首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binding of CO to single cuprous (half-apo) or cupric (met-apo) copper of hemocyanin is investigated by a new method which allows estimation of the total amount of CO bound to hemocyanin. Pure half-apo preparations could not be obtained with the molluscan hemocyanins from Helix pomatia and Octopus vulgaris, and a residual fraction of sites with coupled copper is always present. However, the determination of CO bound to the protein before and after addition of H2O2, used to oxidize selectively single copper sites, reveals that CO binds to half-apo Cu(I), and is released upon oxidation of copper to met-apo Cu(II). Binding of CO to half-apo is not associated to luminescence, proving that luminescence of native carboxyhemocyanin demands the presence of a second cuprous copper in the site. In addition, analysis of data indicates that the residual amount of coupled copper sites in partially copper-depleted hemocyanin is underestimated by the residual O2-copper band measured at 340 nm in air, while faithfully quantitated by the residual luminescence in the presence of CO. A distribution of the copper left in the site of three partially copper-depleted hemocyanins is depicted.  相似文献   

2.
1. The pH dependence of Octopus dofleini hemocyanin oxygenation is so great that below pH 7.0 the molecule does not become fully oxygenated, even in pure O2 at 1 atm pressure. However, the curves describing percent oxygenation as a function of PO2 appear to be gradually increasing in oxygen saturation, rather than leveling out at less than full saturation. Hill plots indicate that at pH 6.6 and below the molecule is stabilized in its low affinity conformation. Thus, the low saturation of this hemocyanin in air is due to the very large Bohr shift, and not to the disabling of one or more functionally distinct O2 binding sites on the native molecule. 2. Experiments in which pH was monitored continuously while oxygenation was manipulated in the presence of CO2 provide no evidence of O2 linked binding of CO2. While CO2 does influence O2 affinity independently of pH, its effect may be due to high levels of HCO3- and CO3-, rather than molecular CO2, and it may entail a lowering of the activities of the allosteric effectors Mg2+ and Ca2+.  相似文献   

3.
Employment of high-precision thin-layer methods has enabled detailed functional characterization of oxygen and carbon monoxide binding for (1) the fully assembled form with 70 binding sites and (2) the isolated chains with 7 binding sites of Octopus dofleini hemocyanin. The striking difference in the cooperativities of the two ligands for the assembled decamer is revealed through an examination of the binding capacities and the partition coefficient, determined as functions of the activities of both ligands. A global analysis of the data sets supported a two-state allosteric model assuming an allosteric unit of 7. Higher level allosteric interactions were not indicated. This contrasts to results obtained for arthropod hemocyanins. Oxygen and carbon monoxide experiments performed on the isolated subunit chain confirmed the presence of functional heterogeneity reported previously [Miller, K. (1985) Biochemistry 24, 4582-4586]. The analysis shows two types of binding sites in the ratio of 4:3.  相似文献   

4.
A seminal difference exists between the two types of chains that constitute the tetrameric hemoglobin in vertebrates. While alpha chains associate weakly into dimers, beta chains self-associate into tightly assembled tetramers. While heterotetramers bind ligands cooperatively with moderate affinity, homotetramers bind ligands with high affinity and without cooperativity. These characteristics lead to the conclusion that the beta 4 tetramer is frozen in a quaternary R-state resembling that of liganded HbA. X-ray diffraction studies of the liganded beta 4 tetramers and molecular modeling calculations revealed several differences relative to the native heterotetramer at the "allosteric" interface (alpha 1 beta 2 in HbA) and possibly at the origin of a large instability of the hypothetical deoxy T-state of the beta 4 tetramer. We have studied natural and artificial Hb mutants at different sites in the beta chains responsible for the T-state conformation in deoxy HbA with the view of restoring a low ligand affinity with heme-heme interaction in homotetramers. Functional studies have been performed for oxygen equilibrium binding and kinetics after flash photolysis of CO for both hetero- and homotetramers. Our conclusion is that the "allosteric" interface is so precisely tailored for maintaining the assembly between alpha beta dimers that any change in the side chains of beta 40 (C6), beta 99 (G1), and beta 101 (G3) involved in the interface results in increased R-state behavior. In the homotetramer, the mutations at these sites lead to the destabilization of the beta 4 hemoglobin and the formation of lower affinity noncooperative monomers.  相似文献   

5.
The binding of carbon dioxide to human hemoglobin cross-linked between Lys alpha 99 residues with bis(3,5-di-bromosalicyl) fumarate was measured using manometric techniques. The binding of CO2 to unmodified hemoglobin can be described by two classes of sites with high and low affinities corresponding to the amino-terminal valines of the beta and alpha chains, respectively (Perrella, M., Kilmartin, J. V., Fogg, J., and Rossi-Bernardi, L. (1975b) Nature 256, 759-761. The cross-linked hemoglobin bound less CO2 than native hemoglobin at all CO2 concentrations in deoxygenated and liganded conformations, and the ligand-linked effect was reduced. Fitting the data to models of CO2 binding suggests that only half of the expected saturation with CO2 is possible. The remaining binding is described by a single affinity constant that for cross-linked deoxyhemoglobin is about two-thirds of the high affinity constant for deoxyhemoglobin A and that for cross-linked cyanomethemoglobin is equal to the high affinity constant for unmodified cyanomethemoglobin A or carbonmonoxyhemoglobin A. The low affinity binding constant for cross-linked hemoglobin in both the deoxygenated and liganded conformations is close to zero, which is significantly less than the affinity constants for either subunit binding site in unmodified hemoglobin. Comparing the low affinity sites in this modified hemoglobin to native hemoglobin suggests that cross-linking hemoglobin between Lys alpha 99 residues prevents CO2 binding at the alpha-subunit NH2 termini.  相似文献   

6.
Addition of KCN to Helix pomatia β-hemocyanin fully saturated with either O2 or CO results in a decrease of the spectroscopic properties of the protein (absorbance at 340 nm and luminescence at 550 nm) due to the displacement of the gaseous ligands (O2 or CO) from the active site. The anionic form of cyanide (CN?) is supposed to bind to the active site; its intrinsic affinity for the protein, as calculated from independent O2 and CO displacement experiments, is between 2 and 6 × 106M?1. The replacement of O2 or CO shows some differences which may be correlated with the different modes of binding at the active site. Thus, while displacement of oxygen by cyanide is hyperbolic, addition of cyanide to carbonylated hemocyanin shows a lag phase. This finding suggests the formation of a mixed liganded complex at the active site. The simultaneous presence of CO and CN? at the active site of hemocyanin is also supported by the experiment in which addition of small amounts of KCN to hemocyanin partially saturated with O2 and CO gives rise to an increase of emission intensity and a concomitant decrease of the O2 absorption band. The mixed-liganded species displays luminescence properties similar to those of CO-saturated hemocyanin, and the formation of the complex is reversible on dialysis or oxygenation.  相似文献   

7.
A high precision, two-dimensional study of oxygen and carbon monoxide binding to Panulirus interruptus hemocyanin has been carried out. Global data analysis of three types of experiments, probing the molecule in its various states of CO and O2 ligation, revealed the entire hexamer to be the basic allosteric unit involved in a two-state mechanism. The co-operativity and linkage of the two ligands are presented in terms of derivative Hill plot surfaces extended along co-ordinates of CO and O2 activities giving a detailed and comprehensive view of the binding behavior. Among the findings is an apparent high co-operativity of carbon monoxide binding at high oxygen activity. The results are discussed in view of a general mechanism for co-operative behavior found in larger hemocyanin aggregates concerning "nested" allosteric interactions.  相似文献   

8.
The amount of CO bound to hemocyanin has been determined by titration with human hemoglobin (Hb). The spectrophotometric method makes use of the high affinity of Hb for CO, which (at pH 9) allows a complete transfer of the ligand from hemocyanin to hemoglobin. Taking advantage of the large spectral changes at the level of the heme, this method allows the rapid determination of the CO bound to hemocyanin, using relatively small amounts of protein (less than 5 mg). Application of this method shows (i) that CO binds to hemocyanins with a stoichiometry of 1:1, in agreement with one earlier observation with 14C-labeled carbon monoxide (1), and (ii) that decrease of the CO-copper luminescence of hemocyanin observed upon addition of KCN is quantitatively related to the displacement of CO from the active site.  相似文献   

9.
Ascorbate-reduced dopamine beta-hydroxylase (DBH) is inhibited by CO in a competitive manner with respect to molecular O2. Measurement of the stoichiometry of CO binding indicates 0.50 CO bound per Cu(I), which provides the first evidence that the Cu(I) centers in the reduced enzyme are structurally inequivalent. FTIR spectroscopy has been used to detect an infrared absorption band characteristic of coordinated CO, with v(CO) = 2089 cm-1. Comparison of this frequency with those of other Cu(I)-carbonyls in both inorganic and protein systems suggests a coordination site with fewer or less basic ligands than the 3-histidine site of carbon-monoxy hemocyanin.  相似文献   

10.
Binding of ibuprofen (IB) enantiomers to human serum albumin (HSA) was studied using a chiral fluorescent derivatizing reagent, which enabled the measurement of IB enantiomers at a concentration as low as 5 × 10−8 M. Scatchard analyses revealed that there were two classes of binding sites for both enantiomers. For the high affinity site, the number of the binding sites was one for both enantiomers, and the binding constant of R-IB was 2.3-fold greater than that of S-IB. The difference in the affinity at the high affinity site may result in the stereoselective binding of IB enantiomers at therapeutic concentrations. It was confirmed that the high affinity site of IB enantiomers is Site II (diazepam binding site) by using site marker ligands. Also, significant enantiomer-enantiomer interactions were observed in the binding. The binding data were quantitatively analyzed and a binding model with an assumption of competitive interactions only at the high affinity site simulated the binding characteristics of IB enantiomers fairly well. Chirality 9:643–649, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
The structural change of lobster hemocyanin in cooperative O2 binding was studied by the dye-binding method. It was found that neutral red shows an O2-linked binding to hemocyanin with a higher affinity for the oxy form. The number of the dye-binding sites was estimated to be three in the hexameric molecule of oxyhemocyanin. The course of the structural change in the partially oxygenated hemocyanin was examined using the absorbance change of the bound dye as a measure. It was found that the fractional change in the dye binding was considerably greater than the degree of O2 saturation of hemocyanin. The three-state allosteric model, which was proposed for explanation of the O2 binding properties of lobster hemocyanin [N. Makino (1986) Eur. J. Biochem. 154, 49--55], was also consistent with the effects of the dye on the O2 binding to the native hemocyanin. On the basis of this model, the dye binding to partially oxygenated hemocyanin could be connected with the populations of the affinity states. It was inferred that the binding of neutral red reflects the quaternary structure of the protein. In contrast, O2 binding to the stripped (EDTA-treated) hemocyanin showed a considerable decrease in the cooperativity in the presence of the dye. The O2-binding isotherms could not be explained by the three-state model. It is suggested that the subunit interaction is partially blocked by the dye in the absence of divalent cations.  相似文献   

12.
Binding of carbenicillin (CBPC) epimers to human serum albumin (HSA) was found to be stereoselective. Epimer-epimer interaction was also observed in the binding to HSA. There were at least three binding sites on HSA for CBPC epimers, one of which (stereoselective site) was more in favor of S-CBPC than R-CBPC. At the stereoselective site, the binding constant of S-CBPC was approximately 4-fold greater than that of R-CBPC. The affinities to other binding sites (non-stereoselective sites) were similar between the epimers, and the affinity of S-CBPC of the non-stereoselective sites was much smaller than that for the stereoselective site. R-CBPC and S-CBPC appeared to displace each other at all the binding sites, i.e., the binding of the epimers was competitive at the non-stereoselective sites as well as at the stereoselective site. By using site marker ligands, it was revealed that CBPC epimers may bind to Site I (warfarin binding site), but not to Site II (diazepam binding site). A binding model with an assumption of competitive interactions at all the binding sites simulated the binding characteristics of CBPC epimers fairly well. © 1996 Wiley-Liss, Inc.  相似文献   

13.
The affinity for muscarinic ligands of a preparation of muscarinic acetylcholine receptors purified from porcine brain was examined by means of competitive binding of [3H]quinuclidinylbenzylate and unlabeled ligands, followed by computer-assisted nonlinear regression analysis. The displacements by antagonists fitted a single-site model. In contrast, the displacements by agonists did not fit the single-site model and could be explained by assuming two populations of binding sites. The proportion of the sites with high affinity for muscarinic agonists (H-sites) ranged from 25 to 35% of the total number of sites. GTP had no effect on the displacements by agonists, a finding indicating that H-sites did not result from interaction between receptors and GTP-binding proteins. In the presence of dithiothreitol, the affinity for muscarinic ligands decreased. The largest effects were observed on the affinity for pirenzepine and that of H-sites for carbachol. Preincubation of the preparation with 5,5'-dithiobis(2-nitrobenzoic acid) resulted in an increase in the proportion of H-sites to 75% of the total number of binding sites. The results of sucrose density gradient centrifugation of the preparation indicated apparent heterogeneity as to molecular size of the receptors, but this heterogeneity did not correlate with that of the affinity for agonists. In addition, the receptors were detected as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the preparation, regardless of the presence or absence of disulfide-reducing reagents. These results suggest that the redox state of thiol groups in the receptor molecules is relevant to their affinities for ligands.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
This paper reports on a study of the effect of partial oxidation on oxygen and carbon monoxide binding by components I and IV of trout hemoglobin. The O2 binding equilibria of the various oxidation mixtures show a decrease in the heme-heme interactions as the number of oxidized sites is increased. However, the large Bohr effect, characteristic of Hb Trout IV, is maintained unchanged. Similarly the time course of CO combination changes on increasing the fractional oxidation, and the autocatalytic character of the CO binding kinetics is lost; however the pH dependence of the apparent "on" constant in the oxidation mixtures is similar to that characteristic of the native molecule. The results of the O2 equilibria and of CO binding kinetics may be interpreted in accordance with the two state concerted model suggesting that in the oxidation intermediates there is an increase in the fraction of the high affinity (R) conformation. Additional experiments on the effect of azide, and fluoride, ferric ligands which produce a change of spin state of the heme iron, suggest that additional second order conformational changes may also come into play.  相似文献   

15.
An exploratory investigation is made of the binding behavior that is likely to be encountered with multivalent ligands under circumstances where a single intrinsic binding constant does not suffice to describe all acceptor-ligand interactions. Numerical simulations of theoretical binding behavior have established that current criteria for recognizing heterogeneity and cooperativity of acceptor sites on the basis of the deviation of the binding curve from rectangular hyperbolic form for univalent ligands also apply to the interpretation of the corresponding binding curves for multivalent ligands. However, for systems in which the source of the departure from equivalence and independence of binding sites resides in the ligand, these criteria are reversed. On the basis of these observations a case is then made for attributing results of an experimental binding study of the interaction between pyruvate kinase and muscle myofibrils to positive cooperativity of enzyme sites rather than to heterogeneity or negative cooperativity of the myofibrillar sites.  相似文献   

16.
Human neuroblastoma SH-SY5Y cells exhibited a heterogeneous population of mu and delta types of opioid binding sites. These specific binding sites displayed the characteristic saturability, stereospecificity and reversibility, expected of a receptor. Scatchard analysis of [3H]-D-Ala2-D-Leu5-enkephalin (DADLE) in the presence of 10(-5) M D-Pro4-morphiceptin (to block the mu receptors) and the competitive displacement by various highly selective ligands yielded the binding parameters of delta sites which closely resemble those of the delta receptors in brain and mouse neuroblastoma clones. Similarly, the high affinity binding of [3H]-dihydromorphine, together with the higher potency of morphine analogues to displace [3H]-naloxone binding established the presence of mu sites. Guanine nucleotides and NaCl significantly inhibited the association and increased the dissociation of [3H]-DADLE binding. The observed heterogeneity of opioid receptors in cultured SH-SY5Y cells would serve as an excellent model for the biochemical and pharmacological characterization of brain opiate receptors.  相似文献   

17.
The carbon monoxide complex of ascorbate-reduced dopamine beta-hydroxylase has been prepared and characterized by Fourier transform infrared, fluorescence, and x-ray absorption spectroscopies. CO has previously been shown to be a competitive inhibitor with respect to O2, and binds to only one of the two copper atoms/active site (Blackburn, N. J., Pettingill, T. M., Seagraves, K. S., and Shigeta, R. T. (1990) J. Biol. Chem. 265, 15383-15386). Thus, it acts as an excellent probe of the O2-binding site. A single C-O infrared absorption band is observed at 2089 cm-1, shifting by 46 cm-1 to lower energy on substitution with either 13C16O or 12C18O. The 13C isotope shift is reversed to the position expected for 12CO upon vacuum flushing with 12CO gas, indicating that formation of the CO adduct is a fully reversible process. Binding of the substrate tyramine does not eliminate the infrared peak but causes a 3-cm-1 shift to lower energy. On the other hand, binding of a bifunctional inhibitor which cross-links the substrate and O2-binding site does eliminate the CO peak. These data, in conjunction with the competitive nature of CO binding with respect to O2, identify the CO-binding site as the O2-binding site, and place it in close proximity to the substrate-binding site. CO-dopamine beta-hydroxylase exhibits no luminescence in the visible region, suggesting a structure different from carbonmonoxy hemocyanin, and in all probability mononuclear. Analysis of extended x-ray absorption spectroscopy data is most consistent with an average coordination per Cu of 2-3 histidines, 0.5 CO, and 0.5 S atoms as ligands, and absorption edge comparisons indicates pseudo-4 coordination as the most likely geometry at each Cu(I) center. The results can be interpreted by a model involving inequivalent 4-coordination at each Cu(I) center in the CO adduct with CuAHis3S...CuBHis2CO-X as the coordination most consistent with all of the data.  相似文献   

18.
Using modulated excitation, we have measured the forward and reverse rates of the allosteric transition between relaxed (R) and tense (T) quaternary structures for triply ligated hemoglobin (Hb), cross-linked between the alpha chains at Lys 99. Oxygen, carbon monoxide, and water were used as ligands and were studied in phosphate and low Cl- bis-Tris buffers at neutral pH. Since the cross-link prohibits disproportionation, triply ligated aquomet Hb species with ferrous beta chains were specifically isolated by isoelectric focusing. Modulated excitation provides rate pairs and therefore gives equilibrium constants between quaternary structures. To coordinate with that information, oxygen binding curves of fully ferrous and tri-aquomet Hb were also measured. L3, the equilibrium constant between three liganded R and T structures, is determined by modulated excitation to be of order unity for O2 or CO (1.1 to 1.5 for 3O2 and 0.7 for 3CO bound), while with three aquomet subunits it is much greater (> or = 23). R-->T conversion rates are similar to those found for HbA, with weak sensitivity to changes in L3. The L3 values from HbXL O2 were used to obtain a unique allosteric decomposition of the ferrous O2 binding curve in terms of KT, KR, and L3. From these values and the O2 binding curve of tri-aquomet HbXL, L3 was calculated to be 2.7 for the tri-aquomet derivative. Consistency in L3 values between equilibrium and modulated excitation data for tri-aquomet-HbXL can be achieved if the equilibrium constant for O2 binding to the alpha chains is six times lower than that for binding to the beta chains in the R state, while the cooperative properties remain homogeneous. The results are in quantitative agreement with other studies, and suggest that the principal effect of the cross-link is to decrease the R state and T state affinity of the alpha subunits with almost no change in the affinity of the beta subunits, leaving the allosteric parameters L and c unchanged.  相似文献   

19.
The interaction of saturated fatty acids of different length (C8:0 to C18:0) with β‐lactoglobulin (βLG) was investigated by molecular dynamics simulation and docking approaches. The results show that the presence of such ligands in the hydrophobic central cavity of βLG, known as the protein calyx, determines an enhancement of atomic fluctuations compared with the unliganded form, especially for loops at the entrance of the binding site. Concerted motions are evidenced for protein regions that could favor the binding of ligands. The mechanism of anchoring of fatty acids of different length is similar for the carboxylate head‐group, through electrostatic interactions with the side chains of Lys60/Lys69. The key protein residues to secure the hydrocarbon chain are Phe105/Met107, which adapt their conformation upon ligand binding. In particular, Phe105 provides an additional hydrophobic clamp only for the tail of the two fatty acids with the longest chains, palmitic, and stearic acid, which are known to bind βLG with a high affinity. The search of additional external binding sites for fatty acids, distinct from the calyx, was also carried out for palmitic acid. Two external sites with a lower affinity were identified as secondary sites, one consisting in a hydrophobic cavity allowing two distinct binding modes for the fatty acid, and the other corresponding to a surface crevice close to the protein α‐helix. The overall results provide a comprehensive picture of the dynamical behavior of βLG in complex with fatty acids, and elucidate the structural basis of the binding of these physiological ligands. Proteins 2014; 82:2609–2619. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
The effect of the alpha subunit of the 7S-NGF on the binding of beta-NGF to its two classes of sites on target cells has been studied. The presence of microM concentrations of alpha-NGF causes the displacement of 125I-beta-NGF from one class of sites on dissociated dorsal root ganglia neurons from stage E9 chicken embryos. At 0.1 nM 125I-beta-NGF, increasing alpha-NGF concentrations produce a monotonic displacement curve with half-maximal displacement occurring at 10 microM alpha-NGF. The affinity and number of sites of the 125I-beta-NGF displaced by alpha-NGF are similar to those of beta-NGF that binds to the higher affinity (site I) receptors. The binding to the lower affinity class of sites (site II) is not affected by concentrations of alpha-NGF up to 30 microM. This modulation of 125I-beta-NGF binding does not occur with equivalent concentrations of serum albumin. No detectable neuronal binding of 125I-alpha-NGF was found, suggesting that the mechanism does not involve direct competition for receptor sites. The dissociation constant for the alpha-beta complex is in the microM range, and formation of this complex in solution can thus compete with the process of 125I-beta-NGF binding to neurons. A model accounting for these observations includes binding of the alpha-beta complex to the lower affinity but not to the higher affinity sites. We conclude that there are differences in the specificity of the two classes of receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号