首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We made use of the [3H]phorbol 12,13-dibutyrate binding assay to investigate the effects of bifemelane on the subcellular distribution of protein kinase C in the CA3 and CA1 regions of guinea-pig hippocampal slices. Bifemelane, a drug that augments the long-term potentiation in the CA3 region, significantly induced the translocation of [3H]phorbol 12,13-dibutyrate binding activity from the cytosol to the membrane in a dose-dependent manner (10(-8) to 10(-6) M) and with no effects on total binding activity in the CA3 region. Bifemelane, at a concentration of 10(-6) M, was without effect on the subcellular distribution of [3H]phorbol 12,13-dibutyrate binding activity in the CA1 region. These observations suggest that bifemelane acts directly on the hippocampus to induce translocation of protein kinase C in the CA3 region. Such an effect may be associated with the bifemelane-induced augmentation of the long-term potentiation in this region of the brain.  相似文献   

2.
Binding of [3H]flunitrazepam to benzodiazepine receptors in brain from several species, including human, was measured in vitro in the presence and absence of purine-metabolizing enzyme inhibitors. Incubation with potent inhibitors of either adenosine deaminase (2′-deoxycoformycin and erythro-9-(2-hydroxy-3-nonyl)-adenine) or guanine deaminase (5-amino-4-imidazole carboxamide) failed to alter [3H]flunitrazepam binding in homogenates of several different regions of human, rabbit, rat or guinea pig brain. These findings are in contrast to those of Norstrand et al. [Enzyme 29, 61–65 (1983)] who reported substantial alterations in [3H]flunitrazepam binding to human brain membranes in the presence of erythro-9-(2-hydroxy-3-nonyl)-adenine (increase) and 5-amino-4-imidazole carboxamide (decrease). In our studies, [3H]flunitrazepam binding was also unaltered in more anatomically intact brain sections following treatment with purine enzyme inhibitors. Furthermore, in vivo administration of erythro-9-(2-hydroxy-3-nonyl)-adenine to mice at a dose (200 mg/kg, i.p.) known to almost totally inhibit central adenosine deaminase activity also failed to alter brain [3H]flunitrazepam binding measured ex vivo, 30–120 min post injection.

While previous studies have shown that purines such as inosine interact with benzodiazepine receptors, our results raise some questions about the role of endogenous purines in regulating benzodiazepine receptors, at least in vitro and also acutely vivo following purine enzyme inhibitor administration.  相似文献   


3.
Modulation of rat brain insulin receptor kinase activity in diabetes   总被引:4,自引:0,他引:4  
Insulin receptors from rat brain regions were studied for insulin binding and receptor associated kinase activity, in alloxan induced short-term and long-term diabetes, and insulin induced hypoglycemia. Insulin receptor activity was assessed by [123I]insulin binding, and basal as well as insulin stimulated kinase activity of the receptor, expressed as phosphorylation of the synthetic peptide poly (Glu-Tyr (4:1)). Regional distribution pattern elicited the highest binding and kinase activity in the olfactory bulb. Diabetes caused a significant increase in the kinase activity. The data suggests that brain insulin receptor kinase is regulated differently compared to peripheral tissues and supports the concept of an active brain insulin receptor in vivo.  相似文献   

4.
The activities of superoxide dismutase, catalase and glutathione reductase were not affected by in vitro incubation with the intracellular proteinase calpain, suggesting that these enzymes are not in vivo substrates of calpain. In contrast, the activity of another important antioxidant enzyme, glutathione peroxidase, is stimulated in vitro by calpain. This may explain the correlation between elevations in glutathione peroxidase activity and calpain activity which occur in aging, exercised and dystrophic muscle. Calpain treatment in vitro caused a large decrease in the activity of carnosine synthetase which is involved in the synthesis of the putative antioxidant carnosine. This may be the reason for the in vivo correlation between elevated calpain and diminished carnosine levels in aging, hypertensive, denervated and dystrophic muscles.  相似文献   

5.
The natural occurrence, sleep, and extra-sleep effects of delta sleep-inducing peptide (DSIP) have been shown by different laboratories. However, neither an in vitro assay system nor a probable mechanism of action of the peptide have been conclusively demonstrated so far. The recent finding that DSIP influences the nocturnal rise of N-acetyltransferase (NAT) activity in rat pineal led us to investigate a possible effect on pharmacologically induced NAT activity in vivo and in vitro. Stimulation of the enzyme with adrenergic drugs such as isoproterenol and phenylephrine was reduced by DSIP at doses of 150 and 300 μg/kg injected subcutaneously. In vitro, 6, 150 and 300 nM DSIP attenuated isoproterenol stimulation of the enzyme in cultured pineals, whereas 150 nM DSIP effectively reduced stimulation induced by a combination of the two drugs. The peptide alone did not influence NAT activity in vitro, but produced a slight stimulation in vivo. To our knowledge, these results represent the first report of a direct interaction of DSIP with adrenergic transmission. The in vitro system could prove useful for establishing possible mechanism(s) of action of the ‘sleep peptide.’  相似文献   

6.
Extraction of rat brain membrane-associated protein kinase C with high specific activity was obtained by applying benzyl alcohol (a membrane fluidizer), EDTA, and high hydrostatic pressures. Approximately 50% of total brain-associated activity was extracted from membranes. The pressure-extracted activity had an eightfold enrichment in the lipid/protein ratio when compared with the cytosolic fraction. This may explain the inability of exogenous diacylglycerol to stimulate endogenous phosphorylation in pressure-extracted activity. The enzyme is extracted at greater than 1,300 atm, a result indicating it most likely has a portion inserted into the hydrophobic portion of the membrane bilayer. Perturbation of the native membrane induces a change in the membrane-associated protein kinase C-lipid interaction that permits extraction under conditions used for the cytosolic species. This is the first report of conversion of the endogenous membrane species to a cytosolic one and may be important in determining the role of protein kinase C in neuronal regulation.  相似文献   

7.
Focal adhesion kinase (FAK) is thought to play a major role in transducing extracellular matrix (ECM)-derived survival signals into cells. The function of FAK is linked to its autophosphorylation at Tyr-397 and then recruitment of several effector molecules. Thus, modulation of FAK activity may affect several intracellular signaling pathways and may participate in a variety of pathological settings. In the present study, we investigated the effect of short-term 5 min forebrain ischemia on levels and Tyr-397 phosphorylation of focal adhesion kinase and the interaction of this enzyme with Src protein tyrosine kinase and adapter protein p130Cas, involved in FAK-mediated signaling pathway in gerbil hippocampus. The total amount of focal adhesion kinase as well as its Tyr-397 phosphorylation declined substantially between 24 and 48 h after the insult, particularly in CA1 region of hippocampus. Concomitantly, a decreased amount of FAK/Src kinase complex has been observed. These data indicate that inhibition of FAK/Src-coupled signaling pathway may participate in the ischemia-induced neuronal degeneration in gerbil hippocampus. The temporal profile of FAK down-regulation in CA1 area coincides with metalloproteinases (MMPs) activation. These results suggest that extracellular proteolysis might belong to the mechanisms which govern the FAK-coupled pathway in ischemic hippocampus.  相似文献   

8.
In vitro receptor autoradiography has been used to study the distribution of [125I]endothelin binding sites in human coronary tissue from patients undergoing cardiac transplantation. Dense binding of [125I]endothelin was associated with the smooth muscle of epicardial coronary arteries as well as to perivascular regions of these vessels. Binding was also associated with the ventricular myocardium. There was an increased binding of [125I]endothelin to atheromatous tissue, both coronary arteries and vein graft.

The [125I]endothelin binding sites identified using in vitro autoradiography are likely to be functionally relevant since endothelin causes a concentration-dependent contraction of segments of human epicardial coronary arteries in vitro and also has positive inotropic activity on isolated human cardiomyocytes.

The presence of specific binding sites for [125I]endothelin on coronary tissue and the increased binding in atheromatous tissue suggest that endothelin is a peptide which may play a role in the maintenance of vascular tone and/or the pathogenesis of ischaemic heart disease.  相似文献   


9.
Quantitative autoradiography was used to examine the distribution of [3H]phorbol 12,13-dibutyrate ([3H]PDBu) binding to protein kinase C in the middle frontal and temporal cortices and the hippocampal region of nine control and nine elderly subjects with Alzheimer's disease (AD). AD patients had a clinical diagnosis of the disease that was confirmed neuropathologically by the presence of numerous plaques in the hippocampus and cerebral cortex. Choline acetyltransferase (ChAT) activity was significantly reduced in the middle frontal and temporal cortex and in the hippocampus of AD subjects, with the deficit being greater than 60% of control values. Quantitative autoradiographic analysis of [3H]PDBu binding to protein kinase C revealed a heterogeneous pattern in control brain, being particularly high in superficial layers of the cortex and CA1 of the hippocampus. There were no significant differences between control and AD sections in all areas examined within the middle frontal cortex; e.g., layers I-II control, 491 +/- 46 versus AD, 537 +/- 39 pmol/g of tissue; middle temporal cortex, e.g., layers I-II control, 565 +/- 68 versus AD, 465 +/- 72 pmol/g of tissue; and hippocampal formation, e.g., CA1 control, 511 +/- 28 versus AD, 498 +/- 25 pmol/g of tissue. In a parallel study, [3H]PDBu binding to homogenate preparations of control and AD brain confirmed that there was no significant difference in [3H]PDBu binding in either the particulate or the cytosolic fraction. We have demonstrated in a well-defined population of AD patients that [3H]PDBu binding to protein kinase C remains preserved in brain regions that are severely affected by the neuropathological and neurochemical correlates of AD.  相似文献   

10.
The mechanism of acetaldehyde detoxification in Drosophila melanogaster adults has been studied by comparing physiological in vitro and in vivo data. ADH+ and ADH flies, both lacking aldehyde dehydrogenase activity from ADH (ALDHADH, ALDH (ALDH) or both enzymes were exposed to acetaldehyde or ethanol, and the toxicity and internal accumulation of both compounds were determined. Acetaldehyde was extremely lethal for flies whose ALDH activity had been inhibited by cyanamide, though acetaldehyde was effectively detoxified by flies whose ALDHADH activity had been inhibited by acetone. After exposure to acetaldehyde, both acetaldehyde and ethanol rapidly accumulated in flies lacking ALDH activity, but not in flies lacking ALDHADH activity. However, ethanol but not acetaldehyde quickly accumulated in flies lacking ALDH activity after exposure to ethanol. Our results provide in vivo evidence that, as opposed to larvae, in D. melanogaster adults acetaldehyde is mainly oxidized into acetate by means of ALDH enzymes. However, the reducing activity of the ADH enzyme, which transforms acetaldehyde into ethanol, also plays an essential role in the detoxification of acetaldehyde. Differences in ALDH activity might be important to explain the differences in ethanol tolerance found in natural populations.  相似文献   

11.
Platelet activating factor (PAF) is considered a key mediator in eliciting the immunologic and metabolic consequences of endotoxic shock and sepsis. Release of oxygen-derived radicals is one of the important and relevant actions of PAF. This study examines the direct and priming effects of PAF on superoxide anion release by perfused liver, isolated Kupffer cells and blood neutrophils. One hour after PAF infusion at a dose of 2.2 μ/kg body weight a significant amount of superoxide release (0.71 ± 0.01 nmol/min/g liver) was measured in the perfused liver compared with the control livers (0.2 ± 0.01). In the in vitro presence of either phorbol ester or opsonized zymosan, superoxide release following PAF treatment in vivo was significantly increased to 1.36 ± 0.2 and 4.29 ± 0.36, respectively. The administration of PAF receptor antagonist (SDZ 63-441) almost completely inhibited the release of this radical. Kupffer cells (KC1, KC2, KC3) and blood neutrophils isolated from PAF-treated rats were also primed for increased production when these cells were challenged in vitro by the activator of protein kinase C, opsonin-coated zymosan as well as the chemotactic factors, complement 5a and F-met-leu-phe. PAF added in vitro to the perfused livers, isolated Kupffer cells or neutrophils from normal animals stimulated the release of superoxide with or without the above agonists. The direct stimulatory effect of PAF on superoxide release was inhibited by the PAF receptor antagonist in vitro. The role of PAF in the LPS-induced superoxide release by the perfused liver was also examined by the administration of PAF antagonist in endotoxic rats. The antagonist inhibited the LPS-mediated superoxide release at 1 hr, but not at 3 hr post-treatment. These results indicate that PAF stimulates and primes the hepatic elements to release superoxide. PAF may be an important factor during the early phase of endotoxemia, while other bioactive substances may take over at a later phase. Therefore, PAF is a key mediator that can directly enhance the release of toxic oxygen-derived radicals which may contribute to organ failure during endotoxemia or sepsis.  相似文献   

12.
Monosialoganglioside (GM1) is a neuroprotective agent that has been reported to scavenge free radicals generated during reperfusion and to protect receptors and enzymes from oxidative damage. However, only a few studies have attempted to investigate the effects of GM1 on enzymatic antioxidant defenses of the brain. In the present study, we evaluate the effects of the systemic administration of GM1 on the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), and on spontaneous chemiluminescence and total radical-trapping potential (TRAP) in cerebral cortex of rats ex vivo. The effects of GM1 on CAT activity and spontaneous chemiluminescence in vitro were also determined.

Animals received two injections of GM1 (50 mg/kg, i.p.) or saline (0.85% NaCl, i.p.) spaced 24 h apart. Thirty minutes after the second injection the animals were sacrificed and enzyme activities and spontaneous chemiluminescence and TRAP were measured in cell-free homogenates. GM1 administration reduced spontaneous chemiluminescence and increased catalase activity ex vivo, but had no effect on TRAP, SOD or GSH-Px activities. GM1, at high concentrations, reduced CAT activity in vitro. We suggest that the antioxidant activity of GM1 ganglioside in the cerebral cortex may be due to an increased catalase activity.  相似文献   

13.
The phosphorylation of cytokeratin was investigated in primary cultures of hepatocytes. The two hepatocyte cytokeratins CK8 and CK18 (55,000 and 49,000 Mr, respectively) were phosphorylated, CK8 being more phosphorylated than CK18. Treatment of the hepatocytes with 150 nM 12-O-tetradecanoyl-phorbol-13-acetate (TPA) an activator of protein kinase C induced a transient increase in the level of phosphorylation of CK8 but not CK18. This effect was maximal after 15 min of TPA treatment and was maintained for up to 3 h. After 22 h of treatment with TPA, which down-regulates protein kinase C, CK8 phosphorylation was returned to the basal level. Further addition of TPA to the 22-h treated cells did not cause an increase in CK8 phosphorylation. Indirect immunofluorescence microscopy with a monoclonal antibody to CK8 indicated that while the addition of TPA induced the formation of granular cytokeratin aggregates in some hepatocytes, in most hepatocytes no major changes in the intermediate filament network were observed. Staining for actin showed that actin microfilaments were rapidly reorganized after the treatment and a loss of stress fibres were observed. We propose that CK8 is an in vitro substrate for protein kinase C and that the specific phosphorylation of CK8 plays a role in protein kinase C signal transduction.  相似文献   

14.
We have investigated regional and temporal alterations in Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) and calcineurin (Ca2+/calmodulin-dependent protein phosphatase) after transient forebrain ischemia. Immunoreactivity and enzyme activity of CaM kinase II decreased in regions CA1 and CA3, and in the dentate gyrus, of the hippocampus early (6-12 h) after ischemia, but the decrease in immunoreactivity gradually recovered over time, except in the CA1 region. Furthermore, the increase in Ca2+/calmodulin-independent activity was detected up to 3 days after ischemia in all regions tested, suggesting that the concentration of intracellular Ca2+ increased. In contrast to CaM kinase II, as immunohistochemistry and regional immunoblot analysis revealed, calcineurin was preserved in the CA1 region until 1.5 days and then lost with the increase in morphological degeneration of neurons. Immunoblot analysis confirmed the findings of the immunohistochemistry. These results suggest that there is a difference between CaM kinase II and calcineurin in regional and temporal loss after ischemia and that imbalance of Ca2+/calmodulin-dependent protein phosphorylation-dephosphorylation may occur.  相似文献   

15.
Abstract: Casein kinase II (CKII) is a protein kinase acting in the intracellular cascade of reactions activated by growth factor receptors, and that has a profound influence on cell proliferation and survival. In this investigation, we studied the changes in the activity and levels of CKII in the rat brain exposed to 10. 15 and 20 min of transient forebrain ischemia followed by variable periods of reperfusion. The cytosolic CKII activity decreased during reperfusion by ∼ 30 and ∼ 50% in the selectively vulnerable areas, striatum and the CA1 region of the hippocampus, respectively. In the resistant CA3 region of hippocampus and neocortex, the activity increased by ∼ 20 and ∼ 60%, respectively. The postischemic changes in CKII activity were dependent on the duration of the ischemic insult. The levels of CKII did not change after ischemia, suggesting that the enzyme is modulated by covalent modification or is interacting with an endogenous inhibitor/activator. Treatment of the cytosolic fraction from cortex of rats exposed to ischemia and 1 h of reperfusion with agarose-bound phosphatase decreased the activity of CKII to control levels, suggesting that CKII activation after ischemia involves a phosphorylation of the enzyme. The correlation between postischemic CKII activity and neuronal survival implies that preservation or activation of CKII activity may be important for neuronal survival after cerebral ischemia.  相似文献   

16.
Insulin receptor mutation studies that the receptor tyrosine kinase activity is necessary for receptor endocytosis, and several insulin receptor-containing tissues have a plasma membrane-associated protein (Mr 180,000, p180) whose tyrosine phosphorylation is receptor catalysed. Since clathrin heavy chain (Mr 180,000 in dodecyl sulphate gel electrophoresis) is a major component of coated vesicles, the latter functioning in receptor endocytosis, we investigated whether insulin receptors can catalyse clathrin phosphorylation and whether p180 is clathrin. Bovine brain triskelion or coated vesicles and 32P-ATP were added to prephosphorylated insulin receptor preparations (wheat ferm agglutinin-purified human placenta membrane proteins). Antiphosphotyrosine immunoprecipitated a phosphorylated 180,000 molecular weight protein. Insulin (10−7M) increased the rate of phosphorylation. Monoclonal anti-clathrin antibody immunoprecipitated the phosphorylated 180,000 molecular weight protein, whereas monoclonal anti-insulin receptor antibodies (-IR1, MA10) immunoprecipitated both insulin receptors and the phosphorylated 180,000 molecular weight protein. In the absence of added clathrin, anticlathrin immunoprecipitated no proteins, and -IR1 imunoprecipitated only the insulin receptor. Density gradient (glycerol 7.5–30%, w/v) centrifugation separated human placenta microsomal membrane proteins into endosomal, plasma membrane, cytoplasmic and coated vesicle fractions. Antiphosphotyrosine immunoprecipitated phosphorylated-microsomal proteins that centrifugated into endosomal and plasma membrane fractions. Addition of glycerol gradient fractions to a prephosphorylated insulin receptor preparation, however, gave a tyrosine-phosphorylated 180,000 molecular weight protein when cytoplasmic and coated vesicle fractions were added. Taken together these results suggest: (1) that, in vitro, human placenta insulin receptors can phosphorylate bovine brain and human placenta clathrin heavy chain; (2) that both assembled and unassembled clathrin can be phosphorylated; and (3) that p180, the plasma membrane-associated insulin receptor substrate, is not clathrin heavy chain.  相似文献   

17.
Inhibition of the phosphorylation of the synaptic plasma membrane (SPM) protein B50 by [D-Trp8]-somatostatin in vitro is time-dependent. Increasing the time of incubation of hippocampal synaptic plasma membranes with the peptide from 15 sec to 30 min prior to addition of 7.5 μM [γ-32Ps]ATP results in a complete reduction of B50 phosphorylation. Incubation of synaptic plasma membranes for 30 min in the absence of peptide does not alter basal B50 phosphorylation. Neither ACTH nor β-endorphin produces similar effects—inhibition of B50 phosphorylation by ACTH is maximal at 15 sec and β-endorphin produces only a small inhibition, even after 30 min. [D-Trp8]-somatostatin is not activating a membrane-bound protease, since maximal inhibition of B50 phosphorylation by the peptide is seen in the presence of leupeptin or bacitracin. Hippocampal synaptic plasma membranes contain protein phosphatase activity. Assays of B50 phosphorylation in synaptic plasma membranes done under conditions that favor either net phosphorylation or dephosphorylation are consistent with inhibition of protein phosphatase activity by [D-Trp8]-somatostatin. This evidence suggests that [D-Trp8]-somatostatin interacts with SPM binding sites in the hippocampus, which may alter the activity of an endogenous protein phosphatase to determine the degree of B50 phosphorylation.  相似文献   

18.
Myclin from rat brain contained adenosine 3′, 5′-monophosphate (cyclic AMP)-dependent protein kinase activity, which was solubilized by 0.2% Triton X-100 and required exogenous protein substrate for its activity. Also present was a protein kinase which catalysed the phosphorylation of the endogenous substrate and which was neither solubilized by Triton X-100 nor stimulated by cyclic AMP. Sodium fluoride was required to maintain the activity of the endogenous phosphorylation, probably by inhibiting ATPase activity, but had no effect on the phosphorylation of histone by the solubilized enzyme. Protamine and myelin basic protein served as well as histone as a substrate for the solubilized enzyme. A protein kinase modulator had no effect on the endogenous phosphorylation, but inhibited histone phosphorylation by the solubilized enzyme. Cyclic AMP-binding activity was observed in both the solubilized and non-solubilized preparations. The concentration of cyclic AMP required to give half-maximal binding activity of the preparations was about 2.5 nM. The results indicate that the cyclic AMP-binding site of the protein kinase in myelin may partially be accessible, whereas the catalytic site may be integrated into the membrane structure of myelin.  相似文献   

19.
Evidence accumulated from clinical and basic research has indirectly implicated the insulin receptor (IR) in brain cognitive functions, including learning and memory (Wickelgren, I. (1998) Science 280, 517-519). The present study investigates correlative changes in IR expression, phosphorylation, and associated signaling molecules in the rat hippocampus following water maze training. Although the distribution of IR protein matched that of IR mRNA in most forebrain regions, a dissociation of the IR mRNA and protein expression patterns was found in the cerebellar cortex. After training, IR mRNA in the CA1 and dentate gyrus of the hippocampus was up-regulated, and there was increased accumulation of IR protein in the hippocampal crude synaptic membrane fraction. In the CA1 pyramidal neurons, changes in the distribution pattern of IR in particular cellular compartments, such as the nucleus and dendritic regions, was observed only in trained animals. Although IR showed a low level of in vivo tyrosine phosphorylation, an insulin-stimulated increase of in vitro Tyr phosphorylation of IR was detected in trained animals, suggesting that learning may induce IR functional changes, such as enhanced receptor sensitivity. Furthermore, a training-induced co-immunoprecipitation of IR with Shc-66 was detected, along with changes in in vivo Tyr phosphorylation of Shc and mitogen-activated protein kinase, as well as accumulation of Shc-66, Shc-52, and Grb-2 in hippocampal synaptic membrane fractions following training. These findings suggest that IR may participate in memory processing through activation of its receptor Tyr kinase activity, and they suggest possible engagement of Shc/Grb-2/Ras/mitogen-activated protein kinase cascades.  相似文献   

20.
Nitric oxide synthase purified from rat brain, which is Ca2+ and calmodulin dependent, was phosphorylated by calcium calmodulin-dependent protein kinase II as well as protein kinase C. Phosphorylation by calcium calmodulin-dependent protein kinase II resulted in a marked decrease in enzyme activity (33% of control) without changing the co-factor requirements, whereas a moderate increase in enzyme activity (140% of control) was observed after phosphorylation by protein kinase C. These findings indicate that brain nitric oxide synthase activity may be regulated not only by Ca2+/calmodulin and several co-factors, but also by phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号