首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drugs and food exert their reinforcing effects in part by increasing dopamine (DA) in limbic regions, which has generated interest in understanding how drug abuse/addiction relates to obesity. Here, we integrate findings from positron emission tomography imaging studies on DA's role in drug abuse/addiction and in obesity and propose a common model for these two conditions. Both in abuse/addiction and in obesity, there is an enhanced value of one type of reinforcer (drugs and food, respectively) at the expense of other reinforcers, which is a consequence of conditioned learning and resetting of reward thresholds secondary to repeated stimulation by drugs (abuse/addiction) and by large quantities of palatable food (obesity) in vulnerable individuals (i.e. genetic factors). In this model, during exposure to the reinforcer or to conditioned cues, the expected reward (processed by memory circuits) overactivates the reward and motivation circuits while inhibiting the cognitive control circuit, resulting in an inability to inhibit the drive to consume the drug or food despite attempts to do so. These neuronal circuits, which are modulated by DA, interact with one another so that disruption in one circuit can be buffered by another, which highlights the need of multiprong approaches in the treatment of addiction and obesity.  相似文献   

2.
    
Objective: To investigate the response of the brains of women to the ingestion of a meal. Research Methods and Procedures: We used measures of regional cerebral blood flow (rCBF), a marker of neuronal activity, by positron emission tomography to describe the functional anatomy of satiation, i.e., the response to a liquid meal in the context of extreme hunger (36‐hour fast) in 10 lean (BMI ≤ 25 kg/m2; 32 ± 10 years old, 61 ± 7 kg; mean ± SD) and 12 obese (BMI ≥ 35 kg/m2; 30 ± 7 years old, 110 ± 14 kg) women. Results: In lean and obese women, satiation produced significant increases in rCBF in the vicinity of the prefrontal cortex (p < 0.005). Satiation also produced significant decreases in rCBF in several regions including the thalamus, insular cortex, parahippocampal gyrus, temporal cortex, and cerebellum (in lean and obese women), and hypothalamus, cingulate, nucleus accumbens, and amygdala (in obese women only; all p < 0.005). Compared with lean women, obese women had significantly greater increases in rCBF in the ventral prefrontal cortex and had significantly greater decreases in the paralimbic areas and in areas of the frontal and temporal cortex. Discussion: This study indicates that satiation elicits differential brain responses in obese and lean women. It also lends additional support to the hypothesis that the paralimbic areas participate in a central orexigenic network modulated by the prefrontal cortex through feedback loops.  相似文献   

3.
    
Objective: Obesity is associated with increased risk for cardiovascular diseases and peripheral endothelial dysfunction. We examined whether myocardial vasoreactivity and coronary‐flow response to insulin stimulation are altered in obesity. Research Methods and Procedures: Myocardial blood flow was quantitated in 10 obese men (body mass index, 33.6 ± 1.9 kg/m2) and 10 healthy matched non‐obese men (body mass index, 24.2 ± 1.9 kg/m2), using positron emission tomography and oxygen‐15‐labeled water. The measurements were performed basally and during adenosine infusion (140 μg/kg per minute), with or without simultaneous physiological (1 mU/kg per minute) and supraphysiological (5 mU/kg per minute) hyperinsulinemia. Results: Basal myocardial blood flow was not significantly different between obese and non‐obese subjects. Adenosine‐stimulated flow was blunted in obese (3.2 ± 0.6 mL/g per minute) when compared with non‐obese subjects (4.0 ± 1.1 mL/g per minute, p < 0.05). Simultaneous physiological hyperinsulinemia increased adenosine‐stimulated myocardial flow significantly in both groups (to 4.03 ± 1.24 and 4.85 ± 1.04 mL/g per minute in obese and non‐obese men, respectively; p < 0.05 vs. adenosine). Supraphysiological hyperinsulinemia further enhanced the adenosine‐stimulated flow in non‐obese subjects (to 5.56 ± 0.98 mL/g per minute; p < 0.05) but not in obese subjects. Discussion: Young obese, healthy men have reduced myocardial vasoreactivity, which may represent an early precursor of future coronary artery disease. Additionally, insulin‐induced enhancement of myocardial blood flow is blunted in obesity. Thus, endothelial dysfunction seems to also characterize myocardial vasculature of obese subjects.  相似文献   

4.
Carbonic anhydrase IX (CA-IX) is a marker for tumor hypoxia, and its expression is negatively correlated with patient survival. CA-IX represents a potential target for eliminating hypoxic cancers. We synthesized fluorinated cationic sulfonamide inhibitors 13 designed to target CA-IX. The binding affinity for CA-IX ranged from 0.22 to 0.96?μM. We evaluated compound 2 as a diagnostic PET imaging agent. Compound 2 was radiolabeled with 18F in 10?±?4% decay-corrected radiochemical yield with 85.1?±?70.3 GBq/μmol specific activity and >98% radiochemical purity. 18F-labeled 2 was stable in mouse plasma at 37?°C after 1?h incubation. PET/CT imaging was conducted at 1?h post-injection in a human colorectal cancer xenograft model. 18F-labeled 2 cleared through hepatobiliary and renal pathways. Tumor uptake was approximately 0.41?±?0.06% ID/g, with a tumor-to-muscle ratio of 1.99?±?0.25. Subsequently, tumor xenografts were visualized with moderate contrast. This study demonstrates the use of a cationic motif for conferring isoform selectively for CA-IX imaging agents.  相似文献   

5.
鲍超 《激光生物学报》2003,12(3):195-200
简述了PET的原理和系统;PET运用标记生命物质C,H,O,N的放射性同位素—正电子发射核素,所以PET可以在不影响生物体生理功能的情况下,快速、实时显示活生物体(包括人体)的代谢过程等生命活动。讨论了PET在肿瘤学、神经系统疾病和脑功能研究、植物生理功能研究中的应用问题。  相似文献   

6.
    
Decreased brain content of DHA, the most abundant long-chain n-3 polyunsaturated fatty acid (n-3 LCPUFA) in the brain, is accompanied by severe neurosensorial impairments linked to impaired neurotransmission and impaired brain glucose utilization. In the present study, we hypothesized that increasing n-3 LCPUFA intake at an early age may help to prevent or correct the glucose hypometabolism observed during aging and age-related cognitive decline. The effects of 12 months’ supplementation with n-3 LCPUFA on brain glucose utilization assessed by positron emission tomography was tested in young adult mouse lemurs (Microcebus murinus). Cognitive function was tested in parallel in the same animals. Lemurs supplemented with n-3 LCPUFA had higher brain glucose uptake and cerebral metabolic rate of glucose compared with controls in all brain regions. The n-3 LCPUFA-supplemented animals also had higher exploratory activity in an open-field task and lower evidence of anxiety in the Barnes maze.jlr Our results demonstrate for the first time in a nonhuman primate that n-3 LCPUFA supplementation increases brain glucose uptake and metabolism and concomitantly reduces anxiety.  相似文献   

7.
    
Near-infrared photoimmunotherapy (NIR-PIT) induces immediate cell death after irradiation with near-infrared (NIR) light. Acute therapeutic effects caused by NIR-PIT before the change of tumor size is essential to be monitored by imaging modalities. We summarized and compared the imaging modalities for evaluating acute therapeutic effects after NIR-PIT, and aimed to provide a better understanding of advantages and disadvantages of each modality for evaluation in clinical applications. Fluorescence imaging and fluorescence lifetime, with high resolution, remains high accumulation of fluorescence dyes in the normal organs. High resolution and noninvasiveness are the major advantages of magnetic resonance imaging, while 18F-fluorodeoxyglucose positron emission tomography provides information about the glucose metabolism. Optical coherence tomography provided more information about the blood vessels. Thus, all of the imaging modalities play an important role in evaluating acute therapeutic effects after NIR-PIT. Clinicians should choose suitable modality according to specific purpose and conditions in clinical application.  相似文献   

8.
Background. In idiopathic dilated cardiomyopathy (IDC) an imbalance between myocardial oxygen consumption and supply has been postulated. Subclinical myocardial ischaemia may contribute to progressive deterioration of left ventricular function. The relation between regional myocardial perfusion reserve (MPR) and contractile performance was investigated. Methods. Patients with newly diagnosed IDC underwent positron emission tomography (PET) scanning using both 13N-ammonia as a perfusion tracer (baseline and dypiridamole stress), and 18F-fluorodeoxyglucose viability tracer and a dobutamine stress MRI. MPR (assessed by PET) as well as wall motion score (WMS, assessed by MRI) were evaluated in a 17-segment model. Results. Twenty-two patients were included (age 49±11 years; 15 males, LVEF 33±10%). With MRI, a total of 305 segments could be analysed. Wall motion abnormalities at rest were present in 127 (35.5%) segments and in 103 (29.9%) during dobutamine stress. Twenty-one segments deteriorated during stress and 43 improved. MPR was significantly higher in those segments that improved, compared with those that did not change or were impaired during stress (1.87±0.04 vs. 1.56± 0.07 p<0.01.) Conclusion. Signs of regional ischaemia were clearly present in IDC patients. Ischaemic regions displayed impaired contractility during stress. This suggests that impaired oxygen supply contributes to cardiac dysfunction in IDC. (Neth Heart J 2009;17:470–4.)  相似文献   

9.
多方式认知功能成像研究进展   总被引:4,自引:1,他引:4       下载免费PDF全文
对大脑结构和功能的深入研究要求认知功能成像技术同时具有高时间分辨率和高空间分辨率.多方式认知功能成像通过不同成像技术fMRI/PET和EEG/MEG的结合,能够同时在空间定位和时间过程上研究大脑认知活动的动态过程.多方式认知功能成像已经被成功地应用于选择性注意、视觉通路、随意运动和语义加工等的研究,并揭示了相关大脑活动的空间和时间特征.今后的研究将进一步提高多方式认知功能成像的时空分辨率和准确性,以更深入地探索认知功能的神经机制.  相似文献   

10.
The present study investigated a recently developed benzodiazepine, midazolam, as an intravenous adjuvant to ketamine in infant monkeys undergoing prolonged sedation during positron emission tomography of the brain and heart. Subjects were two rhesus macaque (Macaca mulatta) and ten vervet monkeys (Cercopithecus aethiops sabaeus) ranging in age from 26 to 260 days. Midazolam was an effective intravenous adjuvant to ketamine. This treatment regime resulted in complete immobilization of the animals. Ketamine infusion rates did not vary significantly with age for either species. Sensitivity to midazolam appeared to be age-dependent in vervets because significantly lower dose rates were sufficient to maintain anesthesia in older animals. For rhesus monkeys, midazolam dose rates decreased until approximately 4 months of age, and increased gradually thereafter. © 1993 Wiley-Liss, Inc.  相似文献   

11.
《Biomarkers》2013,18(6):532-538
Context: Scanty reports have focused on FDG-PET after radiofrequency ablation (RFA), for recurrence of hepatic metastases. Objective: To assess FDG-PET diagnostic accuracy on detection of recurrent hepatic lesions. Methods: After a comprehensive search of PubMed and EMBASE, we performed a patient-based diagnostic meta-analysis of post-RFA FDG-PET. Results: Across nine included articles, independent, random-effects sensitivity and specificity were 0.73(0.50–0.88) and 0.85(0.72–0.93), respectively. A symmetrical SROC curve was produced with no significant heterogeneity. Specificity was optimal for surgical RFA and colorectal origin of metastases. Conclusion: Synthesis of published evidence suggests PET/CT as an appropriate tool for optimizing post-ablation follow-up.  相似文献   

12.
A novel series of compounds derived from the high-affinity nicotinic acetylcholine receptor (nAChR) ligand, 5-(2-(4-pyridinyl)vinyl)-6-chloro-3-((1-methyl-2-(S)-pyrrolidinyl)methoxy)pyridine (Me-p-PVC), originally developed by Abbott Laboratories, was characterized in vitro in nAChR binding assays at 37 degrees C to show K(i) values in the range of 9-611 pm. Several compounds of this series were radiolabeled with (11)C and evaluated in vivo in mice and monkeys as potential candidates for PET imaging of nAChRs. [(11)C]Me-p-PVC (K(i) =56 pm at 37 degrees C; logD = 1.6) was identified as a radioligand suitable for the in vivo imaging of the alpha 4 beta 2* nAChR subtype. Compared with 2-[(18)F]FA, a PET radioligand that has been successfully used in humans and is characterized by a slow kinetic of brain distribution, [(11)C]Me-p-PVC is more lipophilic. As a result, [(11)C]Me-p-PVC accumulated in the brain more rapidly than 2-[(18)F]FA. Pharmacological evaluation of Me-p-PVC in mice demonstrated that the toxicity of this compound was comparable with or lower than that of 2-FA. Taken together, these results suggest that [(11)C]Me-p-PVC is a promising PET radioligand for studying nAChR occupancy by endogenous and exogenous ligands in the brain in vivo.  相似文献   

13.
A novel radioligand, 6-chloro-3-((2-( S )-azetidinyl)methoxy)-5-(2-fluoropyridin-4-yl)pyridine (NIDA522131), for imaging extrathalamic nicotinic acetylcholine receptors (nAChRs) was characterized in vitro and in vivo using positron emission tomography. The Kd and T1/2 of dissociation of NIDA522131 binding measured at 37°C in vitro were 4.9 ± 0.4 pmol/L and 81 ± 5 min, respectively. The patterns of radioactivity distribution in monkey brain in vivo was similar to that of 2-[18F]fluoro-3-(2( S )-azetidinylmethoxy)pyridine (2FA), a radioligand that has been successfully used in humans, and matched the α4β2* nAChRs distribution. Comparison between [18F]NIDA522131 and 2FA demonstrated better in vivo binding properties of the new radioligand and substantially greater radioactivity accumulation in brain. Consistent with [18F]NIDA522131 elevated affinity for nAChRs and its increased lipophilicity, both, the total and non-displaceable distribution volumes were substantially higher than those of 2FA. Estimated binding potential values in different brain regions, characterizing the specificity of receptor binding, were 3–4 fold higher for [18F]NIDA522131 than those of 2FA. Pharmacological evaluation in mice demonstrated a toxicity that was comparable to 2FA and is in agreement with a 2300 fold higher affinity at α4β2* versus α3β4* nAChRs. These results suggest that [18F]NIDA522131 is a promising positron emission tomography radioligand for studying extrathalamic nAChR in humans.  相似文献   

14.
Activated microglia are an important feature of many neurological diseases and can be imaged in vivo using 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide (PK11195), a ligand that binds the peripheral benzodiazepine receptor (PBR). N-(2,5-dimethoxybenzyl)-N-(5-fluoro-2-phenoxyphenyl) acetamide (DAA1106) is a new PBR-specific ligand that has been reported to bind to PBR with higher affinity compared with PK11195. We hypothesized that this high-affinity binding of DAA1106 to PBR will enable better delineation of microglia in vivo using positron emission tomography. [(3)H]DAA1106 showed higher binding affinity compared with [(3)H](R)-PK11195 in brain tissue derived from normal rats and the rats injected intrastriatally with 6-hydroxydopamine or lipopolysaccharide at the site of the lesion. Immunohistochemistry combined with autoradiography in brain tissues as well as correlation analyses showed that increased [(3)H]DAA1106 binding corresponded mainly to activated microglia. Finally, ex vivo autoradiography and positron emission tomography imaging in vivo showed greater retention of [(11)C]DAA1106 compared with [(11)C](R)-PK11195 in animals injected with either lipopolysaccaride or 6-hydroxydopamine at the site of lesion. These results indicate that DAA1106 binds with higher affinity to microglia in rat models of neuroinflammation when compared with PK11195, suggesting that [(11)C]DAA1106 may represent a significant improvement over [(11)C](R)-PK11195 for in vivo imaging of activated microglia in human neuroinflammatory disorders.  相似文献   

15.
    
《Cell》2022,185(15):2678-2689
  相似文献   

16.
    
BackgroundThe aim of the study was to compare the TNM classification with 2-[18F]FDG PE T biological parameters of primary tumor in patients with NSCLC.Materials and methodsRetrospective analysis was performed on a group of 79 newly diagnosed NSCLC patients. PET scans were acquired on Gemini TF PET/CT scanner 60–70 min after injection of 2-[18F]FDG with the mean activity of 364 ± 75 MBq, with the area being examined from the vertex to mid-thigh. The reconstructed PET images were evaluated using MIM 7.0 Software for SUVmax, MTV and TLG values.ResultsThe analysis of the cancer stage according to TNM 8th edition showed stage IA2 in 8 patients, stage IA3 — 6 patients, stage IB — 4 patients, IIA — 3 patients, 15 patients with stage IIB, stage IIIA — 17 patients, IIIB — 5, IIIC — 5, IVA in 7 patients and stage IVB in 9 patients. The lowest TLG values of primary tumor were observed in stage IA2 (11.31 ± 15.27) and the highest in stage IIIC (1003.20 ± 953.59). The lowest value of primary tumor in SUVmax and MTV were found in stage IA2 (6.8 ± 3.8 and 1.37 ± 0.42, respectively), while the highest SUVmax of primary tumor was found in stage IIA (13.4 ± 11.4) and MTV in stage IIIC (108.15 ± 127.24).ConclusionTNM stages are characterized by different primary tumor 2-[18F]FDG PET parameters, which might complement patient outcome.  相似文献   

17.
    
Abstract

Carbonic anhydrase IX (CA IX) is selectively expressed in a range of hypoxic tumours and is a validated endogenous hypoxia marker with prognostic significance; hence, CA IX is of great interest as a molecular imaging target in oncology. In this review, we present an overview of the different imaging agents and imaging modalities that have been applied for the in vivo detection of CA IX. The imaging agents reviewed are all entries in the Molecular Imaging and Contrast Agent Database (MICAD) and comprise antibody, antibody fragments and small molecule imaging agents. The effectiveness of these agents for imaging CA IX in vivo gave variable performance; however, a number of agents proved very capable. As molecular imaging has become indispensable in current medical practice we anticipate that the clinical significance of CA IX will see continued development and improvements in imaging agents for targeting this enzyme.  相似文献   

18.
目的:利用正电子断层扫描技术(PET)成像检测一天的不同时间点C57BL/6小鼠大脑和心脏组织对18F-氟代脱氧葡萄糖(FDG)摄取的昼夜节律变化。方法:使用同窝出生的成年C57BL/6小鼠,给予12 h光照-12 h黑暗的光照周期。注射FDG后,进行X-射线计算机断层扫描(CT)和正电子发射(PET)扫描。结果:C57BL/6小鼠整个大脑摄取FDG在黑暗的中期阶段(ZT18)显著增加,与其他时期相比平均达150%;而不同个体的心脏对FDG的摄取变化大,但所测量的四个时期的平均值则相近。结论:C57BL/6小鼠大脑摄取葡萄糖具较强的昼夜节律性,而心脏对葡萄糖的摄取没有明显的节律性,且在一天的各个时间均有较大变动。  相似文献   

19.
Introduction. The role of positron emission tomography (PET) in Creutzfeldt-Jakob disease is less defined than in other neurodegenerative diseases. We studied the correlation between the uptake of 18F-florbetaben and 18F-fluorodeoxyglucose with pathological prion protein deposition in histopathology in a case.Methods. A patient with 80 y old with a rapid neurological deterioration with a confirmed diagnosis of CJD was studied. PET and MRI studies were performed between 13–20 d before the death. A region of interest analysis was performed using Statistical Parametric Mapping.Results. MRI showed atrophy with no other alterations. FDG-PET showed extensive areas of hypometabolism including left frontoparietal lobes as well as bilateral thalamus. Correlation between uptake of 18F-florbetaben and pathological prion protein deposition was r = 0.786 (p < 0.05). Otherwise, correlation between uptake of 18F-FDG and pathological prion protein was r = 0.357 (p = 0.385). Immunohistochemistry with β-amyloid did not show amyloid deposition or neuritic plaques.Conclusions. Our study supports the use of FDG-PET in the assessment of CJD. FDG-PET may be especially useful in cases of suspected CJD and negative MRI. Furthermore, this case report provides more evidence about the behavioral of amyloid tracers, and the possibility of a low-affinity binding to other non-amyloid proteins, such as the pathological prion protein, is discussed.  相似文献   

20.
    
Phosphopeptides are very useful reagents to study signal transduction pathways related with cellular protein phosphorylation/dephosphorylation. Phosphopeptides have also been identified as important drug candidates to modulate intracellular signaling mechanisms through targeting phosphotyrosine, phosphoserine, or phosphothreonine residue‐binding protein domains. In this report, we describe the development of a convenient method for the mild and sufficient radiolabeling of phosphopeptides with the short‐lived positron emitter fluorine‐18 (18F) to allow radiopharmacological studies on phosphopeptide metabolism in vivo by means of positron emission tomography (PET). Radiolabeling was accomplished via conjugation of the N‐terminus of polo‐box domain (PBD)‐binding phosphopeptide H‐Met‐Gln‐Ser‐pThr‐Pro‐Leu‐OH with the bifunctional labeling agent N‐succinimidyl‐4‐[18F]fluorobenzoate ([18F]SFB) in reproducible isolated radiochemical yields of 25–28%. Radiopharmacological evaluation in vitro and in vivo of radiolabeled phospheptide [18F]FB‐Met‐Gln‐Ser‐pThr‐Pro‐Leu‐OH [18F]‐3 and its non‐phosphorylated analog [18F]FB‐Met‐Gln‐Ser‐Thr‐Pro‐Leu‐OH [18F]‐4 involved metabolic stability, cell uptake studies, and small animal PET experiments. Radiolabeled phosphopeptide [18F]‐3 showed a remarkable high metabolic stability in vivo compared to the corresponding non‐phosphorylated peptide [18F]‐4 . The presented method indicates that radiolabeling of phosphopeptides with [18F]SFB is a promising approach for studying phosphopeptide metabolism in vivo. © 2009 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 92: 479–488, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号