首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Objectives: In ideopathic obesity, there is evidence that enhanced cortisol regeneration within abdominal subcutaneous adipose tissue may contribute to adiposity and metabolic disease. Whether the cortisol regenerating enzyme, 11β‐hydroxysteroid dehydrogenase type 1 (11βHSD1), or glucocorticoid receptor (GRα) levels are altered in other adipose depots remains uncertain. Our objective was to determine the association between 11βHSD1 and GRα mRNA levels in four distinct adipose depots and measures of obesity and the metabolic syndrome. Research Methods and Procedures: Adipose tissue biopsies were collected from subcutaneous (abdominal, thigh, gluteal) and intra‐abdominal (omental) adipose depots from 21 women. 11βHSD1 and GRα mRNA levels were measured by real‐time polymerase chain reaction. Body composition, fat distribution, fat cell size, and blood lipid, glucose, and insulin levels were measured. Results: 11βHSD1 mRNA was highest in abdominal subcutaneous (p < 0.001) and omental (p < 0.001) depots and was positively correlated with BMI and visceral adiposity in all depots. Omental 11βHSD1 correlated with percent body fat (R = 0.462, p < 0.05), fat cell size (R = 0.72, p < 0.001), and plasma triglycerides (R = 0.46, p < 0.05). Conversely, GRα mRNA was highest in omental fat (p < 0.001). GRα mRNA was negatively correlated with BMI in the abdominal subcutaneous (R = ?0.589, p < 0.05) and omental depots (R = ?0.627, p < 0.05). Omental GRα mRNA was inversely associated with visceral adiposity (R = ?0.507, p < 0.05), fat cell size (R = ?0.52, p < 0.01), and triglycerides (R = ?0.50, p < 0.05). Discussion: Obesity was associated with elevated 11βHSD1 mRNA in all adipose compartments. GRα mRNA is reduced in the omental depot with obesity. The novel correlation of 11βHSD1 with omental fat cell size, independent of obesity, suggests that intracellular cortisol regeneration is a strong predictor of hypertrophy in the omentum.  相似文献   

2.
3.
4.
5.
6.
Objective: Accumulation of visceral fat is recognized as a predictor of obesity‐related metabolic disturbances. Factors that are predominantly expressed in this depot could mediate the link between visceral obesity and associated diseases. Research Methods and Procedures: Paired subcutaneous and omental adipose tissue biopsies were obtained from 10 obese men. Gene expression was analyzed by DNA microarrays in triplicate and by real‐time polymerase chain reaction. Serum C3 and C4 were analyzed by radial immunodiffusion assays in 91 subjects representing a cross section of the general population. Body composition was measured by computerized tomography. Results: Complement components C2, C3, C4, C7, and Factor B had higher expression in omental compared with subcutaneous adipose tissue (~2‐, 4‐, 17‐, 10‐, and 7‐fold, respectively). In addition, adipsin, which belongs to the alternative pathway, and the classical pathway components C1QB, C1R, and C1S were expressed in both depots. Analysis of tissue distribution showed high expression of C2, C3, and C4 in omental adipose tissue, and only liver had higher expression of these genes. Serum C3 levels correlated with both visceral and subcutaneous adipose tissue in both men (r = 0.65 and p < 0.001 and r = 0.52 and p < 0.001, respectively) and women (r = 0.34 and p = 0.023 and r = 0.49 and p < 0.001, respectively), whereas C4 levels correlated with only visceral fat in men (r = 0.36, p = 0.015) and with both depots in women (visceral: r = 0.58, p < 0.001; and subcutaneous: r = 0.51, p < 0.001). Discussion: Recent studies show that the metabolic syndrome is associated with chronically elevated levels of several immune markers, some of which may have metabolic effects. The high expression of complement genes in intra‐abdominal adipose tissue might suggest that the complement system is involved in the development of visceral adiposity and/or contributes to the metabolic complications associated with increased visceral fat mass.  相似文献   

7.
Objective: The association between circulating vascular adhesion protein‐1 (VAP‐1) and metabolic phenotypes has been shown to be inconsistent. The current study explored whether the changes in serum VAP‐1 levels correlate with the changes in metabolic phenotypes after weight reduction surgery. Research Methods and Procedures: Clinical characteristics and serum VAP‐1 levels in 20 morbidly obese subjects (mean BMI 38.84 kg/m2) were measured before and after vertical banded gastroplasty. Results: Before surgery, serum VAP‐1 levels correlated positively with fasting plasma glucose (γ = 0.56, p = 0.01) and negatively with insulin levels (γ = ?0.51, p = 0.021). After surgery, the changes in serum VAP‐1 levels were negatively correlated with the changes in waist circumference (γ = ?0.57, p = 0.011), diastolic blood pressure (DBP) (γ = ?0.56, p = 0.015), and mean arterial pressure (γ = ?0.46, p = 0.055). In multivariate regression, serum VAP‐1 levels were negatively correlated with waist circumference (β = ?2.36, p = 0.014) and DBP (β = ?3.02, p = 0.017) after adjusting for age and gender. The change in DBP was negatively correlated with the change in VAP‐1 levels after adjusting for age, gender, and steady‐state plasma glucose. Discussion: The results suggest that VAP‐1 levels are correlated with fasting glucose and insulin levels in morbidly obese subjects. After surgery, the changes in VAP‐1 levels were associated with changes in visceral adiposity and DBP. Serum VAP‐1 might modulate DBP independently from the changes in insulin resistance in morbidly obese people.  相似文献   

8.
Objective: Our main objective was to compare the regulation of cortisol production within omental (Om) and abdominal subcutaneous (Abd sc) human adipose tissue. Methods and Procedures: Om and Abd sc adipose tissue were obtained at surgery from subjects with a wide range of BMI. Hydroxysteroid dehydrogenase (HSD) activity (3H‐cortisone and 3H‐cortisol interconversion) and expression were measured before and after organ culture with insulin and/or dexamethasone. Results: Type 1 HSD (HSD1) mRNA and reductase activity were mainly expressed within adipocytes and tightly correlated with adipocyte size within both depots. There was no depot difference in HSD1 expression or reductase activity, while cortisol inactivation and HSD2 mRNA expression (expressed in stromal cells) were higher in Om suggesting higher cortisol turnover in this depot. Culture with insulin decreased HSD reductase activity in both depots. Culture with dexamethasone plus insulin compared to insulin alone increased HSD reductase activity only in the Om depot. This depot‐specific increase in reductase activity could not be explained by an alteration in HSD1 mRNA or protein, which was paradoxically decreased. However, in Om only, hexose‐6‐phosphate dehydrogenase (H6PDH) mRNA levels were increased by culture with dexamethasone plus insulin compared to insulin alone, suggesting that higher nicotinamide adenine dinucleotide phosphate‐oxidase (NADPH) production within the endoplasmic reticulum (ER) contributed to the higher HSD reductase activity. Discussion: We conclude that in the presence of insulin, glucocorticoids cause a depot‐specific increase in the activation of cortisone within Om adipose tissue, and that this mechanism may contribute to adipocyte hypertrophy and visceral obesity.  相似文献   

9.
10.
Objective: Our goal was to test any association between human plasma circulating levels of monocyte chemoattractant protein‐1 (cMCP‐1) and insulin resistance and to compare monocyte chemoattractant protein‐1 (MCP‐1) adipose tissue gene expression and cMCP‐1 in relation with inflammatory markers. Research Methods and Procedures: cMCP‐1 was measured in n = 116 consecutive control male subjects to whom an insulin sensitivity (Si) test was performed. Circulating levels of soluble CD14, soluble tumor necrosis factor receptor type 2 (sTNFR2), soluble interleukin‐6 (sIL‐6), and adiponectin also were measured. Subcutaneous adipose tissue samples were obtained from n = 107 non‐diabetic and type 2 diabetic subjects with different degrees of obesity. Real‐time polymerase chain reaction was used to measure gene expression of MCP‐1, CD68, tumor necrosis factor‐α (TNF‐α), and its receptor TNFR2. Results: In the Si study, no independent effect of cMCP‐1 levels on insulin sensitivity was observed. In the expression study, in non‐diabetic subjects, MCP‐1 mRNA had a positive correlation with BMI (r = 0.407, p = 0.003), TNF‐α mRNA (r = 0.419, p = 0.002), and TNFR2 mRNA (r = 0.410, p = 0.003). In these subjects, cMCP‐1 was found to correlate with waist‐to‐hip ratio (r = 0.322, p = 0.048). In patients with type 2 diabetes, MCP‐1 mRNA was up‐regulated compared with non‐diabetic subjects. TNF‐α mRNA was found to independently contribute to MCP‐1 mRNA expression. In this group, CD68 mRNA was found to correlate with BMI (r = 0.455, p = 0.001). Discussion: cMCP‐1 is not associated with insulin sensitivity in apparently healthy men. TNF‐α is the inflammatory cytokine associated with MCP‐1 expression in subcutaneous adipose tissue.  相似文献   

11.
12.
13.
Human adipose tissue can produce plasminogen activator inhibitor-1 (PAI-1). It has been suggested that high levels of PAI-1 are of importance in enhanced cardiovascular disease observed among obese subjects, especially abdominally obese individuals. In the present study, we investigated the level of mRNA and production of PAI-1 in adipose tissue from two adipose tissue depots (omental vs. subcutaneous). Adipose tissue from both depots was obtained from obese (mean BMI, 46.9 kg/m 2) and non-obese (mean BMI, 23.9 kg/m 2) women. PAI-1 mRNA was measured both in fresh adipose tissue obtained immediately after surgery and after the adipose tissue (fragments) had been incubated for up to 72 h. In immediately frozen adipose tissue, PAI-1 mRNA expression was similar in omental and subcutaneous adipose tissue. No differences between obese and non-obese women were found. However, when adipose tissue fragments were cultured, PAI-1 mRNA and PAI-1 production were significantly higher in omental than in subcutaneous adipose tissue (p < 0.05). In the culture system, the production of PAI-1 in obese subjects was higher than in non-obese subjects in both subcutaneous (p < 0.05) and in omental adipose tissue (p = 0.19). In order to test whether these regional differences observed after incubation of the adipose tissue were due to differences in local accumulation of cytokines that may stimulate PAI-1 by a paracrine or autocrine manner, we investigated the expression of transforming growth factor beta1 (TGF-beta1) mRNA and tumor necrosis factor alpha (TNF-alpha) mRNA and protein. No differences between the two fat depots were found. In conclusion, no differences in PAI-1 expression between omental and subcutaneous adipose tissue were observed in biopsies frozen immediately after removal, but after incubation of adipose tissue (which somehow stimulates PAI-1 production), higher levels of PAI-1 were found in omental adipose tissue than in subcutaneous adipose tissue. Finally, PAI-1 production in adipose tissue from obese women was higher in non-obese women after incubation for 72 h.  相似文献   

14.
Contradictory findings regarding the gene expression of the main lipogenic enzymes in human adipose tissue depots have been reported. In this cross‐sectional study, we aimed to evaluate the mRNA expression of fatty acid synthase (FAS) and acetyl‐CoA carboxilase (ACC) in omental and subcutaneous (SC) fat depots from subjects who varied widely in terms of body fat mass. FAS and ACC gene expression were evaluated by real time‐PCR in 188 samples of visceral adipose tissue which were obtained during elective surgical procedures in 119 women and 69 men. Decreased sex‐adjusted FAS (?59%) and ACC (?49%) mRNA were found in visceral adipose tissue from obese subjects, with and without diabetes mellitus type 2 (DM‐2), compared with lean subjects (both P < 0.0001). FAS mRNA was also decreased (?40%) in fat depots from overweight subjects (P < 0.05). Indeed, FAS mRNA was significantly and positively associated with ACC gene expression (r = 0.316, P < 0.0001) and negatively with BMI (r = ?0.274), waist circumference (r = ?0.437), systolic blood pressure (r = ?0.310), serum glucose (r = ?0.277), and fasting triglycerides (r = ?0.226), among others (all P < 0.0001). Similar associations were observed for ACC gene expression levels. In a representative subgroup of nonobese (n = 4) and obese women (n = 6), relative FAS gene expression levels significantly correlated (r = 0.657, P = 0.034; n = 10) with FAS protein values. FAS protein levels were also inversely correlated with blood glucose (r = ?0.640, P = 0.046) and fasting triglycerides (r = ?0.832, P = 0.010). In conclusion, the gene expression of the main lipogenic enzymes is downregulated in visceral adipose tissue from obese subjects.  相似文献   

15.
Objectives: Obesity and a physically inactive lifestyle are associated with increased risk of developing insulin resistance. The hypothesis that obesity is associated with increased adipose tissue (AT) interleukin (IL)‐18 mRNA expression and that AT IL‐18 mRNA expression is related to insulin resistance was tested. Furthermore, we speculated that acute exercise and exercise training would regulate AT IL‐18 mRNA expression. Research Methods and Procedures: Non‐obese subjects with BMI < 30 kg/m2 (women: n = 18; men; n = 11) and obese subjects with BMI >30 kg/m2 (women: n = 6; men: n = 7) participated in the study. Blood samples and abdominal subcutaneous AT biopsies were obtained at rest, immediately after an acute exercise bout, and at 2 hours or 10 hours of recovery. After 8 weeks of exercise training of the obese group, sampling was repeated 48 hours after the last training session. Results: AT IL‐18 mRNA content and plasma IL‐18 concentration were higher (p < 0.05) in the obese group than in the non‐obese group. AT IL‐18 mRNA content and plasma IL‐18 concentration was positively correlated (p < 0.05) with insulin resistance. While acute exercise did not affect IL‐18 mRNA expression at the studied time‐points, exercise training reduced AT IL‐18 mRNA content by 20% in both sexes. Discussion: Because obesity and insulin resistance were associated with elevated AT IL‐18 mRNA and plasma IL‐18 levels, the training‐induced lowering of AT IL‐18 mRNA content may contribute to the beneficial effects of regular physical activity with improved insulin sensitivity.  相似文献   

16.
Objective: Adipocytes secrete a series of acute phase proteins including serum amyloid A (SAA); the link with metabolic status is unknown. We studied the variations of expression of the SAA gene in adipose and liver tissues and of SAA serum levels, as well as their relationships with metabolic features during weight loss. Research Methods and Procedures: Plasmatic variations of SAA, inflammatory markers (high sensitivity C‐reactive protein, interleukin‐6, fibrinogen, and orosomucoid), and adipokines (adiponectin, leptin) were studied in 60 morbidly obese patients before and after gastric surgery. For 10 subjects, SAA mRNA expression was measured at baseline in subcutaneous white adipose tissue (scWAT) and visceral white adipose tissue (vWAT) and in the liver. The evolution of SAA mRNA expression was also studied after surgery in scWAT. Results: SAA serum concentration displayed a significant reduction 3 months after surgery and remained stable beyond 6 months. mRNA expression of inducible SAA isoforms (SAA 1 and 2) in scWAT was higher than in vWAT (p = 0.01) and the liver (p < 0.01) and correlated significantly with BMI, SAA, and high sensitivity C‐reactive protein serum concentrations but not with metabolic markers (glucose, insulin, lipid parameters, adiponectin). SAA serum level and its variation during weight loss significantly correlated with adiposity markers (BMI and adipocyte volume, p < 0.01) and inflammatory markers but not with variations of metabolic parameters. The variations of SAA expression in scWAT after surgery correlated with changes in BMI and SAA protein serum levels (p < 0.05). Discussion: SAA can be considered as a marker of adiposity‐induced low‐grade inflammation but not of the metabolic status of obese subjects.  相似文献   

17.
Objective: Chronic inflammation observed in obesity has been reported to be implicated in the development of atherosclerosis. We screened candidate chemokines that link chronic inflammation and obesity. Research Methods and Procedures: Japanese overweight (n = 39, BMI 28.7 ± 0.65 kg/m2) and normal‐weight (n = 24, BMI 22.3 ± 0.45 kg/m2) subjects were enrolled. Using antibody‐based protein microarray, spot intensities of monocyte chemoattractant protein (MCP)‐4, eotaxin, and eotaxin‐2 correlated with anthropometric parameters. We further measured serum concentration of these chemokines and mRNA levels in adipose tissues obtained from volunteers. Results: Serum MCP‐4 levels showed positive correlation with BMI (r = 0.318, p = 0.014), waist (r = 0.316, p = 0.018), and waist‐to‐hip ratio (WHR) (r = 0.264, p = 0.049). Furthermore, MCP‐4 correlated with homeostasis model assessment of insulin resistance (r = 0.392, p = 0.002), high‐sensitivity C‐reactive protein (hsCRP) (r = 0.350, p = 0.006). In step‐wise multiple regression analyses, hsCRP independently correlated with MCP‐4 levels. The expression of MCP‐4 mRNA in visceral adipose tissue positively correlates with BMI. Serum eotaxin levels correlate with BMI (r = 0.262, p = 0.045) and WHR (r = 0.383, p = 0.003). Serum eotaxin‐2 levels correlated with BMI (r = 0.464, p < 0.001), waist (r = 0.333, p = 0.017), and WHR (r = 0.278, p = 0.048). However, eotaxin and eotaxin‐2 levels did not show significant correlation with hsCRP. Discussion: Serum levels of MCP‐4, eotaxin, and eotaxin‐2, which belong to CC chemokine family and share CC chemokine receptor 3, correlated with BMI. These chemokines, especially MCP‐4, may be critical molecules that link obesity and chronic inflammation.  相似文献   

18.
Objective: The ability to form new adipose cells is important to adipose tissue physiology; however, the mechanisms controlling the recruitment of adipocyte progenitors are poorly understood. A role for locally generated angiotensin II in this process is currently proposed. Given that visceral adipose tissue reportedly expresses higher levels of angiotensinogen compared with other depots and the strong association of augmented visceral fat mass with the adverse consequences of obesity, we studied the role of angiotensin II in regulating adipogenic differentiation in omental fat of obese and non‐obese humans. Research Methods and Procedures: The angiotensin II effect on adipose cell formation was evaluated in human omental adipocyte progenitor cells that were stimulated to adipogenic differentiation in vitro. The adipogenic response was measured by the activity of the differentiation marker glycerol‐3‐phosphate dehydrogenase. Results: Angiotensin II reduced the adipogenic response of adipocyte progenitor cells, and the extent of the decrease correlated directly with the subjects’ BMI (p = 0.01, R2 = 0.30). A 56.3 ± 3.4% and 44.5 ± 2.7% reduction of adipogenesis was found in obese and non‐obese donors’ cells, respectively (p < 0.01). The effect of angiotensin II was reversed by type 1 angiotensin receptor antagonist losartan. Discussion: A greater anti‐adipogenic response to angiotensin II in omental adipose progenitor cells from obese subjects opens a venue to understand the deregulation of visceral fat tissue cellularity that has been associated with severe functional abnormalities of the obese condition.  相似文献   

19.
Our objective was to examine omental and subcutaneous adipocyte adiponectin release in women. We tested the hypothesis that adiponectin release would be reduced to a greater extent in omental than in subcutaneous adipocytes of women with visceral obesity. Omental and subcutaneous adipose tissue samples were obtained from 52 women undergoing abdominal hysterectomies (age: 47.1 ± 4.8 years; BMI: 26.7 ± 4.7 kg/m2). Adipocytes were isolated and their adiponectin release in the medium was measured over 2 h. Measures of body fat accumulation and distribution were obtained using dual‐energy X‐ray absorptiometry and computed tomography, respectively. Adiponectin release by omental and subcutaneous adipocytes was similar in lean individuals; however, in subsamples of obese or visceral obese women, adiponectin release by omental adipocytes was significantly reduced while that of subcutaneous adipocytes was not affected. Omental adipocyte adiponectin release was significantly and negatively correlated with total body fat mass (r = ?0.47, P < 0.01), visceral adipose tissue area (r = ?0.50, P < 0.01), omental adipocyte diameter (r = ?0.43, P < 0.01), triglyceride levels (r = ?0.32, P ≤ 0.05), cholesterol/high‐density lipoprotein (HDL)‐cholesterol (r = ?0.31, P ≤ 0.05), fasting glucose (r = ?0.39, P ≤ 0.01), fasting insulin (r = ?0.36, P ≤ 0.05), homeostasis model assessment index (r = ?0.39, P ≤ 0.01), and positively associated with HDL‐cholesterol concentrations (r = 0.33, P ≤ 0.05). Adiponectin release from subcutaneous cells was not associated with any measure of adiposity, lipid profile, or glucose homeostasis. In conclusion, compared to subcutaneous adipocyte adiponectin release, omental adipocyte adiponectin release is reduced to a greater extent in visceral obese women and better predicts obesity‐associated metabolic abnormalities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号