results of this study demonstrated that growth performance increased significantly by the dietary yeast supplement; however body composition was not affected in treatment group. At the 45th and 50th day of feeding trial, results of mucus samples demonstrated that yeast supplementation in treatment group significantly promoted enzyme activities, namely lysozyme, protease, alkaline phosphatase and esterase compared to control group. Significant increases were also observed in hemagglutination and antibacterial activity against Yersinia ruckeri in fish fed treatment diet. The present study suggests that fermented S. cerevisiae may effectively promote the growth performance and skin non-specific immune parameters in rainbow trout.  相似文献   

19.
Hemicellulose is one of the major forms of biomass in lignocellulose, and its essential component is xylan. We used a cell surface engineering system based on α-agglutinin to construct a Saccharomyces cerevisiae yeast strain codisplaying two types of xylan-degrading enzymes, namely, xylanase II (XYNII) from Trichoderma reesei QM9414 and β-xylosidase (XylA) from Aspergillus oryzae NiaD300, on the cell surface. In a high-performance liquid chromatography analysis, xylose was detected as the main product of the yeast strain codisplaying XYNII and XylA, while xylobiose and xylotriose were detected as the main products of a yeast strain displaying XYNII on the cell surface. These results indicate that xylan is sequentially hydrolyzed to xylose by the codisplayed XYNII and XylA. In a further step toward achieving the simultaneous saccharification and fermentation of xylan, a xylan-utilizing S. cerevisiae strain was constructed by codisplaying XYNII and XylA and introducing genes for xylose utilization, namely, those encoding xylose reductase and xylitol dehydrogenase from Pichia stipitis and xylulokinase from S. cerevisiae. After 62 h of fermentation, 7.1 g of ethanol per liter was directly produced from birchwood xylan, and the yield in terms of grams of ethanol per gram of carbohydrate consumed was 0.30 g/g. These results demonstrate that the direct conversion of xylan to ethanol is accomplished by the xylan-utilizing S. cerevisiae strain.  相似文献   

20.
《Process Biochemistry》2010,45(4):493-499
The main objetive of this work was to evaluate and model the biofilm growth of the Saccharomyces cerevisiae (beticus ssp.) yeast during the biological aging of some types of wines. Thus, we have study how the biofilm growth, the glycerine is consumed and the acetaldehyde is produced, and how this phenomena are affected by the media ethanol concentration (0–17%, v/v), under experimental conditions similar to the industrial ones. In consequence, the growth of the S. cerevisiae (beticus ssp.) biofilm on the surface of the liquid was studied and kinetically modelled. Growth curves were fitted by using general kinetic models that include biomass and substrate inhibition factors. The alcohol content of the medium for the fastest growth rate of biofilm was found to be 4.3%, v/v. The proposed kinetic models for biomass growth, glycerine consumption and acetaldehyde formation fit well with the experimental data.The growth kinetics of S. cerevisiae beticus ssp. in biofilm phase presents a typical discontinuous microbial growth profile (with lag, exponential and stationary phases). The glycerine consumption is directly related to the substrate concentrations (ethanol and glycerine). Finally, the rate of acetaldehyde formation suggests a model associated with the rate of microbial growth, which is modified by a substrate-dependent factor. The suggested model can be used for optimization and control processes of biological aging of wines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号