首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have phenotypically and molecularly analyzed the cutlet locus in Drosophila. Homozygous cutlet flies exhibit abnormal development of a subset of adult tissues, including the eye, wing, and ovary. We show that abnormal development of these tissues is due to a defect in normal cell growth. Surprisingly, cell growth is affected in all developing precursor tissues in cutlet mutant animals, including those that give rise to phenotypically wild-type adult structures. The cutlet gene encodes a Drosophila homologue of yeast CHL12 and has similarity to mammalian replication factor C. In addition, cutlet genetically interacts with multiple subunits of Drosophila replication factor C. Our results suggest that the cutlet gene product acts as an accessory factor for DNA replication and has different requirements for the formation of various adult structures during Drosophila development.  相似文献   

2.
Many Drosophila genes have now been identified with substantial sequence similarity to vertebrate protooncogenes and growth factors. Some of these have been isolated directly by cross-hybridization with vertebrate probes and some have been recognized in the sequences of genes cloned because of their intiguing mutant phenotypes. An example of a gene isolated for its interesting development functions but with homology to a vertebrate growth factor is the Drosophila decapentaplegic gene (dpp). An example of a Drosophila gene isolated by virtue of its sequence conservation is the vgr/60A gene. Both dpp and vgr/60A are members of the transforming growth factor-beta family and are most similar to the human bone morphogenetic proteins. The regulation of the dpp gene by several different groups of pattern formation genes including the dorsal/ventral group, the terminal group, the segment polarity genes, and the homeotic genes indicates that many events in embryogenesis require the cell to cell communication mediated by the secreted dpp protein. The temporal and spatial pattern of vgr/60A expression differs from that of dpp indicating that it may be regulated by different pattern information genes. The experimental advantages of the Drosophila system should permit a better understanding of the importance of growth factor homologs in specific developmental events, aid in establishing the functional interactions between these regulatory molecules, and identify new genes that are important for the biological functions of growth factors. It is likely that some of the newly identified genes will have vertebrate homologs and the analysis of these may be helpful in studies on vertebrate development and tumor biology.  相似文献   

3.
4.
The six-subunit origin recognition complex (ORC) is a DNA replication initiator protein in eukaryotes that defines the localization of the origins of replication. We report here that the smallest Drosophila ORC subunit, Orc6, is a DNA binding protein that is necessary for the DNA binding and DNA replication functions of ORC. Orc6 binds DNA fragments containing Drosophila origins of DNA replication and prefers poly(dA) sequences. We have defined the core replication domain of the Orc6 protein which does not include the C-terminal domain. Further analysis of the core replication domain identified amino acids that are important for DNA binding by Orc6. Alterations of these amino acids render reconstituted Drosophila ORC inactive in DNA binding and DNA replication. We show that mutant Orc6 proteins do not associate with chromosomes in vivo and have dominant negative effects in Drosophila tissue culture cells. Our studies provide a molecular analysis for the functional requirement of Orc6 in replicative functions of ORC in Drosophila and suggest that Orc6 may contribute to the sequence preferences of ORC in targeting to the origins.  相似文献   

5.
In comparisons across Drosophila species, faster pre-adult development is phenotypically correlated with increased pre-adult competitive ability, suggesting that these two traits may also be evolutionary correlates of one another. However, correlations between traits within- and among- species can differ, and in most cases it is the within-species genetic correlations that are likely to act as constraints on adaptive evolution. Moreover, laboratory studies on Drosophila melanogaster have shown that the suite of traits that evolves in populations subjected to selection for faster development is the opposite of the traits that evolve in populations selected for increased pre-adult competitive ability. This observation led us to propose that, despite having a higher carrying capacity and a reduced minimum food requirement for completing development than controls, D. melanogaster populations subjected to selection for faster development should have lower competitive ability than controls owing to their reduced larval feeding rates and urea tolerance. Here, we describe results from pre-adult competition experiments that clearly show that the faster developing populations are substantially poorer competitors than controls when reared at high density in competition with a marked mutant strain. We briefly discuss these results in the context of different formulations of density-dependent selection theory.  相似文献   

6.
7.
The Drosophila Hedgehog protein and its vertebrate counterpart Sonic hedgehog are required for a wide variety of patterning events throughout development. Hedgehog proteins are secreted from cells and undergo autocatalytic cleavage and cholesterol modification to produce a mature signaling domain. This domain of Sonic hedgehog has recently been shown to acquire an N-terminal acyl group in cell culture. We have investigated the in vivo role that such acylation might play in appendage patterning in mouse and Drosophila; in both species Hedgehog proteins define a posterior domain of the limb or wing. A mutant form of Sonic hedgehog that cannot undergo acylation retains significant ability to repattern the mouse limb. However, the corresponding mutation in Drosophila Hedgehog renders it inactive in vivo, although it is normally processed. Furthermore, overexpression of the mutant form has dominant negative effects on Hedgehog signaling. These data suggest that the importance of the N-terminal cysteine of mature Hedgehog in patterning appendages differs between species.  相似文献   

8.
Caspases are main effectors of apoptosis in metazoans. Genome analysis indicates that there are seven caspases in Drosophila, six of which have been previously characterized. Here we describe the cloning and characterization of the last Drosophila caspase, DAMM. Similar to mammalian effector caspases, DAMM lacks a long prodomain. We show that the DAMM precursor, along with the caspases DRONC and DECAY, is partially processed in cells undergoing apoptosis. Recombinant DAMM produced in Escherichia coli shows significant catalytic activity on a pentapeptide caspase substrate. Low levels of damm mRNA are ubiquitously expressed in Drosophila embryos during early stages of development. Relatively high levels of damm mRNA are detected in larval salivary glands and midgut, and in adult egg chambers. Ectopic expression of DAMM in cultured cells induces apoptosis, and similarly, transgenic overexpression of DAMM, but not of a catalytically inactive DAMM mutant, in Drosophila results in a rough eye phenotype. We demonstrate that expression of the catalytically inactive DAMM mutant protein significantly suppresses the rough eye phenotype due to the overexpression of HID, suggesting that DAMM may be required in a hid-mediated cell death pathway.  相似文献   

9.
The discovery that several inherited human diseases are caused by mtDNA depletion has led to an increased interest in the replication and maintenance of mtDNA. We have isolated a new mutant in the lopo (low power) gene from Drosophila melanogaster affecting the mitochondrial single-stranded DNA-binding protein (mtSSB), which is one of the key components in mtDNA replication and maintenance. lopo(1) mutants die late in the third instar before completion of metamorphosis because of a failure in cell proliferation. Molecular, histochemical, and physiological experiments show a drastic decrease in mtDNA content that is coupled with the loss of respiration in these mutants. However, the number and morphology of mitochondria are not greatly affected. Immunocytochemical analysis shows that mtSSB is expressed in all tissues but is highly enriched in proliferating tissues and in the developing oocyte. lopo(1) is the first mtSSB mutant in higher eukaryotes, and its analysis demonstrates the essential function of this gene in development, providing an excellent model to study mitochondrial biogenesis in animals.  相似文献   

10.
11.
Summary Cell cultures prepared from embryos of a control stock of Drosophila melanogaster respond to ultraviolet light with a decline and subsequent recovery both of thymidine incorporation and in the ability to synthesize nascent DNA in long segments. Recovery of one or both capacities is absent or diminished in irradiated cells from ten nonallelic mutants that are defective in DNA repair and from four of five nonallelic mutagen-sensitive mutants that exhibit normal repair capabilities. Recovery of thymidine incorporation is not observed in nine of ten DNA repair-defective mutants. On the other hand, partial or complete recovery of incorporation is observed in all but one repair-proficient mutagen-sensitive mutant.Irradiated cells from two mutants that display no excision capacity exhibit a gradual arrest of thymidine incorporation within 20 h after the initial decline. This arrest of incorporation is not observed in mutants exhibiting only partial defects in excision repair.Recovery of the ability to synthesize nascent DNA in long segments is normal in cells from the two mutants that display no excision capacity, indicating that recovery does not depend upon the excision of pyrimidine dimers from cellular DNA. Recovery of that ability is not observed, however, in cells from one partially excision-defective mutant, two of three postreplication repair-defective mutants, two of four mutants defective in both excision and postreplication repair, and one of five repair-proficient mutagen-sensitive mutants. These results indicate that recovery of normal DNA replication in irradiated Drosophila cells depends upon the activity of several functions.Abbreviation used UV ultraviolet light — principal wavelength 254 nm  相似文献   

12.
Gene activation and DNA binding by Drosophila Ubx and abd-A proteins   总被引:18,自引:0,他引:18  
M L Samson  L Jackson-Grusby  R Brent 《Cell》1989,57(6):1045-1052
The Ubx and abd-A gene products are required for proper development of thoracic and abdominal structures in Drosophila. We expressed LexA-Ubx and LexA-abdA fusion proteins in yeast. These proteins activated expression of target genes that carried either upstream LexA operators or upstream Ubx binding sites. Both proteins contain homeodomains. Experiments with mutant fusion proteins show that the homeodomain is not required for the proteins to form dimers or enter the nucleus, and that, when DNA binding is provided by the LexA moiety, the homeodomain is not required for gene activation. Our results suggest that the homeodomain is necessary for these proteins to bind Ubx sites, but that the homeodomain does not contact DNA exactly like bacterial helix-turn-helix proteins. Finally, our data suggest that gene activation by these proteins is a simple consequence of their binding to DNA, while negative gene regulation requires that these proteins act together with other Drosophila gene products.  相似文献   

13.
14.
EM Lee  TT Trinh  HJ Shim  SY Park  TT Nguyen  MJ Kim  YH Song 《DNA Repair》2012,11(9):741-752
ATR and Chk1 are protein kinases that perform major roles in the DNA replication checkpoint that delays entry into mitosis in response to DNA replication stress by hydroxyurea (HU) treatment. They are also activated by ionizing radiation (IR) that induces DNA double-strand breaks. Studies in human tissue culture and Xenopus egg extracts identified Claspin as a mediator that increased the activity of ATR toward Chk1. Because the in vivo functions of Claspin are not known, we generated Drosophila lines that each contained a mutated Claspin gene. Similar to the Drosophila mei-41/ATR and grp/Chk1 mutants, embryos of the Claspin mutant showed defects in checkpoint activation, which normally occurs in early embryogenesis in response to incomplete DNA replication. Additionally, Claspin mutant larvae were defective in G2 arrest after HU treatment; however, the defects were less severe than those of the mei-41/ATR and grp/Chk1 mutants. In contrast, IR-induced G2 arrest, which was severely defective in mei-41/ATR and grp/Chk1 mutants, occurred normally in the Claspin mutant. We also found that Claspin was phosphorylated in response to HU and IR treatment and a hyperphosphorylated form of Claspin was generated only after HU treatment in mei-41/ATR-dependent and tefu/ATM-independent way. In summary, our data suggest that Drosophila Claspin is required for the G2 arrest that is induced by DNA replication stress but not by DNA double-strand breaks, and this difference is probably due to distinct phosphorylation statuses.  相似文献   

15.
16.
Zhang P  Wu Y  Belenkaya TY  Lin X 《Cell research》2011,21(12):1677-1690
Drosophila Wingless (Wg) acts as a morphogen during development. Wg secretion is controlled by a seven-pass transmembrane cargo Wntless (Wls). We have recently identified retromer as a key regulator involved in Wls trafficking. As sorting nexin (SNX) molecules are essential components of the retromer complex, we hypothesized that specific SNX(s) is required for retromer-mediated Wnt secretion. Here, we generated Drosophila mutants for all of the eight snx members, and identified Drosophila SNX3 (DSNX3) as an essential molecule required for Wg secretion. We show that Wg secretion and its signaling activity are defective in Dsnx3 mutant clones in wing discs. Wg levels in the culture medium of Dsnx3-depleted S2 cells are also markedly reduced. Importantly, Wls levels are strikingly reduced in Dsnx3 mutant cells, and overexpression of Wls can rescue the Wg secretion defect observed in Dsnx3 mutant cells. Moreover, DSNX3 can interact with the retromer component Vps35, and co-localize with Vps35 in early endosomes. These data indicate that DSNX3 regulates Wg secretion via retromer-dependent Wls recycling. In contrast, we found that Wg secretion is not defective in cells mutant for Drosophila snx1 and snx6, two components of the classical retromer complex. Ectopic expression of DSNX1 or DSNX6 fails to rescue the Wg secretion defect in Dsnx3 mutant wing discs and in Dsnx3 dsRNA-treated S2 cells. These data demonstrate the specificity of the DSNX3-retromer complex in Wls recycling. Together, our findings suggest that DSNX3 acts as a cargo-specific component of retromer, which is required for endocytic recycling of Wls and Wg/Wnt secretion.  相似文献   

17.
In vivo analysis of Drosophila melanogaster has enhanced our understanding of many biological processes, notably the mechanisms of heredity and development. While in vivo analysis of mutants has been a strength of the field, analyzing fly cells in culture is valuable for cell biological, biochemical and whole genome approaches in which large numbers of homogeneous cells are required. An efficient genetic method to derive Drosophila cell lines using expression of an oncogenic form of Ras (Ras(V12)) has been developed. Mutations in tumor suppressors, which are known to cause cell hyperproliferation in vivo, could provide another method for generating Drosophila cell lines. Here we screened Drosophila tumor suppressor mutations to test if they promoted cell proliferation in vitro. We generated primary cultures and determined when patches of proliferating cells first emerged. These cells emerged on average at 37 days in wild-type cultures. Using this assay we found that a Pten mutation had a strong effect. Patches of proliferating cells appeared on average at 11 days and the cultures became confluent in about 3 weeks, which is similar to the timeframe for cultures expressing Ras(V12). Three Pten mutant cell lines were generated and these have now been cultured for between 250 and 630 cell doublings suggesting the life of the mutant cells is likely to be indefinite. We conclude that the use of Pten mutants is a powerful means to derive new Drosophila cell lines.  相似文献   

18.
Drosophila tyrosine hydroxylase (DTH) is a key enzyme in dopamine (DA) biosynthesis, which is expressed in neural and hypodermal DA-synthesizing cells. We previously reported that two DTH isoforms are produced in flies through tissue-specific alternative splicing that show distinct regulatory properties. We have now selectively expressed each DTH isoform in vivo in a pale (ple, i.e., DTH-deficient) mutant background. We show that the embryonic lethality of ple can be rescued by expression of the hypodermal, but not the neural, DTH isoform in all DA cells, indicating that the hypoderm- isoform is absolutely required for cuticle biosynthesis and survival in Drosophila. In addition, we report new observations on the consequences of DTH overexpression in the CNS and hypoderm. Our results provide evidence that tissue-specific alternative splicing of the DTH gene is a vital process in Drosophila development.  相似文献   

19.
Drosophila tyrosine hydroxylase (DTH) is a key enzyme in dopamine (DA) biosynthesis, which is expressed in neural and hypodermal DA-synthesizing cells. We previously reported that two DTH isoforms are produced in flies through tissue-specific alternative splicing that show distinct regulatory properties. We have now selectively expressed each DTH isoform in vivo in a pale (ple, i.e., DTH-deficient) mutant background. We show that the embryonic lethality of ple can be rescued by expression of the hypodermal, but not the neural, DTH isoform in all DA cells, indicating that the hypoderm- isoform is absolutely required for cuticle biosynthesis and survival in Drosophila. In addition, we report new observations on the consequences of DTH overexpression in the CNS and hypoderm. Our results provide evidence that tissue-specific alternative splicing of the DTH gene is a vital process in Drosophila development.  相似文献   

20.
DNA Ligase IV has a crucial role in double-strand break (DSB) repair through nonhomologous end joining (NHEJ). Most notably, its inactivation leads to embryonic lethality in mammals. To elucidate the role of DNA Ligase IV (Lig4) in DSB repair in a multicellular lower eukaryote, we generated viable Lig4-deficient Drosophila strains by P-element-mediated mutagenesis. Embryos and larvae of mutant lines are hypersensitive to ionizing radiation but hardly so to methyl methanesulfonate (MMS) or the crosslinking agent cis-diamminedichloroplatinum (cisDDP). To determine the relative contribution of NHEJ and homologous recombination (HR) in Drosophila, Lig4; Rad54 double-mutant flies were generated. Survival studies demonstrated that both HR and NHEJ have a major role in DSB repair. The synergistic increase in sensitivity seen in the double mutant, in comparison with both single mutants, indicates that both pathways partially overlap. However, during the very first hours after fertilization NHEJ has a minor role in DSB repair after exposure to ionizing radiation. Throughout the first stages of embryogenesis of the fly, HR is the predominant pathway in DSB repair. At late stages of development NHEJ also becomes less important. The residual survival of double mutants after irradiation strongly suggests the existence of a third pathway for the repair of DSBs in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号