首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although some yeast species, e.g. Saccharomyces cerevisiae, can grow under anaerobic conditions, Kluyveromyces lactis cannot. In a systematic study, we have determined which S. cerevisiae genes are required for growth without oxygen. This has been done by using the yeast deletion library. Both aerobically essential and nonessential genes have been tested for their necessity for anaerobic growth. Upon comparison of the K. lactis genome with the genes found to be anaerobically important in S. cerevisiae, which yielded 20 genes that are missing in K. lactis, we hypothesize that lack of import of sterols might be one of the more important reasons that K. lactis cannot grow in the absence of oxygen.  相似文献   

2.
Following targeted disruption of the unique CYC1 gene, the petite-negative yeast, Kluyveromyces lactis, was found to grow fermentatively in the absence of cytochrome c-mediated respiration. This observation encouraged us to seek mitochondrial mutants by treatment of K. lactis with ethidium bromide at the highest concentration permitting survival. By this technique, we isolated four mtDNA mutants, three lacking mtDNA and one with a deleted mitochondrial genome. In the three isolates lacking mtDNA, a nuclear mutation is present that permits petite formation. The three mutations occur at two different loci, designated MGI1 and MGI2 (for Mitochondrial Genome Integrity). The mgi mutations convert K. lactis into a petite-positive yeast. Like bakers' yeast, the mgi mutants spontaneously produce petites with deletions in mtDNA and lose this genome at high frequency on treatment with ethidium bromide. We suggest that the MGI gene products are required for maintaining the integrity of the mitochondrial genome and that, petite-positive yeasts may be naturally altered in one or other of these genes.  相似文献   

3.
Yeasts belonging to the lineage that underwent whole-genome duplication (WGD) possess a good fermentative potential and can proliferate in the absence of oxygen. In this study, we analyzed the pre-WGD yeast Kluyveromyces lactis and its ability to grow under oxygen-limited conditions. Under these conditions, K. lactis starts to increase the glucose metabolism and accumulates ethanol and glycerol. However, under more limited conditions, the fermentative metabolism decreases, causing a slow growth rate. In contrast, Saccharomyces cerevisiae and Saccharomyces kluyveri in anaerobiosis exhibit almost the same growth rate as in aerobiosis. In this work, we showed that in K. lactis , under oxygen-limited conditions, a decreased expression of RAG1 occurred. The activity of glucose-6-phosphate dehydrogenase also decreased, likely causing a reduced flux in the pentose phosphate pathway. Comparison of related and characterized yeasts suggests that the behavior observed in K. lactis could reflect the lack of an efficient mechanism to maintain a high glycolytic flux and to balance the redox homeostasis under hypoxic conditions. This could be a consequence of a recent specialization of K. lactis toward living in a niche where the ethanol accumulation at high oxygen concentrations and the ability to survive at a low oxygen concentration do not represent an advantage.  相似文献   

4.
Sphingolipids are ubiquitous compounds derived from ceramide that consist of a sphingoid long-chain base with a 2-amino group amide linked to fatty acid and are present in the membranes of many organisms. As a principal sphingolipid, Saccharomyces cerevisiae contains a free ceramide and its inositol-phosphorylated derivatives (acidic types) but not a neutral glycosylated ceramide, glucosylceramide (cerebroside), which usually appears in eukaryotic cells. When 31 strains accepted in the genera Saccharomyces, Torulaspora, Zygosaccharomyces, and Kluyveromyces were analyzed for sphingolipids, cerebrosides were found in S. kluyveri, Z. cidri, Z. fermentati, K. lactis, K. thermotolerans, and K. waltii. The cerebrosides of S. kluyveri and K. lactis included 9-methyl 4-trans, 8-trans-sphingadienine and its putative metabolic intermediates. A unique characteristic of S. kluyveri was the presence of a trihydroxy sphingoid base, which rarely occurs in fungal cerebrosides. A polymerase chain reaction with primers targeted to the glucosylceramide synthase gene of other microorganisms amplified the fragments of the expected size from S. kluyveri and K. lactis and further extended to the adjacent regions. The presumed protein of S. kluyveri had 54.4% similarity to that of K. lactis, higher than the glucosylceramide synthases from Candida albicans, Pichia pastoris, and other organisms. From these observations, the divergence of S. kluyveri from the lineage of K. lactis in their evolution is discussed.  相似文献   

5.
Kominsky DJ  Thorsness PE 《Genetics》2000,154(1):147-154
Organisms that can grow without mitochondrial DNA are referred to as "petite-positive" and those that are inviable in the absence of mitochondrial DNA are termed "petite-negative." The petite-positive yeast Saccharomyces cerevisiae can be converted to a petite-negative yeast by inactivation of Yme1p, an ATP- and metal-dependent protease associated with the inner mitochondrial membrane. Suppression of this yme1 phenotype can occur by virtue of dominant mutations in the alpha- and gamma-subunits of mitochondrial ATP synthase. These mutations are similar or identical to those occurring in the same subunits of the same enzyme that converts the petite-negative yeast Kluyveromyces lactis to petite-positive. Expression of YME1 in the petite-negative yeast Schizosaccharomyces pombe converts this yeast to petite-positive. No sequence closely related to YME1 was found by DNA-blot hybridization to S. pombe or K. lactis genomic DNA, and no antigenically related proteins were found in mitochondrial extracts of S. pombe probed with antisera directed against Yme1p. Mutations that block the formation of the F(1) component of mitochondrial ATP synthase are also petite-negative. Thus, the F(1) complex has an essential activity in cells lacking mitochondrial DNA and Yme1p can mediate that activity, even in heterologous systems.  相似文献   

6.
The secretion of killer toxins by some strains of yeasts is a phenomenon of significant industrial importance. The activity of a recently discovered Kluyveromyces lactis killer strain against a sensitive Saccharomyces cerevisiae strain was determined on peptone-yeast extract-nutrient agar plates containing as the carbon source glucose, fructose, galactose, maltose, or glycerol at pH 4.5 or 6.5. Enhanced activity (50 to 90% increase) was found at pH 6.5, particularly on the plates containing galactose, maltose, or glycerol, although production of the toxin in liquid medium was not significantly different with either glucose or galactose as the carbon source. Results indicated that the action of the K. lactis toxin was not mediated by catabolite repression in the sensitive strain. Sensitivities of different haploid and polyploid Saccharomyces yeasts to the two different killer yeasts S. cerevisiae (RNA-plasmid-coded toxin) and K. lactis (DNA-plasmid-coded toxin) were tested. Three industrial polyploid yeasts sensitive to the S. cerevisiae killer yeast were resistant to the K. lactis killer yeast. The S. cerevisiae killer strain itself, however, was sensitive to the K. lactis killer yeast.  相似文献   

7.
The secretion of killer toxins by some strains of yeasts is a phenomenon of significant industrial importance. The activity of a recently discovered Kluyveromyces lactis killer strain against a sensitive Saccharomyces cerevisiae strain was determined on peptone-yeast extract-nutrient agar plates containing as the carbon source glucose, fructose, galactose, maltose, or glycerol at pH 4.5 or 6.5. Enhanced activity (50 to 90% increase) was found at pH 6.5, particularly on the plates containing galactose, maltose, or glycerol, although production of the toxin in liquid medium was not significantly different with either glucose or galactose as the carbon source. Results indicated that the action of the K. lactis toxin was not mediated by catabolite repression in the sensitive strain. Sensitivities of different haploid and polyploid Saccharomyces yeasts to the two different killer yeasts S. cerevisiae (RNA-plasmid-coded toxin) and K. lactis (DNA-plasmid-coded toxin) were tested. Three industrial polyploid yeasts sensitive to the S. cerevisiae killer yeast were resistant to the K. lactis killer yeast. The S. cerevisiae killer strain itself, however, was sensitive to the K. lactis killer yeast.  相似文献   

8.
The yeast Saccharomyces cerevisiae is characterized by its ability to: (a) degrade glucose or fructose to ethanol, even in the presence of oxygen (Crabtree effect); (b) grow in the absence of oxygen; and (c) generate respiratory-deficient mitochondrial mutants, so-called petites. How unique are these properties among yeasts in the Saccharomyces clade, and what is their origin? Recent progress in genome sequencing has elucidated the phylogenetic relationships among yeasts in the Saccharomyces complex, providing a framework for the understanding of the evolutionary history of several modern traits. In this study, we analyzed over 40 yeasts that reflect over 150 million years of evolutionary history for their ability to ferment, grow in the absence of oxygen, and generate petites. A great majority of isolates exhibited good fermentation ability, suggesting that this trait could already be an intrinsic property of the progenitor yeast. We found that lineages that underwent the whole-genome duplication, in general, exhibit a fermentative lifestyle, the Crabtree effect, and the ability to grow without oxygen, and can generate stable petite mutants. Some of the pre-genome duplication lineages also exhibit some of these traits, but a majority of the tested species are petite-negative, and show a reduced Crabtree effect and a reduced ability to grow in the absence of oxygen. It could be that the ability to accumulate ethanol in the presence of oxygen, a gradual independence from oxygen and/or the ability to generate petites were developed later in several lineages. However, these traits have been combined and developed to perfection only in the lineage that underwent the whole-genome duplication and led to the modern Saccharomyces cerevisiae yeast.  相似文献   

9.
Some yeasts, such as Saccharomyces cerevisiae, produce ethanol at fully aerobic conditions, whereas other yeasts, such as Kluyveromyces lactis, do not. In this study we investigated the occurrence of aerobic alcoholic fermentation in the petite-negative yeast Saccharomyces kluyveri that is only distantly related to S. cerevisiae. In aerobic glucose-limited continuous cultures of S. kluyveri, two growth regimens were observed: at dilution rates below 0.5 h(-1) the metabolism was purely respiratory, and at dilution rates above 0.5 h(-1) the metabolism was respiro-fermentative. The dilution rate at which the switch in metabolism occurred, i.e. the critical dilution rate, was 66% higher than the typical critical dilution rate of S. cerevisiae. The maximum specific oxygen consumption rate around the critical dilution rate was found to 13.6 mmol (g dry weight)(-1) h(-1) and the capacity of the pyruvate dehydrogenase-bypass pathway was estimated to be high from in vitro enzyme activities; especially the specific activity of acetyl-CoA synthetase was much higher than in S. cerevisiae at all tested conditions. Addition of glucose to respiring cells of S. kluyveri led to ethanol formation after a delay of 20-50 min (depending on culture conditions prior to the pulse), which is in contrast to S. cerevisiae that ferments immediately after glucose addition.  相似文献   

10.
Translation of mitochondrially coded mRNAs in Saccharomyces cerevisiae depends on membrane-bound mRNA-specific activator proteins, whose targets lie in the mRNA 5'-untranslated leaders (5'-UTLs). In at least some cases, the activators function to localize translation of hydrophobic proteins on the inner membrane and are rate limiting for gene expression. We searched unsuccessfully in divergent budding yeasts for orthologs of the COX2- and COX3-specific translational activator genes, PET111, PET54, PET122, and PET494, by direct complementation. However, by screening for complementation of mutations in genes adjacent to the PET genes in S. cerevisiae, we obtained chromosomal segments containing highly diverged homologs of PET111 and PET122 from Saccharomyces kluyveri and of PET111 from Kluyveromyces lactis. All three of these genes failed to function in S. cerevisiae. We also found that the 5'-UTLs of the COX2 and COX3 mRNAs of S. kluyveri and K. lactis have little similarity to each other or to those of S. cerevisiae. To determine whether the PET111 and PET122 homologs carry out orthologous functions, we deleted them from the S. kluyveri genome and deleted PET111 from the K. lactis genome. The pet111 mutations in both species prevented COX2 translation, and the S. kluyveri pet122 mutation prevented COX3 translation. Thus, while the sequences of these translational activator proteins and their 5'-UTL targets are highly diverged, their mRNA-specific functions are orthologous.  相似文献   

11.
Saccharomyces kluyveri IFO 1685 and Kluyveromyces lactis IFO 1090 synthesize cerebroside containing 9-methyl- trans-4, trans-8-sphingadienine as a sphingoid base. From the genome of the two strains, the regions encompassing Delta(8)-sphingolipid desaturase were amplified and sequenced. The nucleotide sequences of these regions revealed single open reading frames of 1707 bp for S. kluyveri and 1722 bp for K. lactis, encoding polypeptides of 568 and 573 amino acids with molecular weights of 66.5 and 67.1 kDa, respectively. Conversion of 4-hydroxysphinganine to 4-hydroxy- trans-8-sphingenine in the cells of Saccharomyces cerevisiae was observed by the expressed gene from K. lactis and not by that from S. kluyveri. These findings may be explained by the difference in substrate specificity for the sphingoid base moiety between Delta(8)-sphingolipid desaturases of S. kluyveri and K. lactis.  相似文献   

12.
13.
Two novel linear deoxyribonucleic acid plasmids, pGKl1 and pGKl2, were isolated from the yeast Kluyveromyces lactis. K. lactis strains harboring the pGK1 plasmids killed a certain group of yeasts, including Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces rouxii, K. lactis, Kluyveromyces thermotolerans, Kluyvermyces vanudenii, Torulopsis glabrata, Candida utilis, and Candida intermedia. In this experiment, the pGKl1 and pGKl2 plasmids were intergenerically transferred from a K. lactis killer strain into a non-killer (killer-sensitive) strain of S. cerevisiae by the use of a protoplast fusion technique. Both of the pGKl plasmids replicated autonomously and stably in the new host cells of S. cerevisiae and could coexist with the resident 2-micrometers deoxyribonucleic acid plasmid. The S. cerevisiae cells which accepted the pGKl plasmids expressed the same killer phenotype as that of the donor K. lactis killer and became resistant to the K. lactis killer. The pGKl plasmids existing in the S. cerevisiae cells were cured by treatment with ethidium bromide, and the killer and resistance characters were simultaneously lost. From there results, it was concluded that both the killer and the resistance genes are located on the pGKl plasmids.  相似文献   

14.
Petite-positive Saccharomyces yeasts can be roughly divided into the sensu stricto, including Saccharomyces cerevisiae, and sensu lato group, including Saccharomyces castellii; the latter was recently studied for transmission and the organisation of its mitochondrial genome. S. castellii mitochondrial molecules (mtDNA) carrying point mutations, which confer antibiotic resistance, behaved in genetic crosses as the corresponding point mutants of S. cerevisiae. While S. castellii generated spontaneous petite mutants in a similar way as S. cerevisiae, the petites exhibited a different inheritance pattern. In crosses with the wild type strains a majority of S. castellii petites was neutral, and the suppressivity in suppressive petites was never over 50%. The two yeasts also differ in organisation of their mtDNA molecules. The 25,753 bp sequence of S. castellii mtDNA was determined and the coding potential of both yeasts is similar. However, the S. castellii intergenic sequences are much shorter and do not contain sequences homologous to the S. cerevisiae biologically active intergenic sequences, as ori/rep/tra, which are responsible for the hyper-suppressive petite phenotype found in S. cerevisiae. The structure of one suppressive S. castellii mutant, CA38, was also determined. Apparently, a short direct intergenic repeat was involved in the generation of this petite mtDNA molecule.  相似文献   

15.
Petite-positivity - the ability to tolerate the loss of mtDNA - was examined after the treatment with ethidium bromide (EB) in over hundred isolates from the Saccharomyces/Kluyveromyces complex. The identity of petite mutants was confirmed by the loss of specific mtDNA DAPI staining patterns. Besides unequivocal petite-positive and petite-negative phenotypes, a few species exhibited temperature sensitive petite positive phenotype and petiteness of a few other species could be observed only at the elevated EB concentrations. Several yeast species displayed a mixed 'moot' phenotype, where a major part of the population did not tolerate the loss of mtDNA but several cells did. The genera from postwhole-genome duplication lineages (Saccharomyces, Kazachstania, Naumovia, Nakaseomyces) were invariably petite-positive. However, petite-positive traits could also be observed among the prewhole-genome duplication species.  相似文献   

16.
Yeast species belonging to the lineage that underwent the whole genome duplication (WGD), and including Saccharomyces cerevisiae, can grow under anaerobiosis and accumulate ethanol in the presence of glucose and oxygen. The pre-WGD yeasts, which branched from the S. cerevisiae lineage just before the WGD event, including Kluyveromyces lactis, are more dependent on oxygen and do not accumulate large amounts of ethanol in the presence of excess oxygen. Yeasts that belong to the so-called 'lower branches' of the yeast phylogenetic tree and diverged from S. cerevisiae more than 200 million years ago have so far not been thoroughly investigated for their physiology and carbon metabolism. Here, we have studied several isolates of Candida albicans and Debaryomyces hansenii for their dependence on oxygen. Candida albicans grew very poorly at an oxygen concentration <1 p.p.m. and D. hansenii could not grow at all. In aerobic batch cultivations, C. albicans exhibited a predominantly aerobic metabolism, accumulating only small amounts of ethanol (0.01-0.09 g g(-1) glucose). Apparently, C. albicans and several other pre-WGD yeasts still exhibit the original traits of the yeast progenitor: poor accumulation of ethanol under aerobic conditions and strong dependence on the presence of oxygen.  相似文献   

17.
Mitochondrial genomes of Saccharomyces and close relatives previously used for transplacement of mitochondria to S. cerevisiae were examined. The origins of replication in mitochondrial DNA, the presence of nuclear and mitochondrial polymorphic loci and the ability to produce mitochondrial respiration-deficient mutants were used to reclassify some collection yeasts and to assign others into four separate subgroups. The first included isolates identical to Saccharomyces cerevisiae (S. italicus, S. oviformis, S. chevalieri and S. capensis) which possess 5 or more replication origins. The second group consists of S paradoxus (var douglasii) mitochondrial genome with the equal number of ori sequences but incompatible mitochondria. The third group represents Saccharomyces sensu stricto petite-positive species (S. carlsbergensis, S. heterogenicus, S. uvarum, S. willianus) with 1-2 origins of replication significantly different from S. cerevisiae. In addition, the locus between tRNA(fMet) and tRNA(Pro) is about one-half of the 1400 bp members of S. cerevisiae complex. The last group includes isolates that do not belong to Saccharomyces sensu stricto group as they are petite-negative and devoid of any S. cerevisiae-like replication origins.  相似文献   

18.
Non-conventional yeasts as hosts for heterologous protein production.   总被引:4,自引:0,他引:4  
Yeasts are an attractive group of lower eukaryotic microorganisms, some of which are used in several industrial processes that include brewing, baking and the production of a variety of biochemical compounds. More recently, yeasts have been developed as host organisms for the production of foreign (heterologous) proteins. Saccharomyces cerevisiae has usually been the yeast of choice, but an increasing number of alternative non-Saccharomyces yeasts has now become accessible for modern molecular genetics techniques. Some of them exhibit certain favourable traits such as high-level secretion or very strong and tightly regulated promoters, offering significant advantages over traditional bakers' yeast. In the present work, the current status of Kluyveromyces lactis, Yarrowia lipolytica, Hansenula polymorpha and Pichia pastoris (the best-known alternative yeast systems) is reviewed. The advantages and limitations of these systems are discussed in relation to S. cerevisiae.  相似文献   

19.
A multitude of metabolic regulations occur in yeast, particularly under dynamic process conditions, such as under sudden glucose excess. However, quantification of regulations and classification of yeast strains under these conditions have yet to be elucidated, which requires high-frequency and consistent quantification of the metabolic response. The present study aimed at quantifying the dynamic regulation of the central metabolism of strains Saccharomyces cerevisiae, S. kluyveri, and Kluyveromyces lactis upon sudden glucose excess, accomplished by a shift-up in dilution rate inside of the oxidative region using a small metabolic flux model. It was found that, under transient growth conditions, S. kluyveri behaved like K. lactis, while classification using steady-state conditions would position S. kluyveri close to S. cerevisiae. For transient conditions and based on the observation whether excess glucose is initially used for catabolism (energy) or anabolism (carbon), we propose to classify strains into energy-driven, such as S. cerevisiae, and carbon-driven, such as S. kluyveri and K. lactis, strains. Furthermore, it was found that the delayed onset of fermentative catabolism in carbon-driven strains is a consequence of low catabolic flux and the initial shunt of glucose in non-nitrogen-containing biomass constituents. The MFA model suggests that energy limitation forced the cell to ultimately increase catabolic flux, while the capacity of oxidative catabolism is not sufficient to process this flux oxidatively. The combination of transient experiments and its exploitation with reconciled intrinsic rates using a small metabolic model could corroborate earlier findings of metabolic regulations, such as tight glucose control in carbon-driven strains and transient changes in biomass composition, as well as explore new regulations, such as assimilation of ethanol before glucose. The benefit from using small metabolic flux models is the richness of information and the enhanced insight into intrinsic metabolic pathways without a priori knowledge of adaptation kinetics. Used in an online context, this approach serves as an efficient tool for strain characterization and physiological studies.  相似文献   

20.
The ecological role of killer yeasts in natural communities of yeasts   总被引:12,自引:0,他引:12  
The killer phenomenon of yeasts was investigated in naturally occurring yeast communities. Yeast species from communities associated with the decaying stems and fruits of cactus and the slime fluxes of trees were studied for production of killer toxins and sensitivity to killer toxins produced by other yeasts. Yeasts found in decaying fruits showed the highest incidence of killing activity (30/112), while yeasts isolated from cactus necroses and tree fluxes showed lower activity (70/699 and 11/140, respectively). Cross-reaction studies indicated that few killer-sensitive interactions occur within the same habitat at a particular time and locality, but that killer-sensitive reactions occur more frequently among yeasts from different localities and habitats. The conditions that should be optimal for killer activity were found in fruits and young rots of Opuntia cladodes where the pH is low. The fruit habitat appears to favor the establishment of killer species. Killer toxin may affect the natural distribution of the killer yeast Pichia kluyveri and the sensitive yeast Cryptococcus cereanus. Their distributions indicate that the toxin produced by P. kluyveri limits the occurrence of Cr. cereanus in fruit and Opuntia pads. In general most communities have only one killer species. Sensitive strains are more widespread than killer strains and few species appear to be immune to all toxins. Genetic study of the killer yeast P. kluyveri indicates that the mode of inheritance of killer toxin production is nuclear and not cytoplasmic as is found in Saccharomyces cerevisiae and Kluyveromyces lactis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号