首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
The messages for LF-B1, which interacts with the cis-acting element of PKL-I to play an essential role in expression of L-type pyruvate kinase (PK) in the liver, and L-type PK were found to be present in RIN-m5F insulinoma cells as well as the liver, kidney and small intestine, although the levels of the two mRNAs in these tissues were not correlated. Gel retardation assay suggested that similar nuclear proteins bound to two other cis-acting elements, PKL-II and PKL-III, were expressed in both liver and insulinoma cells, and that additional PKL-III-binding proteins were present only in RIN-m5F cells. Thus, we suggest that the mechanism of L-type PK expression in pancreatic B cells is similar to that in the liver.  相似文献   

10.
11.
Prolyl aminopeptidase (EC 3.4.11.5) has been assumed to be a unique enzyme catalyzing specifically the removal of unsubstituted NH2-terminal L-prolyl residues from various peptides and to be distinct from leucyl aminopeptidase (EC 3.4.11.1). In the present study, prolyl aminopeptidases were purified to apparent homogeneity from pig small intestine mucosa and human liver and their NH2-terminal amino acid sequences were determined together with that of pig kidney leucyl aminopeptidase. The NH2-terminal 24-residue sequence of pig intestinal prolyl aminopeptidase was shown to be identical with that of pig kidney leucyl aminopeptidase. The NH2-terminal sequence of human liver prolyl aminopeptidase was also shown to be very similar to that of pig kidney leucyl aminopeptidase. Further, pig intestinal prolyl aminopeptidase and pig kidney leucyl aminopeptidase were immunologically indistinguishable. These lines of evidence strongly suggest that prolyl aminopeptidase is identical with leucyl aminopeptidase.  相似文献   

12.
13.
14.
15.
16.
17.
The regional, cellular and subcellular distribution patterns of aminopeptidase N and dipeptidyl aminopeptidase IV were examined in rat small intestine. Aminopeptidase N of brush border membrane had maximal activity in the upper and middle intestine, while dipeptidyl aminopeptidase IV had a more uniform distribution profile with relatively high activity in the ileum. Along the villus and crypt cell gradient, the activity of both enzymes was maximally expressed in the mid-villus cells. However there was substantial dipeptidyl aminopeptidase IV activity in the crypt cells. Both enzymes were primarily associated with brush border membranes in all segments, however, in the proximal intestine, a significant amount of dipeptidyl aminopeptidase IV activity was associated with the cytosol fraction. The cytosol and brush border membrane forms of dipeptidyl aminopeptidase IV were immunologically identical and had the same electrophoretic mobility on disc gels. In contrast, the soluble and brush border membrane-bound forms of aminopeptidase N were immunologically distinct. When the total amount of aminopeptidase N and dipeptidyl aminopeptidase IV was determined by competitive radioimmunoassay, there were no regional or cellular differences in specific activity (enzyme activity/mg of enzyme protein) of either enzyme in brush border membrane and homogenate. The specific activity of both enzymes in a purified Golgi membrane fraction as measured by radioimmunoassay was about half that of the brush border membrane fraction. These results suggest that (1) aminopeptidase N and dipeptidyl aminopeptidase IV have different regional, cellular and subcellular distribution patterns; (2) there are enzymatically inactive forms of both enzymes present in a constant proportion to active molecules and that (3) a two-fold activation of precursor enzyme forms occurs during transfer from the Golgi membranes to the brush border membranes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号