首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eighteen IgGl monoclonal antibodies (blabs) have been produced against gamma-glutamyl transferase (GGT) from rat kidney. They were specific to the light subunit of the enzyme with affinity constants ranging from 0.3 to 7.5 108 M–1, while they did not react with GGT from other sources i.e. human and pig kidney, rat and guinea pig liver, suggesting species and organ specificity. Two of the blabs (N° 11 and 21) lost their immunoreactivities towards rat kidney GGT in the presence of N-acetyl-neuraminic acid, while immunoreactivities of the other blabs were unchanged. Furthermore, Mabs No 11 and 21 did not react with desialylated rat kidney GGT. These findings suggest that N-acetyl-neuraminic acid is involved in the epitopes recognized by these two Mabs.Abbreviations ELISA enzyme linked immunosorbent assay - GGT gamma-glutamyltransferase - Mab monoclonal antibody - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

2.
gamma-Glutamyl transpeptidase purified from hog kidney cortex was implanted in the human erythrocyte membrane by incubation of erythrocytes at 37 degrees c with gamma-glutamyl transpeptidase-incorporated dipalmitoyl phosphatidylcholine vesicles. Membranes prepared from these implanted cells exhibited 4- to 5-fold increase in gamma-glutamyl transpeptidase activity. The association/insertion of gamma-glutamyl transpeptidase into erythrocyte membrane was further demonstrated by antibody to gamma-glutamyl transpeptidase. Implantation of gamma-glutamyl transpeptidase into erythrocyte membrane led to stimulation of uptake of glutamate and alanine, which are normally transported at a slow rate in human erythrocytes. The uptake of these amino acids in the implanted system was inhibited by inhibitors (serine-borate and azaserine) of transpeptidase activity as well as by antibody to gamma-glutamyl transpeptidase. These results in the implanted human erythrocytes demonstrate that gamma-glutamyl transpeptidase enzyme can mediate the translocation of amino acids and provide further evidence in support of its postulated role in the transport of amino acids in natural membranes.  相似文献   

3.
We studied the distribution of gamma-glutamyl transpeptidase (gamma-GT) by use of a monoclonal antibody (MAb) against human kidney gamma-GT in human sweat glands. In the eccrine sweat gland, the enzyme was localized along the luminal membrane and small apocrine extrusions of the superficial cells of the secretory portion. The intercellular canaliculi between basal cells were occasionally immunoreactive. In the secretory portion of the apocrine gland, luminal membrane and apocrine extrusions of various sizes and stages at the apices of the secretory cells exhibited positive reactions. Immunoreaction was also seen in the Golgi area of the cuboidal secretory cells. No positive reaction was observed in the myoepithelial cells of either gland or in the excretory duct cells.  相似文献   

4.
Human kidney gamma-glutamyl transpeptidase has been purified by a procedure involving Lubrol extraction, acetone precipitation, treatment with bromelain, and column chromatography on DEAE-cellulose and Sephadex G-150. The final preparation is a glycoprotein (molecular weight of approximately 84,000) composed of two nonidentical glycopeptides (molecular weights of 62,000 and 22,000). The isozymic forms, separable by isoelectric focusing, have different contents of sialic acid. The utilization of L-glutamine (which is both a gamma-glutamyl donor and acceptor) is stimulated about 3-fold by maleate in contrast to 10-fold stimulation of glutamine utilization by the rat kidney enzyme. The gamma-glutamyl analogs, 6-diazo-5-oxo-L-norleucine (DON) and L-azaserine inactivate the human kidney enzyme with respect to its transpeptidase and hydrolase activities. Inactivation is prevented by gamma-glutamyl substrates (but not by acceptor substrates) and is accelerated by maleate. [14C]DON reacts covalently and stoichiometrically at the gamma-glutamyl site, which was localized to the light subunit of the enzyme. The light subunit of human transpeptidase closely resembles that of rat kidney enzyme in having the gamma-glutamyl binding site, and similar molecular weight and amino acid composition. The heavy subunits of the two enzymes are markedly different in both molecular weight and amino acid content; this may account for differences observed in acceptor amino acid specificity and in the magnitude of the maleate effect.  相似文献   

5.
gamma-Glutamyl transpeptidase, present in various mammalian tissues, transfers the gamma-glutamyl moiety of glutathione to a variety of acceptor amino acids and peptides. This enzyme has been purified from human kidney cortex about 740-fold to a specific activity of 200 units/mg of protein. The purification steps involved incubation of the homogenate at 37 degrees followed by centrifugation and extraction of the sediment with 0.1 M Tris-HCl buffer, pH 8.0, containing 1% sodium deoxycholate; batchwise absorption on DEAE-cellulose; DEAE-cellulose (DE52) column chromatography; Sephadex G-200 gel filtration; and affinity chromatography using concanavalin A insolubilized on beaded Agarose. Detergents were used throughout the purification of the enzyme. The purified enzyme separated into three protein bands, all of which had enzyme activity, on polyacrylamide disc electrophoresis in the presence of Triton X-100. The enzyme has an apparent molecular weight of about 90,000 as shown by Sephadex G-200 gel filtration, and appears to be a tetramer with subunits of molecular weights of about 21,000. The Km for gamma-glutamyl transpeptidase using the artificial substrate, gamma-glutamyl-p-nitroanilide, with glycylglycine as the acceptor amino acid was found to be about 0.8 mM. The optimum pH for the enzyme activity is 8.2 and the isoelectric point is 4.5. Both GSH and GSSG competitively inhibited the activity of gamma-glutamyl transpeptidase when gamma-glutamyl-p-nitroanilide was used as the substrate. Treatment of the purified enzyme with papain has no effect on the enzyme activity or mobility on polyacrylamide disc electrophoresis. The purified gamma-glutamyl transpeptidase had no phosphate-independent glutaminase activity. The ratio of gamma-glutamyl transpeptidase to phosphate-independent glutaminase changed significantly through the initial steps of gamma-glutamyl transpeptidase purification. These studies indicate that the transpeptidase and phosphate-independent glutaminase activities are not exhibited by the same protein in human kidney.  相似文献   

6.
Betaine-homocysteine S-methyltransferase (BHMT) has been shown to be expressed at high levels in the livers of all vertebrate species tested. It has also been shown to be abundant in primate and pig kidney but notably very low in rat kidney and essentially absent from the other major organs of monogastric animals. We recently showed by enzyme activity and Western analysis that pig kidney BHMT was only expressed in the cortex and was absent from the medulla. Using immunohistochemical detection, we report here that in human, pig, and rat kidney, BHMT is expressed in the proximal tubules of the cortex. Immunohistochemical staining for BHMT in human, pig, and rat liver indicate high expression in hepatocytes. The staining patterns are consistent with cytosolic expression in both organs.  相似文献   

7.
Mammalian gamma-glutamyl transpeptidases characterized thus far have been shown to be heterodimeric glycoproteins. The two subunits are derived from a single-chain propeptide which, in the rat kidney, exhibits low transpeptidase activity (less than 2% of the dimeric enzyme). A human hepatoma-derived cell line, Hep G2, expresses relatively high transpeptidase activity. The enzyme is primarily localized on the cell surface and exhibits catalytic properties similar to the dimeric human kidney and lymphoid cell transpeptidase. Significantly, the Hep G2 enzyme, unlike the enzyme from other human tissues, is a single-chain species, Mr = 120,000.  相似文献   

8.
A purification procedure, based on that previously used for rat kidney gamma-glutamyl transpeptidase, was used for the purification of glutathione oxidase (which converts glutathione to gluthathione disulfide). The two activities co-purified, the ratio of the activities remaining constant through all steps of the isolation procedure. The purified enzyme was separable into 12 isozymic species by isoelectric focusing. All 12 isozymes exhibited a constant ratio of transpeptidase to glutathione oxidase activities, strongly supporting the conclusion that conversion of glutathione to glutathione disulfide is a catalytic function of gamma-glutamyl transpeptidase. Modulation of oxidase activity by inhibitors and acceptor substrates of transpeptidase is discussed in relation to the possible glutathione binding sites involved in gamma-glutamyl transfer and oxidase activities of the enzyme.  相似文献   

9.
Gamma-Glutamyl transpeptidase was purified from rat kidney by a procedure involving Lubrol extraction, acetone precipitation, ammonium sulfate fractionation, treatment with bromelain, and column chromatography on DEAE-cellulose and Sephadex G-100. The final preparation (enzyme III), which exhibits a specific activity about 8-fold higher than that of the purified rat kidney transpeptidase previously obtained in this laboratory (enzyme I), was apparently homogeneous on polyacrylamide gel electrophoresis. Enzyme III is a glycoprotein containing 10% hexose, 7% aminohexose, and 1.5% sialic acid; a tentative molecular weight value of about 70,000 was obtained by gel filtration. Enzyme III has a much lower molecular weight and a different amino acid and carbohydrate content than the less active rat kidney transpeptidase preparation previously obtained, but obtained, but the catalytic properties of these preparations are virtually identical. It is suggested that bromelain treatment may liberate the transpeptidase from a brush border complex that contains other proteins. An improved method is described for the isolation of the higher molecular weight form of the enzyme (enzyme I) in which affinity chromatography on concanavalin A-Sephrose is employed. The purified transpeptidase (enzyme III) is similar to the phosphate-independent maleate-stimulated glutaminase preparation obtained from rat kidney by Katunuma and colleagues with respect to amino acid and carbohydrate content, apparent molecular weight, and relative transpeptidase and maleate-stimulated "glutaminase" activities. Both of these enzyme preparations are much more active in transpeptidation reactions with glutathione and related gamma-glutamyl compounds than with glutamine. In the absence of maleate, the enzyme catalyzes the utilization of glutamine (by conversion to gamma-glutamylglutamine, glutamate, and ammonia) at about 2% of the rate observed for catalysis of transpeptidation between glutathione and glycylglycine; the utilization of glutamine occurs about 8 times more rapidly in the presence of 0.1 M maleate. The transpeptidation and maleate-stimulated glutaminase reactions catalyzed by both enzyme preprations are inhibited by 5 mM L-serine in the presence of 5 mM sodium borate. Studies on gamma-glutamyl transpeptidase and maleate-stimulated glutaminase in the kidneys of fetal rats, newborn rats, and rats after weaning showed parallel development of these activities. The evidence reported here and earlier work in this laboratory strongly support the conclusion that maleate-stimulated glutaminase activity is a catalytic function of gamma-glutamyl transpeptidase. The studies on the ontogeny of gamma-glutamyl transpeptidase and other data are considered in relation to the proposal that this enzyme is involved in amino acid and peptide transport. Its possible role in renal formation of ammonia is also discussed.  相似文献   

10.
The distribution of theanine-degrading activity in Wistar rats was examined and this activity was detected only in the kidney. Judging from polyacrylamide gel electrophoresis, theanine-degrading enzyme from rat kidney was purified almost to homogeneity. Theanine-degrading activity was co-purified with glutaminase activity, and the relative activity for theanine was about 85% of that for L-glutamine throughout purification. Substrate specificity of purified enzyme preparation coincided well with the data of phosphate-independent glutaminase [EC 3.5.1.2], which had been previously reported. It was very curious that gamma-glutamyl methyl and ethyl esters were more effectively hydrolyzed than theanine and L-glutamine, in view of relative activity and K(m) value. It was suggested that gamma-glutamyl moiety in theanine molecule was transferred to form gamma-glutamylglycylglycine with relative ease in the presence of glycylglycine. On the other hand, purified phosphate-dependent glutaminase did not show theanine-degrading activity at all. Thus, it was concluded that theanine was hydrolyzed by phosphate-independent glutaminase in kidney and suggested that, as for the metabolic fate of theanine, its glutamyl moiety might be transferred by means of gamma-glutamyl transpeptidase reaction to other peptides in vivo.  相似文献   

11.
Acivicin is an antitumor agent known to inhibit cell growth. A new prodrug 9b of acivicin 10 was synthesized, based on a p-hydroxybenzylcarbamate self-immolative spacer capable to release acivicin under esterase activity. The prodrug includes a maleimide-containing arm for linkage with thiol-containing macromolecules such as antibodies. This molecule is intended for the conception of bioconjugates to target an inactive acivicin precursor to tumor cells, when linked to a monoclonal antibody (mAb) which recognizes a tumor-specific antigen. Prodrug cleavage by plasmatic esterases will then restore the acivicin's activity toward tumor cells. We report here the synthesis and the in vitro characteristics of the prodrug. As expected, its inhibitory activity against the gamma-glutamyl transpeptidase (gamma-GT) enzyme and its cytotoxicity towards HL-60 cells were highly reduced compared to the parent drug. The chemical and plasmatic hydrolysis kinetics of the compound was studied by HPLC. The prodrug is stable, being slowly hydrolyzed in pH 7.6 buffer at 37 degrees C with a half-life of 37 h. It is converted into an active acivicin under the effect of pig liver esterase, and its half-life in human plasma is 3 h. These results indicate this compound may be further used as a prodrug-antibody conjugate, to target acivicin to malignant cells.  相似文献   

12.
Gamma-glutamyl transpeptidase was purified 53 times from Sheep brain cortex capillaries. On gel filtration it appears homogeneous with a M.W. = 350 000. The enzyme is likely a glycoprotein, the properties of which are close to hog kidney gamma-glutamyl transpeptidase ; gamma-glutamyl aminoacid formation is assayed electrophoretically. The results obtained using several aminoacids are in favour of the existence of different units, specific of each group of aminoacids ; together with the data from structural analogs, they support the hypothesis that gamma-glutamyl transpeptidase participates in aminoacid transport accross blood brain barrier.  相似文献   

13.
The mechanism of the stimulatory effect of glutathione on proteolysis in mouse kidney lysosomes and a lack of an effect in lysosomes from the liver was investigated. The stimulation in kidney lysosomes was inhibited by serine plus borate, a reversibly inhibitor of gamma-glutamyl transpeptidase. Treatment of mouse kidney lysosome suspensions with L-(alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (acivicin), an irreversibly inhibitor of the transpeptidase, also inhibited the effect of glutathione, but this inhibition was completely relieved by washing and addition of freshly prepared kidney membranes or purified gamma-glutamyl transpeptidase to the incubation mixtures. Cysteinyl-glycine, a product of the action of gamma-glutamyl transpeptidase, stimulated proteolysis in acivicin-inhibited kidney lysosome preparations similarly to glutathione, and cysteine had no effect at equivalent concentrations. Glutathione also stimulated proteolysis in liver lysosomes in the presence of washed kidney membranes or gamma-glutamyl transpeptidase, but the effect was similar to that produced by equivalent concentrations of cysteine. These results suggest that the stimulatory effect of glutathione was mediated by the action of gamma-glutamyl transpeptidase present in contaminating cell membrane fragments in the lysosome preparations, and that glutathione does not take part in intralysosomal proteolysis. However, the possibility that cysteinyl-glycine is a physiological intralysosomal disulfide reductant in kidney lysosomes has not been excluded.  相似文献   

14.
Monoclonal antibodies (mAb) against the native form of rat kidney gamma-glutamyl transpeptidase (GGT) were isolated by screening hybridomas with rat kidney brush-border membrane vesicles. They were directed against protein rather than sugar epitopes in that each recognized all GGT isoforms. All of them inhibited partially the enzyme activity of GGT. They were specific in that they inhibited the rat enzyme, but not the mouse or human enzyme. Kinetic analyses were carried out with free GGT and GGT-mAb complexes with d-gamma-glutamyl-p-nitroanilide in the presence or absence of maleate, or in the presence or absence of alanine, cysteine, cystine or glycylglycine as gamma-glutamyl acceptors. mAbs 2A10 and 2E9 inhibited the hydrolytic and glutaminase activities of GGT and had little effect on the transpeptidation activity of the enzyme, whereas mAbs 4D7 and 5F10 inhibited transpeptidation, but not hydrolytic or glutaminase activities. mAb 5F10 mimicked the effect of maleate on GGT, in that it inhibited transpeptidation, enhanced the glutaminase activity and increased the affinity of the donor site of GGT for acivicin. Such mAbs may be useful for long-term studies in tissue cultures and in vivo, and for the identification of GGT epitopes that are important for the hydrolytic and transpeptidase activities.  相似文献   

15.
Jäger M  Weber P  Wolf S 《FEBS letters》1999,445(1):215-217
The immunohistochemical analysis of the distribution of 5-oxo-L-prolinase in porcine brain at the light microscopic level was performed with an antibody raised against the enzyme purified from pig kidney. The present study reveals the specific expression of 5-oxo-L-prolinase in brain capillaries with an average diameter of 4.1+/-0.9 microm, while larger blood vessels remain unstained. Porcine kidney and skeletal muscle show no endothelial-specific staining with the antibody. In some cases, the asymmetrical staining pattern in cross and longitudinal sections of brain microvessels indicate endothelial- but also pericyte-specific expression.  相似文献   

16.
We studied in detail the distribution pattern of gamma-glutamyl transpeptidase (gamma-GT) in human pancreas, using the immunoperoxidase technique and a monoclonal antibody to human kidney gamma-GT. Positive reaction was confined exclusively to the luminal surface of the centroacinar cells and the epithelia of the intercalated, intralobular, and interlobular ducts. The immunoreaction was stronger in the intercalated and intralobular ducts than in the interlobular ducts. The acinar cells did not show any reaction. The islets of Langerhans were heavily surrounded by the ducts, and normal islet cells showed no reaction. The course of the ducts, from the acinar lumina to the interlobular ducts, was delineated by using reaction sites positive for gamma-GT as markers. The courses of the ducts, which comprise the pathway for pancreatic juice, were found to vary widely in their connections with each other, especially between the intralobular and interlobular ducts. At least three separate routes could be identified.  相似文献   

17.
18.
Transport of gamma-glutamyl amino acids, a step in the proposed glutathione-gamma-glutamyl transpeptidase-mediated amino acid transport pathway, was examined in mouse kidney. The transport of gamma-glutamyl amino acids was demonstrated in vitro in studies on kidney slices. Transport was followed by measuring uptake of 35S after incubation of the slices in media containing gamma-glutamyl methionine [35S]sulfone. The experimental complication associated with extracellular conversion of the gamma-glutamyl amino acid to amino acid and uptake of the latter by slices was overcome by using 5-oxoproline formation (catalyzed by intracellular gamma-glutamyl-cyclotransferase) as an indicator of gamma-glutamyl amino acid transport. This method was also successfully applied to studies on transport of gamma-glutamyl amino acids in vivo. Transport of gamma-glutamyl amino acids in vitro and in vivo is inhibited by several inhibitors of gamma-glutamyl transpeptidase and also by high extracellular levels of glutathione. This seems to explain urinary excretion of gamma-glutamylcystine by humans with gamma-glutamyl transpeptidase deficiency and by mice treated with inhibitors of this enzyme. Mice depleted of glutathione by treatment with buthionine sulfoximine (which inhibits glutathione synthesis) or by treatment with 2,6-dimethyl-2,5-heptadiene-4-one (which effectively interacts with tissue glutathione) exhibited significantly less transport of gamma-glutamyl amino acids than did untreated controls. The findings suggest that intracellular glutathione functions in transport of gamma-glutamyl amino acids. Evidence was also obtained for transport of gamma-glutamyl gamma-glutamylphenylalanine into kidney slices.  相似文献   

19.
Rabbit antibody directed to homogeneously purified mouse liver delta-aminolevulinic acid dehydratase cross-reacted with the enzyme in erythrocytes, spleen, kidney and brain in the mouse. The antibody also cross-reacted with the enzyme in the rat, hamster and gerbil, but not in the rabbit, guinea pig, cattle, chick embryo, and human. In contrast, rabbit antibody against the human enzyme partially recognized the monkey enzyme, but not the enzyme in the other species. The species specificity of delta-aminolevulinic acid dehydratase in this study was consistent with the phylogenetic evolution of the species examined.  相似文献   

20.
We have determined expression of human GGT gene encoding gamma-glutamyl transpeptidase (GGT) during fetal development of liver using the Northern-blot analysis with a cloned human GGT cDNA and immunohistochemistry with a monoclonal antibody. GGT mRNA could be detected as early as the 12th week of gestation. It then increased gradually to a peak of approx. threefold the amount at week 12, at week 40, just before birth. The size of the mRNA in the fetal liver was 2.7 kb and mRNA of the same size was detected both in the human fetal kidney and human hepatocellular carcinoma as well as normal adult liver. Immunohistochemical analyses show that GGT increased as the fetal liver developed in parallel with the increase in mRNA. Histochemically, GGT was shown to be located in the wall of bile canaliculi when synthesis was low in early development, but to be distributed, in addition, all over the cell membrane of the fetal hepatocytes when synthesis was high at the later stage of development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号