首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A reliable and high-efficiency system of transforming embryogenic callus (EC) mediated by Agrobacterium tumefaciens was developed in cotton. Various aspects of transformation were examined in efforts to improve the efficiency of producing transformants. LBA4404 and C58C3, harboring the pgusBin19 plasmid containing neomycin phosphortransferase II (npt-II) gene as a selection marker, were used for transformation. The effects of Agrobacterium strains, acetosyringone (AS), co-cultivation temperature, co-cultivation duration, Agrobacterium concentration and physiological status of EC on transformation efficiency were evaluated. Strain LBA4404 proved significantly better than C58C3. Agrobacterium at a concentration of 0.5 × 108 cells ml–1 (OD600=0.5) improved the efficiency of transformation. Relatively low co-cultivation temperature (19 °C) and short co-cultivation duration (48 h) were optimal for developing a highly efficient method of transforming EC. Concentration of AS at 50 mg l–1 during co-cultivation significantly increased transformation efficiency. EC growing 15 days after subculture was the best physiological status for transformation. An overall scheme for producing transgenic cotton is presented, through which an average transformation rate of 15% was obtained.  相似文献   

2.
We evaluated the effect of algal food density (1.5 × 106, 3.0 × 106 and 4.5 × 106 cells ml−1 of Chlorella) and temperature (22° and 28 °C) on competition among the rotifers Brachionus calyciflorus, Brachionus havanaensis, Brachionus patulus and Brachionus rubens, based on population growth experiments for 24 days. The growth experiments were conducted seperately for each individual rotifer species (i.e., controls), and in mixtures of all four species in equal initial proportions (i.e., under competition). The population growth of B. calyciflorus, B. havanaensis, B. patulus and B. rubens grown separately at two temperatures and at three algal food densities showed typical patterns of lag, exponential and retardation phases in the controls. This pattern differed considerably under competition. In general, we observed that in all of the test species, the highest growth rates were observed at higher food levels and in the absence of congenerics. At 22 °C, under the lowest food level, the differences in the population abundances of B. havanaensis, B. patulus and B. rubens grown alone and in the presence of competition were large. However, these differences reduced as food density was increased from 0.5 × 106 to 4.5 × 106 cells ml−1. At 28 °C and at the lowest food level, all of the other rotifer species eliminated B. havanaensis in mixed cultures. Each brachionid species had a higher rate when grown alone than when cultured with other species. The highest r (mean ± standard error: 0.54 ± 0.01 day−1) was recorded for B. havanaensis at 28 °C under 4.5 × 106 cells ml−1 of algal food density. At 28 °C at low algal food density, the presence of competitors resulted in negative population growth rates for three of the four rotifer species tested.  相似文献   

3.
The Candida albicans cell wall provides an architecture that allows for the organism to survive environmental stress as well as interaction with host tissues. Previous work has focused on growing C. albicans on media such as Sabouraud or YPD at 30 °C. Because C. albicans normally colonizes a host, we hypothesized that cultivation on blood or serum at 37 °C would result in structural changes in cell wall mannan. C. albicans SC5314 was inoculated onto YPD, 5% blood, or 5% serum agar media three successive times at 30 °C and 37 °C, then cultivated overnight at 30 °C in YPD. The mannan was extracted and characterized using 1D and 2D 1H NMR techniques. At 30 °C cells grown in blood and serum contain less acid-stable terminal β-(1→2)-linked d-mannose and α-(1→2)-linked d-mannose-containing side chains, while the acid-labile side chains of mannan grown in blood and serum contain fewer β-Man-(1→2)-α-Man-(1→ side chains. The decrement in acid-stable mannan side chains is greater at 37 °C than at 30 °C. Cells grown on blood at 37 °C show fewer →6)-α-Man-(1→ structural motifs in the acid-stable polymer backbone. The data indicate that C. albicans, grown on media containing host-derived components, produces less complex mannan. This is accentuated when the cells are cultured at 37 °C. This study demonstrates that the C. albicans cell wall is a dynamic and adaptive organelle, which alters its structural phenotype in response to growth in host-derived media at physiological temperature.  相似文献   

4.
Summary A study was made of the effect of temperature on accumulation of glucosamine and 2-aminoisobutyrate by Candida utilis NCYC 321 grown at 30° C or 10° C. Exponential-phase cells contained greater proportions of C16:1 and C18:3 acids, and smaller proportions of C13:1 and C18:2 acids, when grown in a defined medium at 10° C compared with 30° C. Cells grown at 30° C or 10° C were able to accumulate extracellular (10 mM) glucosamine and 2-aminoisobutyrate against concentration gradients. 2-Aminoisobutyrate was not metabolised by the cells; glucosamine was accumulated probably as a mixture of glucosamine 1- and 6-phosphates. Rates of accumulation of glucosamine and 2-aminoisobutyrate by cells grown at 30° C or 10° C decreased markedly when the test temperature was decreased from 30° C to 15° C. The rate of accumulation of glucosamine by cells grown at 10° C was considerably lower at each of the test temperatures compared with the corresponding rates for cells grown at 30° C; the rate of accumulation of 2-aminoisobutyrate was much less affected by the temperature at which the cells were grown and then only when measured at temperatures below about 20° C. Apparent K m values for accumulation of glucosamine by cells grown at 30° C or 10° C decreased considerably when the test temperature was lowered from 20° C to 15° C. The extent of the decrease in K m value was approximately the same for cells grown at 30° C or 10° C. Apparent K m values for accumulation of 2-aminoisobutyrate were hardly affected by test temperature. Apparent V max values for accumulation of glucosamine or 2-aminoisobutyrate were much lower when measured at 15° C than at 30° C. When measured at 30° C, apparent V max values for accumulation of either solute were slightly lower with cells grown at 10° C compared with cells grown at 30° C; when measured at 15° C, the values were slightly greater with cells grown at 10° C. Net accumulation of glucosamine, at 30° C or 20° C, by cells grown at 30° C or 10° C ceased after 4–6 h. Cells grown at either temperature continued to accumulate 2-aminoisobutyrate at 30° C or 20° C for at least 12 h. The rate of efflux of glucosamine by cells grown at 30° C was slower when measured at 20° C compared with 30° C. With cells grown at 10° C, the rate of efflux at 30° C was slower than with cells grown at 30° C; when measured at 20° C, the rates were about equal. The temperature at which the cells were grown did not affect the ability of d-glucose, d-mannose or d-ribose to compete with d-glucosamine, or with the ability of l-alanine to compete with 2-aminoisobutyrate, when tested at 30° C or 20° C. Cells grown 30° C or 10° C had very similar ATP contents. The results are discussed in relation to the effect of temperature on the rate of solute accumulation by micro-organisms.Abbreviation AIB 2-Aminoisobutyrate  相似文献   

5.
Nandini  S.  Sarma  S. S. S. 《Hydrobiologia》2001,(1):63-69
Population growth of Lepadella patella was studied using Chlorella as the sole food at five concentrations ranging from 0.25 × 106 to 4.0 × 106 cells ml–1 at 25 °C for 22 days. The population densities increased with increasing algal concentration up to 1.0 × 106 cells ml–1. The population growth of L. patella was lower at algal concentration of 2.0 × 106 cells ml–1 and above. In a separate experiment, we tested the influence of the bdelloid rotifer Philodina roseola on the population growth of L. patella at different ratios of initial inoculation densities using 1.0 × 106 cells ml–1 of Chlorella at 28 °C. Despite lower initial inoculation densities compared with those in the controls, both L. patella and P. roseola showed higher peak abundances when grown together. The maximum peak abundance values recorded for L. patella and P. roseola were 830 and 230 ind. ml–1, respectively, at an inoculation ratio of 1:1.  相似文献   

6.
Two oxidases were found to be present in membranes from the facultative thermophile Bacillus coagulans grown at 55°C, compared to one in cells grown at 37°C. Cytochrome spectra and inhibitors of the respiratory chain identified them as cytochrome oxidases aa 3 and d. Both were present in membranes from 55°C grown cells, but only cytochrome oxidase aa 3 was found in membranes from 37°C grown cells. The presence of cytochrome d in 55°C grown cultures was found to be due to decreased oxygen tension and not to the high growth temperature. This was confirmed by (a) induction of cytochrome d at 37°C under conditions of oxygen limitation and (b) its repression at 55°C under conditions of high aeration and its subsequent induction on lowering the dissolved oxygen concentration in chemostat cultures. Two cytochromes b (max 558 and max 562) were present in both 37°C and 55°C grown cells. Results from the inhibition of substrate oxidation by membranes suggested different pathways of electron transport by the respiratory chain.  相似文献   

7.
Summary Conditions for genetic transformation of the xylanase-negative (X) strain of Chainia with pIJ 702 were optimized. The growth of Chainia at 30°C for 36 – 40 h and addition of geletin (1%) to the medium resulted in the maximum yield of protoplasts and regeneration efficiency. Poor transformation efficiency of Chainia (X) protoplasts by native pIJ 702 versus improved efficiency (16 transformants ug–1 of plasmid DNA) by prior heating of protoplasts at 42°C for 10 min suggests the occurrence of a restriction system in Chainia. Increased transformation efficiency by passage of the plasmid through Chainia together with the altered methylation status of the transformant plasmid presents evidence for the existence of an operative modification system in Chainia. Development of thiostrepton resistance and formation of me1amin pigment in Chainia (X) by transformation with pIJ 702 reveal that genes from Streptomyces can be functionally expressed by Chainia (X).(NCL Communication No. 6207)  相似文献   

8.
We evaluated the combined effects of food (0.5 × 106, 1.0 × 106 and 2.0 × 106 cells ml−1 of Chlorella vulgaris) and temperature (15, 20 and 25 °C) on life history variables of B. havanaensis. Regardless of Chlorella density there was a steep fall in the survivorship of B. havanaensis at 25 °C. Both food level and temperature affected the fecundity of B. havanaensis. At any given food level, rotifers cultured at 15 °C showed extended but low offspring production. At 25 °C, offspring production was elevated, the duration of egg laying reduced and the fecundity was higher during the latter part of the reproductive period. The effect of food level was generally additive, at any given temperature, and higher densities of Chlorella resulted in higher offspring production. Average lifespan, life expectancy at birth and generation time were 2–3 times longer at 15 °C than at 25 °C. At 20 °C, these remained at intermediate levels. The shortest generation time (about 4 days) was observed at 25 °C. Gross and net reproductive rates and the rate of population increase (r) increased with increasing temperature and generally, at any given temperature, higher algal food levels contributed to higher values in these variables. The r varied from 0.11 to 0.66. The survival patterns and lower rates of reproduction at 15 °C suggest that the winter temperatures (10–15 °C) prevailing in many waterbodies in Mexico City allow this species to sustain throughout the year under natural conditions.  相似文献   

9.
Candida dubliniensis and Candida albicans cause most of the oral candidiasis infections in AIDS patients. Unlike C. albicans, which variably expresses cell surface hydrophobicity (CSH) depending on environmental conditions, C. dubliniensis is hydrophobic under all environmental conditions. C. dubliniensis produces CdCSH1p, a protein related to CaCSH1p that contributes to CSH expression of C. albicans. We investigated whether environmental conditions affect CdCSH1p expression, CSH avidity, and adhesion to fibronectin (Fn). C. dubliniensis CD36 was grown at 23°C and 37°C in four different media. CdCSH1p expression was affected by growth temperature, with cells grown at 37°C expressing the protein, but cells grown at 23°C did not. Hydrophobic avidity for two media was higher in cells grown at 37°C than at 23°C. Cells grown at 23°C were generally less adherent than 37°C-grown cells to Fn. The results suggest CdCSH1p but not hydrophobic avidity may have a role in adhesion of C. dubliniensis to Fn.  相似文献   

10.
J. J. MacCarthy  P. K. Stumpf 《Planta》1980,147(5):389-395
Cell suspension cultures of Catharanthus roseus G. Don, Glycine max (L.) Merr. and Nicotiana tabacum L. were incubated with [14C]acetate, [14C]oleic acid and [14C]linoleic acid at five different temperatures ranging from 15 to 35° C. When the incubation temperature was increased, [14C]acetate was incorporated preferentially into [14C]palmitate, with a concomitant drop in [14C]oleate formation. Between 15 and 20° C, [14C]oleic acid accumulated in C. roseus cells. In all cultures, optimum desaturation of [14C]oleic acid to [14C]linoleic acid occurred between 20 and 25° C, and in G. max this was also the optimal range for desaturation of [14C]linoleic acid to [14C]linolenic acid. Elongation of [14C]palmitic acid was inhibited when cultures grown at 15° C for 25 h were subsequently incubated with [14C]acetate at 25° C. [14C]oleic acid accumulated in G. max and C. roseus cultures grown at 35° C for 25 h and subsequently incubated at 25° C. Desaturation of [14C]oleic acid increased up to 25° C, but then decreased or leveled off depending on the cell line and on the temperature prior to incubation.  相似文献   

11.
Rhodospirillum rubrum grown either chemotrophically or phototrophically at 14°C and 30°C, was employed to study the effect of temperature on fatty acid composition as well as on several membrane bound functions involved in energy metabolism. Upon growth at both temperatures the fatty acid composition of membranes showed differences, which could be attributed to an incomplete formation of photosynthetically active membranes rather than specifically to the growth temperature. Activities of NADH dependent respiration and light induced proton extrusion by cells did not show discontinuities in Arrhenius plots down to temperatures of 15°C and 5°C, respectively. In contrast, coupling factor Mg2+- and Ca2+-ATPase as well as succinate cytochrome c oxidoreductase showed significant breaks at 20°C and 18°C, respectively. Similarly, in Rhodopseudomonas sphaeroides. NADH dependent respiration and light induced proton extrusion by cells was continuous over the entire range of temperatures applied. ATPase as well as succinate cytochrome c oxidoreductase, on the other hand, featured discontinuities in Arrhenius plots at 20°C and 19°C. The implication of the data on growth rates and membrane structure are discussed.Abbreviation Bchl baceteriochlorophyll  相似文献   

12.
13.
To investigate the influence of temperature andholding time on the pyrolyzate yields of Chlorella protothecoides, the microalgal cells weresubjected to pyrolysis at 200, 300, 400, 500 and 600 °Cfor 5, 20, 60 and 120 min, separately. High oil yields above 40% dry weight cells wereobtained both at relatively low temperature (300 °C)with relatively long holding times (20–120min) and relatively high temperatures (400–500 °C)with relatively short holding times (5–20min). The maximum oil yield of 52.0% was achieved at500 °C for 5 min. The gas yield was generallyincreased with the increasing temperature and holdingtime. It could reach 63.3–76.0% at 600 °C.High pyrolytic rates of 72–87% were obtained at allexperiments except at 200 °C for 5–20 min or300 °C for 5 min. Thermogravimetric analysisindicated that the main thermal degradation of thismicroalga occurred at 200–520 °C. The resultsimply that C. protothecoides is a good candidatefor the production of renewable fuels by pyrolysis.  相似文献   

14.
Summary Intact and osmotically sensitive cells of Corynebacterium glutamicum can be efficiently transformed by electroporation. This was shown by using the plasmid vector pUL-330 (5.2 kb), containing the kanamycin resistance gene of transposon Tn5. The following electric parameters yielded efficient transformation. For intact cells: one exponentially decaying field pulse with time constants and with initial field intensities of E 0=35–40 kV cm-1; prepulse temperature 20°C. Cell regeneration (survival) was 100%–80%. Transformation efficiency can be increased by an additional freeze and thaw cycle of the cells, prior to electroporation. Lysozyme treated cells (osmotically sensitive) were transformed with three successive pulses of E 0=25–30 kV cm-1. Cell regeneration under these conditions was found to be 20–30%. The optimum yield of transformants/g plasmid-DNA was 3×103 for intact cells, 2×104 for intact cells which were frozen and thawed twice and 7×104 for osmotically sensitive cells if the cell suspension was pulsed at a cell density of 1–3×108/ml and at a DNA concentration of 0.2 g/ml up to 2 g/ml. The data obtained for osmotically sensitive cells suggest that the temperature increase accompanying the electric field pulse enhances colony formation and transformation efficiency if the initial prepulse temperature is 20°C, although regeneration of electroporated C. glutamicum cells starts to decrease at temperatures20°C.  相似文献   

15.
Cultures of the obligate psychrophilic diatom Fragilariopsis cylindrus (Grunow) were grown for 4 months under steady-state conditions at −1 °C and +7 °C (50 μmol photons m−2 s−1) prior to measurements in order to investigate long-term acclimation of photosynthesis to both temperatures. No differences in maximum intrinsic quantum yield of PS II (FV/FM) and relative electron transport rates could be detected at either temperature after 4 months of acclimation. Measurements of photosynthesis (relative electron transport rates) vs. irradiance (P vs. E curves) revealed similar values for relative light utilization efficiency (α = 0.57 at −1 °C, α = 0.60 at +7 °C) but higher values for irradiance levels at which photosynthesis saturates (EK) at −1 °C and, therefore, higher maximum photosynthesis (PMAX = 54 (relative units) at −1 °C, PMAX = 49 at +7 °C). Nonphotochemical quenching (NPQ) measurements at 385 μmol photons m−2 s−1 indicated higher (37%) NPQ for diatoms grown at −1 °C compared to +7 °C, which was possibly related to a 2-fold increase in the concentration of the pigment diatoxanthin and a 9-fold up-regulation of a gene encoding a fucoxanthin chlorophyll a,c-binding protein. Expression of the D1 protein encoding gene psbA was ca. 1.5-fold up-regulated at −1 °C, whereas expression levels of other genes from Photosystem II (psbC, psbU, psbO), as well as rbcL, the gene encoding the Rubisco large subunit were similar at both temperatures. However, a 2-fold up-regulation of a plastid glyceraldehyde-P dehydrogenase at −1 °C indicated enhanced Calvin cycle activity. This study revealed for the first time that a polar diatom could efficiently acclimate photosynthesis over a wide range of polar temperatures given enough time. Acclimation of photosynthesis at −1 °C was probably regulated similarly to high light acclimation.  相似文献   

16.
The effect of temperature and oxygen on diazotrophic growth of the thermophilic cyanobacterium HTF (High Temperature Form) Chlorogloeopsis was investigated using cells grown in light-limited continuous culture at a dilution rate of 0.02 h-1. Diazotrophy was more sensitive to elevated temperatures than growth with combined nitrogen. The maximum temperature for growth of cultures gassed with CO2-enriched air was more than 55 °C but less than 60 °C with N2 as the sole nitrogen source, but between 60°C and 65°C when nitrate was present in the medium. The effect of temperature on nitrogenase activity, photosynthesis and respiration in the dark was determined using cells grown at 55°C. Maximal rates of all three processes were observed at 55°C and rates at 60°C during shortterm incubations were not less than 75% of the maximum. However, nitrogenase activity at 60°C was unstable and decayed at a rate of 2.2 h-1 under air and at 0.3 h-1 under argon. Photosynthesis and respiration were more stable at 60°C than anoxic nitrogen fixation. The upper temperature limits for diazotrophic growth thus seem to be set by the stability of nitrogenase.Abbreviations chl chlorophyll a - DCMU N-(3,4-dichlorophenyl) N,N-dimethylurea - Taps N-tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid  相似文献   

17.
Saccharomyces cerevisiae was cultured under anaerobiosis in semi-complete medium to which either palmitoleic or oleic acid was added. Cells were grown at 20 °C or 30 °C. The levels of total lipids, total sterols, and phospholipids were higher in cells grown at 20 °C than at 30 °C. The effects of nystatin (NYS), amphotericin B (AMB), and amphotericin B methyl ester (AME) were evaluated by determining cell viability and liberation of intracellular compounds. The loss of cell viability is higher in the first 30 minutes of incubation with the drugs and is the same regardless of the type of cells obtained. Low molecular weight compounds and ions such as K+ are liberated a few minutes after incubation with the drugs whereas proteins and substances absorbing at 260 nm are liberated later. Phosphate liberation comes after K+ and before compounds of higher molecular weights.  相似文献   

18.
The influence of the growth medium and the growth temperature on the heat resistance of Citrobacter freundii has been established. Logarithmic growth phase cells grown on rich media have a higher heat resistance than cells of the same phase grown on minimal media. This finding was independent of type of carbon source in the growth medium, but the kind of carbon source has a definite influence on the heat resistance. Logarithmic phase cells grown at 37°C are much more heat stable than cells grown at 20 or 41°C. Stationary growth phase cells are much more heat resistant than logarithmic phase cells, whereas Mg2+-or glucose-starved cells are even slightly more heat stable than stationary phase cells.  相似文献   

19.
The properties of the ATPase in the facultative thermophile, Bacillus coagulans, grown at thermophilic or mesophilic temperatures were similar. Arrhenius plots did not show discontinuities indicative of thermoadaptation. Magnesium stimulation of the enzyme was dependant on the assay temperature but independant of the growth temperature. The ATPase in cells grown at 35°C or 55°C was equally thermostable at 65°C. In contrast, the ATPase from the mesophile, Bacillus megaterium (T max=42°C) was completely inactivated at 55°C in 5 min.  相似文献   

20.
Summary Cotton (Gossypium hirsutum L. var. DP 61) was grown at different temperatures during 12-h light periods, with either 1800–2000 mol photons m–2 s–1 (high photon flux density, PFD) or 1000–1100 mol m–2 s–1 (medium PFD) incident on the plants. Night temperature was 25°C in all experiments. Growth was less when leaf temperatures were below 30°C during illumination, the effect being greater in plants grown with high PFD (Winter and Königer 1991). Leaf pigment composition and the photon-use efficiency of photosynthesis were analysed to assess whether plants grown with high PFD and suboptimal temperatures experienced a higher degree of high irradiance stress during development than those grown with medium PFD. The chlorophyll content per unit area was 3–4 times less, and the content of total carotenoids about 2 times less, with the proportion of the three xanthophylls zeaxanthin + antheraxanthin + violaxanthin being greater in leaves grown at 20–21°C than in leaves grown at 33–34°C. In leaves from plants grown at 21°C and 1800–2000 mol photons m–2 s–1, zeaxanthin accounted for as much as 34% of total carotenoids in the middle of the photoperiod, the highest level recorded in this study. This finding is consistent with a protective role of zeaxanthin under conditions of excess light. At the lower temperatures, the photochemical efficiency of photosystem II, measured as the ratio of variable to maximum fluorescence yield (F V/F M) after 12-h dark adaptation, was 0.76 in medium PFD plants and 0.75 in high PFD plants compared with 0.83 and 0.79, respectively, at the higher temperatures. The photon-use efficiency of O2 evolution () based on absorbed light between 630 and 700nm, decreased with decrease in temperature from 0.102 to 0.07 under conditions of high PFD, but remained above 0.1 at medium PFD. Owing to compensatory reactions in these long-term growth experiments, sustained differences inF V/F M and were much less pronounced than the differences in chlorophyll content and dry matter, particularly in plants which had developed at high PFD and low temperature. In fact, in these plants, which exhibited pronounced photobleaching, a largely functional photosynthetic apparatus was still maintained in cells adjacent to the lower leaf surfaces. This was indicated by measurements of photon use efficiencies of photosynthetic O2 evolution with leaves illuminated first at the upper, and then at the lower surface.Abbreviations F O yield of dark level fluorescence - F M maximum yield of fluorescence, induced in a pulse of saturating light - F V yield of variable fluorescence (=F M-F o) - PFD photon flux density - iw photon use efficiency of O2 evolution based on white (400–700 nm) incident light - ir photon use efficiency based on red (630–700 nm) incident light - aw photon use efficiency based on white absorbed light - ar photon use efficiency based on red absorbed light  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号