首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytotoxicity of intact cinnamomin (a type II ribosome-inactivating protein, RIP) and the RNA N-glycosidase activity of cinnamomin A-chain have been studied and compared with those of ricin. Cinnamomin A-chain exhibits a similar RNA N-glycosidase activity in inhibiting in vitro protein synthesis compared with that of ricin, whereas the cytotoxicity to BA/F3beta cells of intact cinnamomin is markedly lower than intact ricin. In order to demonstrate that it is the B-chains of the two RIPs that bear the difference in cytotoxicity, two hybrid RIPs are prepared from the purified A-/B-chains of cinnamomin and ricin by the disulfide exchange reaction. It has been found that hybrid RIP constructed from cinnamomin A-chain and ricin B-chain is more toxic to BA/F3beta cells than the native cinnamomin, and equivalent to the native ricin. However, the cytotoxicity to BA/F3beta cells of the hybrid RIP constructed from the ricin A-chain and cinnamomin B-chain is lower than ricin, equivalent to the native cinnamomin. Furthermore, the bound amounts of two B-chains on the cell surface are determined by the method of direct cellular ELISA and Scatchard analysis of the binding of the two B-chains indicates that cinnamomin and ricin share similar binding sites with different affinity.  相似文献   

2.
Cinnamomin is a new type II ribosome-inactivating protein (RIP). Its A-chain exhibits RNA N-glycosidase activity to inactivate the ribosome and thus inhibit protein synthesis, whereas the glycosylated B-chain is a lectin. The primary structure of cinnamomin, which exhibits approximately 55% identity with those of ricin and abrin, was deduced from the nucleotide sequences of cDNAs of cinnamomin A- and B-chains. It is composed of a total of 549 amino-acid residues: 271 residues in the A-chain, a 14-residue linker and 264 residues in the B-chain. To explore its biological function, the cinnamomin A-chain was expressed in Escherichia coli with a yield of 100 mg per L of culture, and purified through two-step column chromatography. After renaturation, the recovery of the enzyme activity of the expressed A-chain was 80% of that of native A-chain. Based on the modeling of the three-dimensional structure of the A-chain, the functional roles of five amino acids and the only cysteine residues were investigated by site-directed mutagenesis or chemical modification. The conserved single mutation of the five amino-acid residues led to 8-50-fold losses of enzymatic activity, suggesting that these residues were crucial for maintaining the RNA N-glycosidase activity of the A-chain. Most interestingly, the strong electric charge introduced at the position of the single cysteine in A-chain seemed to play a role in enzyme/substrate binding.  相似文献   

3.
Cinnamomin and ricin are two type II ribosome-inactivating proteins. They exhibited a different toxicity to domestic silkworm (Bombyx mori) larvae by oral feeding bioassay. The LC50 of ricin to the silkworm larvae at third instar was much lower than that of cinnamomin. When the isolated 80S ribosome from domestic silkworm pupae was treated separately with the reduced cinnamomin or the reduced ricin, a specific RNA fragment (R-fragment) was produced as characterized by 8 M urea-denatured polyacrylamide gel (3.5%) electrophoresis. The purified A-chains of both cinnamomin and ricin showed a slightly different RNA N-glycosidase activity to the domestic silkworm pupal ribosome. It was proposed that the difference of their toxicity to domestic silkworm larvae was not related to their A-chains but to the properties of their B-chains. It was also found that the vomit obtained from the midgut of domestic silkworm larvae could hydrolyze these two proteins apparently to a similar extent.  相似文献   

4.
Xu YZ  Li YJ  Hu HY  Hu R  Wu H  Liu WY 《Biological chemistry》2000,381(5-6):447-451
Plant ribosome-inactivating proteins specifically cleave an N-glycosidic bond of a unique adenosine in the largest ribosomal RNA, releasing an adenine from ribosomes of different sources. Here, 1H-nuclear magnetic resonance is used to analyze the enzymatic products of the A-chain of cinnamomin, a type-II ribosome-inactivating protein (RIP) acting on the nucleotides in situ. The enzymatic activities of the RIP on nine nucleotides are compared. Cinnamomin A-chain can cleave the N-glycosidic bond and release an adenine base from adenine nucleotides except 5'-ATP; however, it cannot act on 5'-GMP, 5'-CMP, and 5'-UMP. The A-chain in the mixture of cinnamomin A- and B-chain exhibits higher activity toward adenine nucleotides than the A-chain alone does, suggesting that the B-chain can conformationally stabilize the A-chain. Intact cinnamomin also exhibits lower activity toward adenine nucleotides. However, cinnamomin B-chain and heat-denatured intact cinnamomin cannot hydrolyze all the tested nucleotides. We conclude that hydrolysis of the N-C glycosidic bond of nucleotide compounds by cinnamomin A-chain has a base preference, and the negatively charged phosphate group(s) reduces the recognition ability of the A-chain to adenine nucleotide.  相似文献   

5.
辛纳毒蛋白是从香樟种子中分离的一种Ⅱ核糖体失活蛋白.最近,从香樟种子中还分离到另一种微型双链核糖体失活蛋白,命名为新丰毒蛋白.还原的新丰毒蛋白表现出与还原的辛纳毒蛋白同样的RNA N-糖苷酶和体外对抑制蛋白质翻译的活力.新丰毒蛋白的B链与辛纳毒蛋白的B链具有同样的分子质量和相同的N端10个氨基酸序列.它的A链N端10个氨基酸序列也与辛纳毒蛋白的A链完全一致,并且C端与辛纳毒蛋白的A链一样具有半胱氨酸,但是它的分子质量却只有辛纳毒蛋白A链的一半.RT-PCR和RNA印迹结果表明体内不存在新丰毒蛋白的mRNA.推测新丰毒蛋白是从辛纳毒蛋白通过蛋白质剪接而产生的,是一种研究蛋白质剪接的好材料.  相似文献   

6.
Cinnamomin, a type II ribosome-inactivating protein (RIP), was isolated from the mature seeds of camphor tree (Cinnamomum camphora). In this paper, small amount of free A- and B-chain of cinnamomin were found to be present in the mature seed cell of C. camphora besides the intact cinnamomin. Our results demonstrated that camphorin, a type I RIP previously reported to coexist with cinnamomin in the seeds of C. camphora, actually was the A-chain of cinnamomin. The percentage of free A- and B-chain in the total cinnamomin was 2.6-2.8% in the seed extract. Of these free A- and B-chain approximate 80% already existed in the seed cell, only about 20% were produced during the purification operation. As the enzymatic activity to reduce disulfide bond of cinnamomin in the seed extract of C. camphora was detected, we proposed that the free A- and B-chain were derived from the enzymatic reduction of the interchain disulfide bond of cinnamomin. It was demonstrated that the endogenous type II RIPs of several plant species, such as Cinnamomum porrectum, Cinnamomum bodinieri and Ricinus communis, could be enzymatically reduced into the free A- and B-chain in their respective seed cells. The function of the free A-chain in the seed cell and the possibility that metabolic enzymes might be involved in the reduction of the interchain disulfide bond of type II RIPs in vivo are discussed.  相似文献   

7.
Yang Q  Liu RS  Gong ZZ  Liu WY 《Gene》2002,284(1-2):215-223
Cinnamomin, which has three isoforms, is a type II ribosome-inactivating protein (RIP) purified from the mature seeds of camphor tree (Cinnamomum camphora). In a previous study, an incomplete cDNA that encoded the A- and B-chain of Cinnamomin but lacked signal peptide sequence was cloned. In the present paper, its full-length cDNA was obtained by 5' rapid amplification of cDNA ends (5'RACE). Subsequently, polymerase chain reaction (PCR) amplification of its genomic DNA was performed. Unexpectedly, sequence analysis of the PCR products revealed three cinnamomin genes with >98.0% sequence identity. One of them corresponded to the published cDNA and was designated as cinnamomin I, whereas the other two genes were named as cinnamomin II and cinnamomin III, respectively. RT-PCR amplification of the cDNAs of cinnamomin II and III manifested that these two genes were functional. The three genes have no intron. Three Cinnamomin precursors that were inferred from the cDNA sequence of three cinnamomin genes exhibited relatively high sequence homology with other type II RIPs. Northern blot analysis demonstrated that the cinnamomin genes only expressed in cotyledons of C. camphora seeds and the acmes of expression emerged at 75-90 DAF when seeds were close to maturity. It is proposed that the three cinnamomin genes may encode three isoforms of Cinnamomin. The physiological function of Cinnamomin in C. camphora seeds is briefly discussed.  相似文献   

8.
Cinnamomin a Versatile Type Ⅱ Ribosome-inactivating Protein   总被引:1,自引:0,他引:1  
Ribosome-inactivating proteins (RIPs) are a groupof ribotoxins widely distributed in the plant kingdomas well as in certain fungi, algae and bacteria. RIPs havebeen thoroughly reviewed in references [1–6]. Theseproteins act as RNA N-glycosidase (rRNA N-glycosidase,EC 3.2.2.22) to specifically remove an adenine fromthe universally conserved sarcin/ricin domain (S/R domain)of the largest RNA in ribosome [7–9] and to render itincapable of carrying out protein synthesis (Fig. 1). Based …  相似文献   

9.
A comparative study of gelonin and A-chains of ricin, mistletoe lectin I and diphtheria toxin was undertaken. The effect of pH was studied on: a) the conformation of the proteins under study using intrinsic fluorescence; b) interaction of these proteins with ricin B-chain using gel-filtration. Structural stability of the proteins was assessed according to denaturing action of guanidine hydrochloride and temperature, and localization of tryptophan residues was determined using fluorescence quenching by I-, Cs+ and acrylamide. All investigated proteins were shown to undergo the conformational changes when a environment became acidic. In comparison with an intact protein--gelonin, the A-chains of ricin, a mistletoe lectin and a diphtheria toxin are less stable. At pH less than 5.0 tryptophan residues became more accessible to quencher and a positive charge of the surrounding area increases (in the case of gelonin it is negatively charged). No reliable interaction of a ricin B-chain with both gelonin and A-chain of diphtheria toxin was observed. The interaction of a ricin B-chain with a A-chain of mistletoe lectin I is weaker than that with ricin A-chain and is practically pH-independent.  相似文献   

10.
The pure cinnamomin A-chain is unstable compared to that in the mixture of A- and B-chain or in intact cinnamomin molecule either being stored at 4 degrees C or being heated. When being heated at 45 degrees C for 20min, the A-chain generates partially unfolded intermediate and loses its tertiary structure as monitored by circular dichroism (CD) and tryptophan fluorescence, thus resulting in the inactivity of its RNA N-glycosidase albeit it retains most of its secondary structures. This partially unfolded intermediate is sensitive to protease, exhibiting property of a molten globule. The changes in conformation and activity are irreversible upon cooling. The partially unfolded intermediate can fully restore its RNA N-glycosidase activity in the presence of cinnamomin B-chain. The phenomenon, that the cinnamomin B-chain mediates the refolding of partially unfolded A-chain, probably plays an important role in the intracellular transport of the cytotoxic protein, i.e., keeping the structural stability of A-chain and refolding partially unfolded A-chain that occasionally appeared in the process of intracellular transport, to avoid the destiny of proteolysis that occurs in most denatured proteins in cell.  相似文献   

11.
Ribosome-mediated folding of partially unfolded ricin A-chain   总被引:6,自引:0,他引:6  
After endocytic uptake by mammalian cells, the cytotoxic protein ricin is transported to the endoplasmic reticulum, whereupon the A-chain must cross the lumenal membrane to reach its ribosomal substrates. It is assumed that membrane traversal is preceded by unfolding of ricin A-chain, followed by refolding in the cytosol to generate the native, biologically active toxin. Here we describe biochemical and biophysical analyses of the unfolding of ricin A-chain and its refolding in vitro. We show that native ricin A-chain is surprisingly unstable at pH 7.0, unfolding non-cooperatively above 37 degrees C to generate a partially unfolded state. This species has conformational properties typical of a molten globule, and cannot be refolded to the native state by manipulation of the buffer conditions or by the addition of a stem-loop dodecaribonucleotide or deproteinized Escherichia coli ribosomal RNA, both of which are substrates for ricin A-chain. By contrast, in the presence of salt-washed ribosomes, partially unfolded ricin A-chain regains full catalytic activity. The data suggest that the conformational stability of ricin A-chain is ideally poised for translocation from the endoplasmic reticulum. Within the cytosol, ricin A-chain molecules may then refold in the presence of ribosomes, resulting in ribosome depurination and cell death.  相似文献   

12.
Ricin A-chain, which exhibits excellent cytotoxicity to tumor cells, has been widely used as an immunotoxin source. However, it has the fatal shortcoming of poor pharmacokinetics due to the tremendous liver uptake via carbohydrate-mediated recognition. Modification of proteins with polyethylene glycol, PEGylation, has the advantages of shielding the specific sites and prolonging the biological half-life. In this study, the carbohydrate-specific PEGylation of ricin A-chain was considered to be a novel approach to overcome this limitation. The carbohydrate group of ricin A-chain was oxidized by sodium m-periodate and further specifically conjugated with hydrazide-derivatized PEG. For a comparative study, the PEGylated ricin A-chain at amino groups was prepared using the hydroxysuccinimide ester-derivatized PEG. The carbohydrate-specifically PEGylated ricin A-chain showed a markedly lower liver uptake and systemic clearance compared with the amine-directly PEGylated ricin A-chain as well as the unmodified ricin A-chain. Furthermore, carbohydrate-specifically PEGylated ricin A-chain showed a significantly higher in vitro ribosome-inactivating activity than the amine-directly PEGylated ricin A-chain. These findings clearly demonstrate that the carbohydrate-specificity as well as PEGylation plays an important role in improving the in vivo pharmacokinetic properties and in vitro bioactivity. Therefore, these results suggest that the therapeutic use of immunotoxins constructed using this carbohydrate-specifically PEGylated ricin A-chain has potential as a cancer therapy.  相似文献   

13.
The interaction of ricin and of its constituent polypeptides, the A- and B-chain, with dipalmitoylphosphatidylcholine (DPPC) vesicles was investigated. The A- and B-chain were individually associated with DPPC vesicles, although the intact ricin was not associated. The maximum binding and association constants were evaluated to be 154 micrograms per mg of DPPC and Ka = 2.30 X 10(5) M-1 for the A-chain, and 87 micrograms per mg of DPPC and Ka = 14.5 X 10(5) M-1 for the B-chain, respectively. The A-chain could induce the phase transition release of carboxyfluorescein from DPPC vesicles to a greater extent than the B-chain, whereas the release induced by the intact ricin was negligible. The evidence indicated that the hydrophobic regions on the A-chain and on the B-chain were buried inside when the two chains constituted the intact ricin molecule through one interchain disulfide bond, and that the A-chain caused perturbation of the DPPC bilayer at the phase transition temperature with consequent leakage of carboxyfluorescein.  相似文献   

14.
Identification of the ricin lipase site and implication in cytotoxicity   总被引:4,自引:0,他引:4  
Ricin is a heterodimeric plant toxin and the prototype of type II ribosome-inactivating proteins. Its B-chain is a lectin that enables cell binding. After endocytosis, the A-chain translocates through the membrane of intracellular compartments to reach the cytosol where its N-glycosidase activity inactivates ribosomes, thereby arresting protein synthesis. We here show that ricin possesses a functional lipase active site at the interface between the two subunits. It involves residues from both chains. Mutation to alanine of catalytic serine 221 on the A-chain abolished ricin lipase activity. Moreover, this mutation slowed down the A-chain translocation rate and inhibited toxicity by 35%. Lipase activity is therefore required for efficient ricin A-chain translocation and cytotoxicity. This conclusion was further supported by structural examination of type II ribosome-inactivating proteins that showed that this lipase site is present in toxic (ricin and abrin) but is altered in nontoxic (ebulin 1 and mistletoe lectin I) members of this family.  相似文献   

15.
樟树核糖体失活蛋白在种子成熟过程中的动态变化与特性   总被引:1,自引:0,他引:1  
樟树种子中存在着cinnamomin与camphorin两种新的核糖体失活蛋白,电泳分析与Western杂交结果表明cinnamomin在9、10、11月份种子中的含量分别是8.9%,26.8%和11.5%,以10月份种子的含量为最高。camphorin的含量则分别为1.7%,2.5%与4.6%,随着种子的成熟而不断增加。8月份的幼嫩种子中检测不出cinnmamomin与camphorin.这表明樟树核糖体失活蛋白的表达受到了发育进程的时态调控.樟树叶片中可能不存在cinnamomin与camphorin,即两者的合成似乎具有一定的组织特异性.cinnamomin与camphorin均为糖蛋白。  相似文献   

16.
Hybrid molecules were prepared from the A- and B-chains of the two toxic lectins ricin and modeccin by dialyzing mixtures of isolated chains to allow a disulfide bridge to be formed between them. Whereas the hybrid consisting of ricin A-chain and modeccin B-chain was non-toxic, the converse hybrid, modeccin A-chain/ricin B-chain, was even more toxic to Vero cells than were the parent toxins, native ricin and modeccin. A number of drugs (NH4Cl, monensin, trifluoperazine, verapamil, ionophore A23187) which protect cells against modeccin, but not against ricin, protected to some extent against the toxic hybrid, but less so than against native modeccin. The possibility is discussed that the modeccin A-chain of the hybrid may enter the cytosol by two routes, one which is highly efficient and identical to that used by native modeccin and another less efficient one which cannot be used by native modeccin.  相似文献   

17.
Wang T  Zou YS  Zhu DW  Azzi A  Liu WY  Lin SX 《Amino acids》2008,34(2):239-243
Cinnamomin from Cinnamonum camphora seeds, a type II ribosome-inactivating protein that interferes with protein biosynthesis in mammalian cells, can induce the apoptosis of carcinoma cells and be used as an insecticide. A rapid and improved method has been developed for the extraction and purification of cinnamomin from camphora seed. Purification of cinnamomin is achieved with two successive steps of hydrophobic interaction chromatography carried out on a fast protein liquid chromatography (FPLC) system. Crystals suitable for X-ray diffraction analysis were obtained by vapor diffusion method. A complete data set at 2.8 A resolution has been collected. Data indexation and refinement indicate that the crystal is orthorhombic with space group P2(1)2(1)2(1) and unit cell dimensions a = 52.39 A, b = 126.33 A, c = 161.45 A. There are two molecules per asymmetric unit. Initial phasing by molecular replacement method yielded a solution, which will contribute to the structure determination. A molecular model will further the understanding of the mechanism of cinnamomin function. The latter will be combined with bio-informatics to facilitate the medical and other applications of cinnamomin.  相似文献   

18.
Ricin A-chain catalyzes the hydrolysis of the N-glycosidic bond of a conserved adenosine residue at position 4324 in the sarcin/ricin domain of 28S RNA of rat ribosome. The GAGA tetraloop closed by C-G pairs is required for recognition of the cleavage site on 28S ribosomal RNA by ricin A-chain. In this study, ricin A-chain (reduced ricin) exhibits specific depurination on a synthetic oligoribonucleotide (named SRD RNA) mimic of the sarcin/ricin domain of rat 28S ribosomal RNA under neutral and weak acidic conditions. Furthermore, the activity of intact ricin is also similar to that of ricin A-chain. However, under more acidic conditions, both enzymes lose their site specificity. The alteration in specificity of depurination is not dependent on the GAGA tetraloop of SRD RNA. A higher concentration of KCl inhibits the non-specific N-glycosidase activity much more than the specific activity of ricin A-chain. In addition, characterization of depurination sites by RNA sequencing reveals that under acidic conditions ricin A-chain can release not only adenines, but also guanines from SRD RNA or 5S ribosomal RNA. This is the first report of the non-specific deadenylation and deguanylation activity of ricin A-chain to the naked RNA under acidic conditions.  相似文献   

19.
Deglycosylation of ricin may be necessary to prevent the entrapment of antibody-ricin conjugates in vivo by cells of the reticuloendothelial system which have receptors that recognise the oligosaccharide side chains on the A- and B-chains of the toxin. Carbohydrate-deficient ricin was therefore prepared by recombining the A-chain, which had been treated with alpha-mannosidase, with the B-chain, which had been treated with endoglycosidase H or alpha-mannosidase or both. By recombining treated and untreated chains, a series of ricin preparations was made having different carbohydrate moieties. The removal of carbohydrate from the B-chain did not affect the ability of the toxin to agglutinate erythrocytes, and alpha-mannosidase treatment of the A-chain did not affect its ability to inactivate ribosomes. The toxicity of ricin to cells in culture was only reduced in those preparations containing B-chain that had been treated with alpha-mannosidase, when a 75% decrease in toxicity was observed. The toxicity of the combined ricin preparation to mice varied from double to half that of native ricin, depending on the chain(s) treated and the enzymes used. Removal of carbohydrate greatly reduced the hepatic clearance of the toxin and the levels of toxin in the blood were correspondingly higher. These results suggest that antibody-ricin conjugates prepared from deglycosylated ricin would be cleared more slowly by the liver, inflict less liver damage, and have greater opportunity to reach their target.  相似文献   

20.
Ricin acts by translocating to the cytosol the enzymatically active toxin A-chain, which inactivates ribosomes. Retrograde intracellular transport and translocation of ricin was studied under conditions that alter the sensitivity of cells to the toxin. For this purpose tyrosine sulfation of mutant A-chain in the Golgi apparatus, glycosylation in the endoplasmic reticulum (ER) and appearance of A-chain in the cytosolic fraction was monitored. Introduction of an ER retrieval signal, a C-terminal KDEL sequence, into the A-chain increased the toxicity and resulted in more efficient glycosylation, indicating enhanced transport from Golgi to ER. Calcium depletion inhibited neither sulfation nor glycosylation but inhibited translocation and toxicity, suggesting that the toxin is translocated to the cytosol by the pathway used by misfolded proteins that are targeted to the proteasomes for degradation. Slightly acidified medium had a similar effect. The proteasome inhibitor, lactacystin, sensitized cells to ricin and increased the amount of ricin A-chain in the cytosol. Anti-Sec61alpha precipitated sulfated and glycosylated ricin A-chain, suggesting that retrograde toxin translocation involves Sec61p. The data indicate that retrograde translocation across the ER membrane is required for intoxication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号