首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To better understand aberrant simian virus 40 DNA replication intermediates produced by exposure of infected cells to the anticancer drug camptothecin, we compared them to forms produced by S1 nuclease digestion of normal viral replication intermediates. All of the major forms were identical in both cases. Thus the aberrant viral replicating forms in camptothecin-treated cells result from DNA strand breaks at replication forks. Linear simian virus 40 forms which are produced by camptothecin exposure during viral replication were identified as detached DNA replication bubbles. This indicates that double strand DNA breaks caused by camptothecin-topoisomerase I complexes occur at both leading and lagging strand replication forks in vivo.  相似文献   

2.
The simian virus 40 chromosome, a model for the mammalian replicon, is a uniquely powerful system for the study of drugs and treatments which target enzymes of the mammalian replication apparatus. High resolution gel electrophoretic analysis of normal and aberrant viral replication intermediates can be used effectively to understand the molecular events of replication failure. These events include breakage of replication forks, aberrant topoisomerase action, failure to separate daughter chromosomes, protein-DNA crosslinking, single and double strand DNA breakage, alterations in topology and inactivation of replication intermediates. The SV40 replication system can also be used to study the recombinational events which often follow drug-induced replication failure.  相似文献   

3.
Replicative intermediates isolated from Escherichia coli cells infected with P2 gene B mutants were circular DNA molecules with single-stranded DNA tails, as opposed to the double-stranded DNA tails of wild-type replicative intermediates. The results show that the mutant replicative intermediates arose from aberrant DNA replication, aberrant due to a lack of lagging strand DNA synthesis, but with normal leading strand synthesis, so that only one circular duplex daughter DNA molecule was made from each duplex parent molecule. The single-stranded tails were shown to correspond to the nicked (and therefore displaced) parental DNA "l" strands. By partial denaturation mapping, the ends of the single-stranded tails tended to map close to the replication origin, but not all at a unique position, probably due to partial degradation or breakage in vivo, or during cell lysis or DNA isolation. By hybridization to separated strands of P2 DNA on nitrocellulose filters, DNA synthesis was shown to be asymmetric, and consistent with more leading strand than lagging strand synthesis having occurred. We concluded that the gene B protein is required for lagging strand DNA synthesis, but not for initiation, elongation or termination of the leading strand.  相似文献   

4.
Mutation of DNA damage checkpoint signaling kinases ataxia telangiectasia-mutated (ATM) or ATM- and Rad3-related (ATR) results in genomic instability disorders. However, it is not well understood how the instability observed in these syndromes relates to DNA replication/repair defects and failed checkpoint control of cell cycling. As a simple model to address this question, we have studied SV40 chromatin replication in infected cells in the presence of inhibitors of ATM and ATR activities. Two-dimensional gel electrophoresis and southern blotting of SV40 chromatin replication products reveal that ATM activity prevents accumulation of unidirectional replication products, implying that ATM promotes repair of replication-associated double strand breaks. ATR activity alleviates breakage of a functional fork as it converges with a stalled fork. The results suggest that during SV40 chromatin replication, endogenous replication stress activates ATM and ATR signaling, orchestrating the assembly of genome maintenance machinery on viral replication intermediates.  相似文献   

5.
The structure of replicating simian virus 40 minichromosomes, extracted from camptothecin-treated infected cells, was investigated by biochemical and electron microscopic methods. We found that camptothecin frequently induced breaks at replication forks close to the replicative growth points. Replication branches were disrupted at about equal frequencies at the leading and the lagging strand sides of the fork. Since camptothecin is known to be a specific inhibitor of type I DNA topoisomerase, we suggest that this enzyme is acting very near the replication forks. This conclusion was supported by experiments with aphidicolin, a drug that blocks replicative fork movement, but did not prevent the camptothecin-induced breakage of replication forks. The drug teniposide, an inhibitor of type II DNA topoisomerase, had only minor effects on the structure of these replicative intermediates.  相似文献   

6.
The effect of dihydroxyanthraquinone (DHAQ), a new antitumor drug, on mammalian chromosome replication was investigated using simian virus 40 (SV40) as a model system. The maximum effect of inhibition on viral DNA synthesis was observed within 30-40 min after the addition of the drug. The extent of inhibition of viral DNA synthesis appeared to be directly related to the number of viral replicons which interact with DHAQ molecules in vivo. No apparent strand breakage of SV40 DNA was observed in infected cells treated with DHAQ ranging from 0.3 to 10 microM. However, strand breakage was induced upon cell lysis presumably by released nuclease. Repair of the damaged SV40 chromosomes in vitro resulted in the synthesis of completed supercoiled SV40 DNA. This repair synthesis was mostly confined to the region containing the replication origin of SV40 DNA as judged by the digestion of DNA with restriction endonucleases HindII and HindIII. Since SV40 DNA sequences close to the origin of replication are not complexed with histones to form a nucleosome structure, the results suggested that DHAQ may disturb chromosome structure by interacting preferentially to the nucleosome-free regions and causing the aberrant gene duplication and expression.  相似文献   

7.
Monofunctional alkylating agent-induced S-phase-dependent DNA damage   总被引:8,自引:0,他引:8  
Alkylating agents are S-phase-dependent clastogenic agents: Chromosome aberrations are not observed unless the treated cells have first undergone a replicative DNA synthesis. While DNA gaps resulting from misreplication of the alkylated template are believed to underlie aberration formation, the specific alkylated DNA lesions that produce these DNA gaps are not known. To quantitate the DNA strand break induction that results from replication of an alkylated DNA template and attempt to identify those alkylated lesions which underlie DNA strand breakage. [14C]thymidine-labeled Chinese hamster ovary (CHO) cells were treated with either N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or methyl methanesulfonate (MMS) in G1 and then allowed to progress through S phase in the presence of [3H]thymidine. When analyzed at the subsequent mitosis, DNA strand breaks were found in the nonalkylated ([3H]thymidine-labeled) DNA strand. This did not appear to be the consequence of any recombinational or endonuclease-mediated event and was more likely due to DNA gaps produced by incomplete replication off the alkylated template. A portion of these breaks probably result from a failure to replicate past 3-methyladenine. Differences between MNNG and MMS in the frequency of S-phase-dependent breaks they produce relative to the overall alkylation damage suggest that the O6-methylguanine lesion might also be involved in S-phase-dependent DNA strand breakage.  相似文献   

8.
The present review summarizes data on the accumulation of DNA strand breaks in differentiating cells. Large 50 Kbp free DNA fragments were observed by several research teams in non-apoptotic insect, mammal and plant cells. A more intensive DNA breakage was observed during maturation of spermatides, embryo development, and differentiation of myotubes, epidermal cells, lymphocytes and neutrophils. In general, accumulation of DNA strand breaks in differentiating cells cannot be attributed to decrease of the DNA repair efficiency. Poly(ADP)ribose synthesis often follows the DNA breakage in differentiating cells. We hypothesize that DNA fragmentation is an epigenetic tool for regulation of the differentiation process. Scarce data on localization of the differentiation-associated DNA strand breaks indicate their preferred accumulation in specific DNA sequences including the nuclear matrix attachment sites and repeats. Recent data on non-apoptotic functions of caspases provide more evidence for possible existence of a DNA breakage mechanism in differentiating cells resembling the initial stage of apoptosis. Excision of methylated cytosine and recombination are other possible explanations of the phenomenon. Elucidation of mechanisms of differentiation-induced DNA strand breaks appears to possess considerable research potential.  相似文献   

9.
The effect of DNA interstrand cross-links (cross-links) on DNA replication was examined with a cell-free SV40 origin-dependent DNA replication system. A defined template DNA with a single psoralen cross-link and the SV40 origin of replication was replicated by HeLa cell-free extract in the presence of SV40 large T antigen. The psoralen cross-link inhibited DNA replication by terminating chain elongation at 1-50 nucleotides before the cross-linked sites. The termination of DNA replication by the cross-links mediated the generation of double strand breaks near the cross-linked sites. These results are the first biochemical evidence of the generation of double strand breaks by DNA replication.  相似文献   

10.
11.
G Prelich  B Stillman 《Cell》1988,53(1):117-126
Proliferating cell nuclear antigen (PCNA) is a cell cycle and growth regulated protein required for replication of SV40 DNA in vitro. Its function was investigated by comparison of the replication products synthesized in its presence or absence. In the completely reconstituted replication system that contains PCNA, DNA synthesis initiates at the origin and proceeds bidirectionally on both leading and lagging strands around the template DNA to yield duplex, circular daughter molecules. In contrast, in the absence of PCNA, early replicative intermediates containing short nascent strands accumulate. Replication forks continue bidirectionally from the origin, but surprisingly, only lagging strand products are synthesized. Thus two stages of DNA synthesis have been defined, with the second stage requiring PCNA for coordinated leading and lagging strand synthesis at the replication fork. We suggest that during eukaryotic chromosome replication there is a switch to a PCNA-dependent elongation stage that requires two distinct DNA polymerases.  相似文献   

12.
The antitumor antibiotic neocarzinostatin that causes DNA strand breaks in vivo and in vitro is shown to induce DNA repair synthesis in HeLa S3 cells. In the repair assay, the parental DNA was prelabeled with 32P and a density label (bromodeoxyuridine) was introduced into the new synthesized DNA. Quantitation of the repair synthesis as measured by the incorporation of [3H]thymidine into the light parental DNA at varying doses of the drug indicate that there is a significant repair response at low levels of the drug (0.2--0.5 microgram/ml) which cause DNA strand breakage and inhibition of DNA synthesis. In isolated HeLa nuclei neocarzinostatin stimulates the incorporation of dTMP many-fold. This enhancement of dTMP incorporation, which requires the presence of a sulfhydryl agent, is a consequence of the drug-induced DNA strand breakage and is in the parental DNA. These results suggest that an intact cell membrane is not required for DNA strand breakage and its subsequent repair.  相似文献   

13.
The carcinogenic activity of crystalline NiS has been attributed to phagocytosis and intracellular dissolution of the particles to yield Ni2+ which is thought to enter the nucleus and damage DNA. In this study the extent and type of DNA damage in Chinese hamster ovary CHO cells treated with various nickel compounds was assessed by alkaline elution. Both insoluble (crystalline NiS) and soluble (NiCl2) nickel compounds induced single strand breaks and DNA protein cross-links. The single strand breaks were repaired relatively quickly but the DNA-protein cross-links were present and still accumulating 24 h after exposure to nickel. Single strand breakage occurred at both non-cytotoxic and cytotoxic concentrations of nickel, however, DNA-protein cross-linking was absent when cells were exposed to toxic nickel levels. The concentration of nickel that induced DNA-protein cross-linking correlated with those metal concentrations that reversibly inhibited cellular replication.  相似文献   

14.
Cell extracts (S100) derived from human 293 cells were separated into five fractions by phosphocellulose chromatography and monitored for their ability to support simian virus 40 (SV40) DNA replication in vitro in the presence of purified SV40 T antigen. Three fractions, designated I, IIA, and IIC, were essential. Fraction IIC contained the known replication factors topoisomerases I and II, but in addition contained a novel replication factor called RF-C. The RF-C activity, assayed in the presence of I, IIA, and excess amounts of purified topoisomerases, was detected in both cytosol and nuclear fractions, but was more abundant in the latter fraction. RF-C was purified from the 293 cell nuclear fraction to near homogeneity by conventional column chromatography. The reconstituted reaction mix containing purified RF-C could replicate SV40 origin-containing plasmid DNA more efficiently than could the S100 extract, and the products were predominantly completely replicated, monomer molecules. Interestingly, in the absence of RF-C, early replicative intermediates accumulated and subsequent elongation was aberrant. Hybridization studies with strand-specific, single-stranded M13-SV40 DNAs showed that in the absence of RF-C, abnormal DNA synthesis occurred preferentially on the lagging strand, and leading-strand replication was inefficient. These products closely resembled those previously observed for SV40 DNA replication in vitro in the absence of proliferating-cell nuclear antigen. These results suggest that an elongation complex containing RF-C and proliferating-cell nuclear antigen is assembled after formation of the first nascent strands at the replication origin. Subsequent synthesis of leading and lagging strands at a eucaryotic DNA replication fork can be distinguished by different requirements for multiple replication components, but we suggest that even though the two polymerases function asymmetrically, they normally progress coordinately.  相似文献   

15.
Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PKcs kinase activity, facilitates some aspects of double strand break (DSB) repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR) and do not colocalize with non-homologous end joining (NHEJ) factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PKcs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5′ to 3′ end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication.  相似文献   

16.
Replicating molecules of Simian virus 40 DNA labeled during a short pulse with [3H]thymidine have been fractionated by ultracentrifugation methods and the open circular form (DNA component II) has been characterized. The pulse-labeled DNA component II is a relatively small constituent (1 to 3%) of the pool of replicating molecules. Examination of the circular (18 S) and linear (16 S) strands of DNA component II by alkaline sedimentation and by degradation using exonuclease III of Escherichia coli reveals that the newly synthesized DNA is principally in the linear strand. Cleavage of pulse-labeled DNA component II by an fi+, R-factor restriction endonuclease from E. coli demonstrates that the interruption in the pulse-labeled strand is specifically located at the termination point for replication.During a chase period of 20 minutes the amount of DNA component II increases to about 6 to 8% of the total labeled viral DNA. The kinetics of formation of superhelical, DNA component I and disappearance of replicative intermediates are linear during the chase period. After several hours of continuous labeling of replicating viral DNA, the DNA component II pool consists mainly of molecules labeled in both strands with the interruption non-specifically located in either strand. These molecules probably arise by the random introduction of single-strand breaks in newly synthesized DNA component I. During short periods of continuous labeling with [3H]thymidine, the ratio of DNA components I to II increases as a function of the pulse duration. These results support a model for 8V 40 DNA replication in which the open circular form is a precursor of the superhelical form.  相似文献   

17.
Episomal plasmids and viruses in mammalian cells present small targets for X-ray-induced DNA damage. At doses up to 100 Gy, DNA strand breaks or endonuclease III-sensitive sites were not discernible in 10.3-kb Epstein-Barr virus-based plasmid DNA or in 4.9-kb defective simian virus 40 DNA. DNA replication in these small molecules, however, was inhibited strongly by X-ray doses of greater than or equal to 20 Gy, decreasing to only 20 to 40% of control values. Inhibition was relieved slightly by growth in caffeine but was increased by growth in 3-aminobenzamide. Inhibition of DNA replication in episomal DNA molecules that are too small to sustain significant damage directly to their DNA may be due to either (a) a trans-acting diffusible factor that transfers the consequences of DNA breakage to episomes and to other replicating molecules, (b) a cis-acting mechanism in which episomes are structurally linked to genomic chromatin, and replication of both episomal and chromosomal replicons is under common control, or (c) radiation damage on other cellular structures unrelated to DNA. The resolution of these cellular mechanisms may shed light on the X-ray-resistant replication in ataxia-telangiectasia and may suggest strategies for molecular characterization of potential trans- or cis-acting factors.  相似文献   

18.
Replicative intermediates in UV-irradiated simian virus 40   总被引:5,自引:0,他引:5  
We have used Simian virus 40 (SV40) as a probe to study the replication of UV-damaged DNA in mammalian cells. Viral DNA replication in infected monkey kidney cells was synchronized by incubating a mutant of SV40 (tsA58) temperature-sensitive for the initiation of DNA synthesis at the restrictive temperature and then adding aphidicolin to temporarily inhibit DNA synthesis at the permissive temperature while permitting pre-replicative events to occur. After removal of the drug, the infected cells were irradiated at 100 J/m2 (254 nm) to produce 6-7 pyrimidine dimers per SV40 genome, and returned to the restrictive temperature to prevent reinitiation of replication from the SV40 origin. Replicative intermediates (RI) were labeled with [3H]thymidine, and isolated by centrifugation in CsCl/ethidium bromide gradients followed by BND-cellulose chromatography. The size distribution of daughter DNA strands in RI isolated shortly after irradiation was skewed towards lengths less than the interdimer spacing in parental DNA; this bias persisted for at least 1 h after irradiation, but disappeared within 3 h, by which time the size of the newly-synthesized DNA exceeded the interdimer distance. No significant excision of dimers from parental strands in either replicative intermediates or Form I (closed circular) DNA molecules was detected. These data are consistent with the hypothesis that replication forks are temporarily blocked by dimers encountered on the leading strand side of the fork, but that daughter strand continuity opposite dimers is eventually established. Evidence was obtained for the generation at late times after irradiation, of Form I molecules in which the daughter DNA strands contain dimers. Thus DNA strand exchange as well as trans-dimer synthesis may be involved in the generation of supercoiled Form I DNA from UV-damaged SV40 replicative intermediates.  相似文献   

19.
In the course of mammalian spermiogenesis, a unique chromatin remodeling process takes place within elongating and condensing spermatid nuclei. The histone-to-protamine exchange results in efficient packaging and increased stability of the paternal genome. Although not fully understood, this change in chromatin architecture must require a global but transient appearance of endogenous DNA strand breaks because most of the DNA supercoiling is eliminated in the mature sperm. To establish the extent of DNA strand breakage and the stage specificity at which these breaks are created and repaired, we performed a sensitive terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) assay to detect in situ DNA strand breaks on both mice and human testis cross sections. In the mouse, we established that DNA strand breaks are indeed detected in the whole population of elongating spermatids between stages IX and XI of the seminiferous epithelium cycle perfectly coincident with the chromatin remodeling as revealed by histone H4 hyperacetylation. Similarly, TUNEL analyses performed on human testis sections revealed an elevated and global increase in the levels of DNA strand breaks present in nuclei of round-shaped spermatids also coincident with chromatin remodeling. The demonstration of the global character of the transient DNA strand breaks in mammalian spermiogenesis suggests that deleterious consequences on genetic integrity of the male gamete may arise from any disturbance in the process. In addition, this investigation may shed some light on the origin of the low success rate that has been encountered so far with intracytoplasmic injection procedures making use of round spermatids in humans.  相似文献   

20.
PR-Set7/SET8 is a histone H4–lysine 20 methyltransferase required for normal cell proliferation. However, the exact functions of this enzyme remain to be determined. In this study, we show that human PR-Set7 functions during S phase to regulate cellular proliferation. PR-Set7 associates with replication foci and maintains the bulk of H4-K20 mono- and trimethylation. Consistent with a function in chromosome dynamics during S phase, inhibition of PR-Set7 methyltransferase activity by small hairpin RNA causes a replicative stress characterized by alterations in replication fork velocity and origin firing. This stress is accompanied by massive induction of DNA strand breaks followed by a robust DNA damage response. The DNA damage response includes the activation of ataxia telangiectasia mutated and ataxia telangiectasia related kinase–mediated pathways, which, in turn, leads to p53-mediated growth arrest to avoid aberrant chromosome behavior after improper DNA replication. Collectively, these data indicate that PR-Set7–dependent lysine methylation during S phase is an essential posttranslational mechanism that ensures genome replication and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号